Railway Track Tamping Maintenance Cycle Prediction Model Based on Power-Time-Transformed Wiener Process
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Knowledge Gap
1.4. Research Goal and Contributions
2. Methodology
2.1. Problem Description
2.2. Longitudinal Level Deterioration Model
2.3. Tamping Maintenance Cycle Prediction
3. Estimation of Model Parameters
3.1. MLE with Marine Predators Algorithm
Algorithm 1. Pseudocode of MPA |
Initialization: —population size, —maximum number of iterations, —lower bound of the parameter value range, —upper bound of the parameter value range, set the number of iterations , initial population Iterative process: While ,
End While |
3.2. Adaptive MCMC
Algorithm 2. Pseudocode of Adaptive MCMC |
Initialization: give the proposal distribution , the initial covariance matrix , the initial value of the parameter , the total number of samples , the length of the burn-in period , the lower bound of parameter values , the lower bound of parameter values , and the adjustment coefficient = 0.05. Iterative process: FOR :
Calculate the parameter estimates: |
4. Case Study
4.1. Data Description
4.2. Analysis of the Prediction Results
4.2.1. Results of Parameter Estimations and Tamping Cycle Prediction
4.2.2. Prediction Error Analysis
- Comparative Analysis of Four Parameter Estimation Methods
- Model Validity Analysis
5. Conclusions and Future Work
5.1. Conclusions
- The proposed method employed a power-time-transformed Wiener process to construct the prediction model of each 200 m track segment, allowing simultaneous consideration of heterogeneity and uncertainty in the track geometry deterioration process.
- Both the deterioration parameters and the prediction results of the tamping maintenance cycle for the studied 200 m track segments (n = 2171) were inconsistent, indicating spatial heterogeneity in the deterioration pattern of track geometry.
- For the problem scenario considered in this study, the accuracy and solving efficiency of the MLE method were superior to those of the adaptive MCMC method, and the results obtained using the higher-performance optimization algorithm solver MPA when using the MLE method were more accurate.
- The overall prediction performance of all the prediction models for all segments was robust, meeting the management requirements for tamping maintenance planning over an annual or even longer time span.
- This study is helpful in assisting railway management in shifting the maintenance strategy from period-based preventive maintenance to condition-based predictive maintenance.
5.2. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Calculation Details of the Marine Predators Algorithm (MPA)
Appendix A.1. Population Update
Appendix A.2. Application of FADs Effect
References
- Wen, M.; Li, R.; Salling, K.B. Optimization of preventive condition-based tamping for railway tracks. Eur. J. Oper. Res. 2016, 252, 455–465. [Google Scholar] [CrossRef]
- Andrews, J. A modelling approach to railway track asset management. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 56–73. [Google Scholar] [CrossRef]
- Han, J. China Railway Yearbook; China Railway Publishing House Co., Ltd.: Beijing, China, 2021; pp. 246–258. [Google Scholar]
- Su, Z.; Jamshidi, A.; Núñez, A.; Baldi, S.; De Schutter, B. Multi-level condition-based maintenance planning for railway infrastructures—A scenario-based chance-constrained approach. Transp. Res. Part C Emerg. Technol. 2017, 84, 92–123. [Google Scholar] [CrossRef]
- Caetano, L.F.; Teixeira, P.F. Predictive Maintenance Model for Ballast Tamping. J. Transp. Eng. 2016, 142, 4016006. [Google Scholar] [CrossRef]
- Soleimanmeigouni, I.; Ahmadi, A.; Kumar, U. Track Geometry Degradation and Maintenance Modelling: A Review; SAGE Publications: London, UK, 2018; Volume 232, pp. 73–102. [Google Scholar]
- Khajehei, H.; Ahmadi, A.; Soleimanmeigouni, I.; Haddadzade, M.; Nissen, A.; Latifi Jebelli, M.J. Prediction of track geometry degradation using artificial neural network: A case study. Int. J. Rail Transp. 2022, 10, 24–43. [Google Scholar] [CrossRef]
- Liao, Y.; Han, L.; Wang, H.; Zhang, H. Prediction Models for Railway Track Geometry Degradation Using Machine Learning Methods: A Review. Sensors 2022, 22, 7275. [Google Scholar] [CrossRef] [PubMed]
- Giunta, M.; Bressi, S.; D’Angelo, G. Life cycle cost assessment of bitumen stabilised ballast: A novel maintenance strategy for railway track-bed. Constr. Build. Mater. 2018, 172, 751–759. [Google Scholar] [CrossRef]
- Vale, C.; Ribeiro, I.M.; Calçada, R. Integer Programming to Optimize Tamping in Railway Tracks as Preventive Maintenance. J. Transp. Eng. 2012, 138, 123–131. [Google Scholar] [CrossRef]
- Caetano, L.F.; Teixeira, P.F. Availability Approach to Optimizing Railway Track Renewal Operations. J. Transp. Eng. 2013, 139, 941–948. [Google Scholar] [CrossRef]
- Andrade, A.R.; Teixeira, P.F. Hierarchical Bayesian modelling of rail track geometry degradation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 364–375. [Google Scholar] [CrossRef]
- Movaghar, M.; Mohammadzadeh, S. Bayesian Monte Carlo approach for developing stochastic railway track degradation model using expert-based priors. Struct. Infrastruct. Eng. 2022, 18, 145–166. [Google Scholar] [CrossRef]
- Soleimanmeigouni, I.; Xiao, X.; Ahmadi, A.; Xie, M.; Nissen, A.; Kumar, U. Modelling the evolution of ballasted railway track geometry by a two-level piecewise model. Struct. Infrastruct. Eng. 2018, 14, 33–45. [Google Scholar] [CrossRef]
- Famurewa, S.M.; Juntti, U.; Nissen, A.; Kumar, U. Augmented utilisation of possession time: Analysis for track geometry maintenance. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 230, 1118–1130. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Khalef, R.; Ali, G.G.; El-Adaway, I.H. Evaluating Deterioration of Tunnels Using Computational Machine Learning Algorithms. J. Constr. Eng. Manag. 2021, 147, 04021125. [Google Scholar] [CrossRef]
- Guler, H. Prediction of railway track geometry deterioration using artificial neural networks: A case study for Turkish state railways. Struct. Infrastruct. Eng. 2014, 10, 614–626. [Google Scholar] [CrossRef]
- Lasisi, A.; Attoh-Okine, N. Principal components analysis and track quality index: A machine learning approach. Transp. Res. Part C Emerg. Technol. 2018, 91, 230–248. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, I.Y.; Kim, I.K.; Hwang, S.H. Tamping and Renewal Optimization of Ballasted Track Using Track Measurement Data and Genetic Algorithm. J. Transp. Eng. Part A-Syst. 2018, 144, 04017081. [Google Scholar] [CrossRef]
- Goodarzi, S.; Kashani, H.F.; Oke, J.; Ho, C.L. Data-driven methods to predict track degradation: A case study. Constr. Build. Mater. 2022, 344, 128166. [Google Scholar] [CrossRef]
- Chen, S.; Feng, D.; Wang, W.; Taciroglu, E. Probabilistic Machine-Learning Methods for Performance Prediction of Structure and Infrastructures through Natural Gradient Boosting. J. Struct. Eng. 2022, 148, 4022096. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, K.; Pham, K.; Oh, J.; Choi, H. Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization. Autom. Constr. 2022, 140, 104331. [Google Scholar] [CrossRef]
- Tran, H.; Robert, D.; Gunarathna, P.; Setunge, S. Stochastic Prediction of Road Network Degradation Based on Field Monitoring Data. J. Constr. Eng. Manag. 2023, 149, 4023096. [Google Scholar] [CrossRef]
- Bai, L.; Liu, R.K.; Sun, Q.X.; Wang, F.T.; Xu, P. Markov-based model for the prediction of railway track irregularities. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2015, 229, 150–159. [Google Scholar] [CrossRef]
- Prescott, D.; Andrews, J. Investigating railway track asset management using a Markov analysis. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2015, 229, 402–416. [Google Scholar] [CrossRef]
- Letot, C.; Soleimanmeigouni, I.; Ahmadi, A.; Dehombreux, P. An adaptive opportunistic maintenance model based on railway track condition prediction. IFAC-PapersOnLine 2016, 49, 120–125. [Google Scholar] [CrossRef]
- Galván-Núñez, S.; Attoh-Okine, N. A threshold-regression model for track geometry degradation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 2456–2465. [Google Scholar] [CrossRef]
- Ye, Z.S.; Xie, M. Stochastic modelling and analysis of degradation for highly reliable products. Appl. Stoch. Models. Bus. Ind. 2015, 31, 16–32. [Google Scholar] [CrossRef]
- Xiao, X.; Ye, Z. Optimal Design for Destructive Degradation Tests With Random Initial Degradation Values Using the Wiener Process. IEEE Trans. Reliab. 2016, 65, 1327–1342. [Google Scholar] [CrossRef]
- Lee, J.S.; Hwang, S.H.; Choi, I.Y.; Kim, I.K. Prediction of Track Deterioration Using Maintenance Data and Machine Learning Schemes. J. Transp. Eng. Part A Syst. 2018, 144, 04018045. [Google Scholar] [CrossRef]
- Khajehei, H.; Haddadzade, M.; Ahmadi, A.; Soleimanmeigouni, I.; Nissen, A. Optimal opportunistic tamping scheduling for railway track geometry. Struct. Infrastruct. Eng. 2021, 17, 1299–1314. [Google Scholar] [CrossRef]
- Andrade, A.R.; Teixeira, P.F. Exploring Different Alert Limit Strategies in the Maintenance of Railway Track Geometry. J. Transp. Eng. 2016, 142, 04016037. [Google Scholar] [CrossRef]
- Qu, J.; Liu, P.; Long, Y.; Xu, F. Main Factors on Effect of Precise Measurement and Precise Tamping Based on BP Neural Network. Appl. Sci. 2023, 13, 4273. [Google Scholar] [CrossRef]
- Khouy, I.A.; Schunnesson, H.; Juntti, U.; Nissen, A.; Larsson-Kråik, P. Evaluation of track geometry maintenance for a heavy haul railroad in Sweden: A case study. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2014, 228, 496–503. [Google Scholar] [CrossRef]
- Offenbacher, S.; Koczwara, C.; Landgraf, M.; Marschnig, S. A Methodology Linking Tamping Processes and Railway Track Behaviour. Appl. Sci. 2023, 13, 2137. [Google Scholar] [CrossRef]
- China State Railway Group Co., Ltd. General Speed Railway Line Maintenance Rules (TG/GW102—2019); China Railway Publishing House Co., Ltd.: Beijing, China, 2019. [Google Scholar]
- Audley, M.; Andrews, J.D. The effects of tamping on railway track geometry degradation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 376–391. [Google Scholar] [CrossRef]
- Massingham, J.; Nielsen, O.; Butlin, T. An efficient method for generalised Wiener series estimation of nonlinear systems using Gaussian processes. Mech. Syst. Signal Proc. 2024, 209, 111095. [Google Scholar] [CrossRef]
- Li, K.; Ren, L.; Li, X.; Wang, Z. Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance. Eksploat. Niezawodn. 2024, 26, 174903. [Google Scholar] [CrossRef]
- Duan, F.; Wang, G.; Wei, W.; Jiang, M. Remaining useful life evaluation for accelerated Wiener degradation process model with mixed random effects and measurement errors. Qual. Reliab. Eng. Int. 2023, 39, 1334–1351. [Google Scholar] [CrossRef]
- Yu, W.; Tu, W.; Kim, I.Y.; Mechefske, C. A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability. Reliab. Eng. Syst. Saf. 2021, 212, 107631. [Google Scholar] [CrossRef]
- Ashley, G.; Attoh-Okine, N. Approximate Bayesian computation for railway track geometry parameter estimation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2021, 235, 1013–1021. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Luengo, D.; Martino, L.; Bugallo, M.; Elvira, V.; Särkkä, S. A survey of Monte Carlo methods for parameter estimation. EURASIP J. Adv. Signal Process. 2020, 2020, 25. [Google Scholar] [CrossRef]
(mm) | Sample Size | MAE (Days) | Percentage of Absolute | Percentage of Absolute | Percentage of Absolute | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error ≤ 30 Days | Error ≤ 60 Days | Error ≤ 90 Days | |||||||||||||||
MPA | GA | GD | AMCMC | MPA | GA | GD | AMCMC | MPA | GA | GD | AMCMC | MPA | GA | GD | AMCMC | ||
1 | 1002 | 19 | 20 | 28 | 25 | 79% | 77% | 72% | 73% | 98% | 97% | 90% | 89% | 100% | 100% | 96% | 96% |
1.1 | 1097 | 20 | 21 | 29 | 28 | 78% | 74% | 69% | 70% | 96% | 96% | 89% | 88% | 100% | 100% | 95% | 95% |
1.2 | 1155 | 20 | 21 | 29 | 30 | 77% | 76% | 69% | 67% | 96% | 95% | 88% | 85% | 100% | 100% | 95% | 95% |
1.3 | 1135 | 20 | 21 | 31 | 32 | 78% | 76% | 69% | 64% | 96% | 95% | 88% | 84% | 100% | 100% | 95% | 93% |
1.4 | 1031 | 20 | 21 | 30 | 34 | 76% | 74% | 67% | 61% | 96% | 95% | 89% | 82% | 100% | 100% | 95% | 92% |
1.5 | 931 | 21 | 22 | 31 | 37 | 76% | 74% | 67% | 59% | 95% | 94% | 88% | 79% | 100% | 100% | 95% | 91% |
1.6 | 805 | 20 | 21 | 30 | 37 | 76% | 75% | 68% | 58% | 97% | 96% | 90% | 79% | 100% | 100% | 95% | 91% |
1.7 | 666 | 19 | 19 | 28 | 39 | 80% | 78% | 71% | 53% | 97% | 96% | 90% | 79% | 100% | 100% | 95% | 91% |
1.8 | 557 | 18 | 18 | 30 | 39 | 81% | 79% | 72% | 56% | 96% | 96% | 88% | 78% | 100% | 100% | 95% | 90% |
1.9 | 454 | 18 | 19 | 26 | 39 | 80% | 78% | 74% | 55% | 96% | 96% | 90% | 79% | 100% | 100% | 96% | 90% |
2 | 374 | 18 | 18 | 29 | 38 | 82% | 80% | 72% | 57% | 97% | 96% | 88% | 79% | 100% | 100% | 95% | 91% |
2.1 | 303 | 17 | 17 | 25 | 39 | 83% | 83% | 74% | 54% | 96% | 95% | 91% | 80% | 100% | 100% | 96% | 91% |
2.2 | 223 | 16 | 17 | 23 | 38 | 83% | 81% | 75% | 56% | 99% | 99% | 95% | 77% | 100% | 100% | 97% | 91% |
2.3 | 182 | 16 | 17 | 22 | 38 | 82% | 79% | 74% | 59% | 97% | 98% | 93% | 77% | 100% | 100% | 96% | 91% |
2.4 | 150 | 16 | 17 | 23 | 41 | 84% | 84% | 77% | 53% | 97% | 97% | 92% | 79% | 100% | 100% | 96% | 91% |
2.5 | 130 | 15 | 16 | 20 | 38 | 88% | 84% | 79% | 56% | 99% | 98% | 93% | 79% | 100% | 100% | 98% | 94% |
2.6 | 110 | 15 | 16 | 21 | 35 | 87% | 85% | 79% | 56% | 99% | 99% | 92% | 78% | 100% | 100% | 95% | 96% |
2.7 | 98 | 14 | 15 | 18 | 35 | 89% | 87% | 85% | 53% | 99% | 99% | 93% | 82% | 100% | 100% | 95% | 96% |
2.8 | 76 | 15 | 15 | 23 | 37 | 87% | 86% | 82% | 49% | 100% | 100% | 92% | 82% | 100% | 100% | 93% | 96% |
2.9 | 67 | 16 | 16 | 22 | 36 | 81% | 79% | 83% | 51% | 97% | 97% | 94% | 79% | 100% | 100% | 97% | 93% |
3 | 56 | 16 | 14 | 17 | 38 | 82% | 88% | 81% | 52% | 98% | 98% | 94% | 79% | 100% | 100% | 94% | 89% |
Overall results | 10,602 | 19 | 20 | 26 | 34 | 79% | 77% | 74% | 62% | 96% | 96% | 91% | 82% | 100% | 99.95% | 96% | 92.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, R.; Jia, L.; Tang, Y.; Tian, Y.; Wang, Z. Railway Track Tamping Maintenance Cycle Prediction Model Based on Power-Time-Transformed Wiener Process. Appl. Sci. 2024, 14, 5867. https://doi.org/10.3390/app14135867
An R, Jia L, Tang Y, Tian Y, Wang Z. Railway Track Tamping Maintenance Cycle Prediction Model Based on Power-Time-Transformed Wiener Process. Applied Sciences. 2024; 14(13):5867. https://doi.org/10.3390/app14135867
Chicago/Turabian StyleAn, Ru, Lei Jia, Yuanjie Tang, Yuan Tian, and Zhipeng Wang. 2024. "Railway Track Tamping Maintenance Cycle Prediction Model Based on Power-Time-Transformed Wiener Process" Applied Sciences 14, no. 13: 5867. https://doi.org/10.3390/app14135867
APA StyleAn, R., Jia, L., Tang, Y., Tian, Y., & Wang, Z. (2024). Railway Track Tamping Maintenance Cycle Prediction Model Based on Power-Time-Transformed Wiener Process. Applied Sciences, 14(13), 5867. https://doi.org/10.3390/app14135867