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and Piotr Gorzelańczyk
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Abstract: Predicting the tamping cycles of railway track sections based on track geometry deteriora-
tion rules is necessary to reasonably allocate the limited tamping maintenance resources. Existing
research on track geometry deterioration modeling for tamping cycle prediction lacks simultaneous
consideration of the deterioration characteristics including heterogeneity, uncertainty, and historical
dependence, thereby limiting the accuracy of the prediction results. Thus, this study considers a
200 m track segment as the basic object and uses the power-time-transformed Wiener process to
develop a deterioration prediction model for the longitudinal level of a segment between two adjacent
tamping operations. Moreover, it individually estimates the model parameters for each track segment
to predict the tamping maintenance cycle for each segment combined with the tamping maintenance
threshold of the longitudinal level index. Finally, through a case study of the Chinese Lanxin Railway
line, the effectiveness of the proposed model and different parameter estimation methods is assessed.

Keywords: railway track; tamping maintenance; power-time-transformed Wiener process; maximum
likelihood estimation; marine predators algorithm; adaptive MCMC

1. Introduction
1.1. Background

Ballast tamping using heavy machines is the most important and effective main-
tenance operation used by railway track managers in various countries to restore the
geometry conditions of ballasted tracks, but it is expensive [1]. The traditional preventive
maintenance strategy based on fixed time intervals can lead to “over-maintenance” and
“under-maintenance”, which not only affect the safety and availability of railway tracks but
also increase maintenance costs [2]. The pressure on maintenance operations also continues
to increase with railway network expansion. Taking China’s railways as an example, from
2011 to 2021, the annual tamping kilometers increased from 103,138 km to 190,890 km,
accounting for nearly 80% of the total extension length of the ballasted track [3]. There-
fore, to ensure safety and reasonably control maintenance costs, the maintenance strategy
for railway infrastructures in many countries has gradually shifted to condition-based,
proactive maintenance [4]. Furthermore, a tamping operation requires heavy machines and
dozens of workers. Therefore, it is necessary to plan tamping maintenance operations in
advance because of limited maintenance resources and budgets [5]. To perform reasonable
planning of track tamping operations under a condition-based maintenance strategy, it is
necessary to estimate the tamping maintenance cycle (i.e., the time interval between two
adjacent tamping interventions) based on the deterioration of the track geometry condition
to predict the tamping maintenance needs.

Appl. Sci. 2024, 14, 5867. https://doi.org/10.3390/app14135867 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14135867
https://doi.org/10.3390/app14135867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4124-2060
https://orcid.org/0000-0003-0192-825X
https://orcid.org/0000-0002-9320-5747
https://doi.org/10.3390/app14135867
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14135867?type=check_update&version=2


Appl. Sci. 2024, 14, 5867 2 of 24

1.2. Literature Review

Extensive research has been conducted on how to predict the tamping maintenance
demand using methods for modeling track geometry deterioration. The types of models
studied for this purpose can be divided into three categories: deterministic models, machine
learning models, and probabilistic models [6–8].

Deterministic models use statistical analysis methods, such as regression analysis,
to analyze the functional relationship between the evolution of track geometry and ser-
vice time, accumulated traffic load, and other factors of influence [9,10]. Caetano and
Teixeira [11] established linear deterioration prediction models for individual track sections
that describe the change in the standard deviation of the longitudinal level over time
or with the cumulative change in total traffic tonnage between two successive tamping
operations. Andrade and Teixeira [12], Movaghar and Mohammadzadeh [13], and others
identified multivariate linear regression relationships between the standard deviation of the
longitudinal level and factors such as the average annual total traffic tonnage, service time,
and track structure. Some researchers believe that the track geometry deterioration pattern
between two successive tamping operations exhibits nonlinear characteristics. Based on
methods such as exponential and multistage linear fitting, nonlinear prediction models
have been developed for tamping maintenance cycles [14,15].

In recent years, machine learning methods have received increased attention because
of their usefulness in modeling the deterioration of infrastructure conditions [16]. Artificial
neural networks (ANNs), support vector machines (SVMs), and ensemble learning are
machine learning techniques commonly adopted in the field of track geometry condition
prediction [7,17–20]. These studies mainly sought to establish models for the relationship
between the future and current states of track geometry conditions as functions of various
factors for use in the short-term prediction of track geometry conditions. For long-life
assets, such as tracks, tunnels, and bridges, machine learning techniques commonly use
inspection and monitoring data along with data on related influencing factors as inputs
for short- to medium-term condition prediction [16,21,22]. Because it is difficult to collect
sufficient maintenance cycle or lifespan data to support model training, these techniques
are not yet capable of supporting application scenarios, such as risk assessment and
whole life-cycle maintenance cost prediction [23]. Moreover, machine learning prediction
models previously established for the deterioration patterns of track geometry conditions
are essentially regression models. Without sufficient consideration of all of the input
factors influencing the deterioration process, they may not be able to accurately capture the
uncertainty of the deterioration process, thereby failing to predict track geometry conditions
with high accuracy [23].

Probabilistic models use stochastic process methods or probability distribution func-
tions to predict the deterioration patterns of track geometry conditions, considering the
uncertainty of the deterioration process. The advantage of these methods is that, on the one
hand, they can predict the track geometry condition or state rate at any time during the
entire life cycle, while on the other hand, they can output indicators, such as life expectancy,
that support maintenance planning for a long period. A representative method is the
Markov stochastic process, which discretizes the assessment of track geometry conditions
into different state levels and describes the deterioration process of the transitions between
these states [24,25]. Considering that track geometry condition indicators are continuous
variables and using discretized state levels to describe the deterioration process may not
ensure accuracy, some scholars have employed a continuous state-space stochastic pro-
cess method, that is, the linear Wiener process method, to describe the deterioration of
condition indicators, such as the standard deviation of the longitudinal level over a track
segment [26,27]. However, the above methods all assume that the deterioration process
of track geometry conditions has a Markov property—that is, that the future state only
depends on the current state and is independent of past states. However, not all infrastruc-
tural deterioration processes satisfy this assumption. Whether the deterioration process of
the track geometry condition satisfies this assumption requires a large amount of research
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for verification [6]. In their research on the degradation of highly reliable products, Ye and
Xie [28] and Xiao and Ye [29] noted that degradation rates often vary with time or stress
levels, exhibiting nonstationary characteristics. To address this issue, they proposed a novel
class of Wiener degradation models incorporating time-varying parameters to capture the
dynamic evolution of degradation rates. These studies offer a fresh modeling perspective
that potentially overcomes the limitations associated with the Markovian assumption when
applied to predicting track geometry conditions.

1.3. Knowledge Gap

Based on the literature review, it can be seen that in the context of modeling the dete-
rioration pattern of track geometry condition for the prediction of tamping maintenance
demands, stochastic process methods provide more direct bases for track maintenance deci-
sions, such as maintenance cycles and remaining useful life, compared to machine learning
models, and have stronger applicability. However, existing studies based on stochastic
process methods mostly adopt the Markov process, assuming that the deterioration process
of track geometry conditions is memoryless, which overlooks the exponential characteristic
that the deterioration process within a tamping cycle starts at a slow rate and accelerates
over time [15,30,31], making it difficult to ensure the accuracy of the prediction results.

1.4. Research Goal and Contributions

To predict the demand for railway track tamping maintenance, we developed a predic-
tion model of the longitudinal-level deterioration process within the tamping maintenance
cycle for a track segment. Based on the model, the tamping maintenance cycle period
of each track segment is predicted combined with the maintenance limit value of the
longitudinal level indicator. This study makes the following key contributions.

(1) To our knowledge, this study is the first attempt to use the power-time-transformed
Wiener process (PTT-WP) to predict the tamping maintenance cycle. Simultaneously, this
study estimates the deterioration model parameters individually for each track segment,
achieving simultaneous consideration of deterioration characteristics, including hetero-
geneity, uncertainty, and historical dependency, avoiding the limitations that the Markov
property assumption may impose on the accuracy of the prediction model.

(2) Considering the characteristics of the problem, two parameter estimation methods
were designed: the maximum likelihood estimation (MLE) and the adaptive Markov
chain Monte Carlo (MCMC). Furthermore, under the framework of the MLE method, the
effectiveness of three different parameter-solving algorithms, namely the marine predators
algorithm (MPA), the genetic algorithm (GA), and the gradient descent algorithm (GD), are
compared. To our knowledge, this is the first attempt to use MPA for this type of problem.
Finally, by conducting a prediction error analysis based on actual cases, the effectiveness
and performance of the different parameter estimation methods were assessed, providing
useful guidance for similar studies.

The Methodology section (Section 2) presents the prediction model developed for
the tamping cycle of a track segment. The Estimation of Model Parameters section
(Section 3) describes the methods used to estimate the proposed prediction model parame-
ters. The Case Study section (Section 4) presents a case study using actual data from the
Chinese Lanxin Railway line to verify the effectiveness of the proposed method. The main
conclusions and directions for future research are presented in the final section (Section 5).

2. Methodology
2.1. Problem Description

In this study, the track tamping maintenance cycle period refers to the time interval
between two successive tamping maintenance operations, and its length depends on the
deterioration pattern of the track geometry during the tamping cycle. Because of the
influences of various factors such as the track structure, transportation organization, and
maintenance history, the deterioration rules of track geometry conditions at different spatial
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locations are inconsistent, exhibiting heterogeneity; at the same time, the deterioration
process of the track geometry condition at a specific spatial location is also characterized
by uncertainty. This study used a 200 m track segment as the basic research object, and
based on historical inspection data of the longitudinal level of each track segment, the
stochastic process method of the power-time-transformed Wiener process was used to
develop the longitudinal-level deterioration prediction model between successive tamping
maintenances. For each track segment, the deterioration model parameters were estimated
individually using the historical track geometry inspection data of the track segment itself,
with simultaneous consideration of the heterogeneity and uncertainty of the deterioration
process. Based on the track geometry condition deterioration model with heterogeneous
deterioration parameters across different segments, the time interval for the track geometry
condition indicator of each segment to reach the tamping maintenance threshold, that is,
the tamping maintenance cycle of each track segment, was predicted. We propose the
following premises and hypotheses for the prediction model developed in this study.

(1) Railway infrastructure managers in most countries (such as the United Kingdom,
France, and Sweden) adopt the longitudinal level as the main track geometry parameter
to trigger preventive tamping maintenance operations [32]. As illustrated in Figure 1,
the longitudinal level represents the vertical plane irregularities of each rail [33]. The
measurement is typically obtained using a track geometry car equipped with an inertial
reference system. Some researchers have noted that the longitudinal-level deterioration
trend over time between two successive tamping maintenance events is more evident
and regular [34]. Therefore, in this study, the standard deviation of the longitudinal level
over a 200 m track segment was used as the track geometry condition indicator triggering
tamping maintenance.
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(2) Assumptions regarding the initial value of the longitudinal-level indicator in the
deterioration process were as follows. As shown in Figure 2, in the tamping operation
process, operators employ heavy tamping machines to lift, level, and align the track
based on measurement results. This operation ensures that the track geometry parameters
meet the requirements specified in track design standards or maintenance codes [33,35].
Because a track dynamic stabilization car is used to stabilize a track quickly after a tamping
operation [36], in this scenario, the bedding-in process (that is, the process by which the
track ballast gradually stabilizes and track geometry gradually improves after the tamping
operation) mentioned by Audley and Andrews [37] could be ignored. Therefore, this
study assumed that the initial value of the longitudinal-level indicator during the tamping
maintenance cycle was approximately equal to the first value detected after the last tamping
maintenance operation.
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Figure 2. The main models of heavy tamping machines in China and the main phases of a tamping
process: (a) Hexie DCL-32 tamping machine [33], (b) tamping machine DWL-48 that integrates
tamping and stabilization [33], and (c) the main phases of a tamping process [35].

2.2. Longitudinal Level Deterioration Model

The power-time-transformed Wiener process (PTT-WP) method is a random method
widely used in modeling research on facility performance deterioration and useful life
prediction. The PTT-WP method is quite suitable for describing the long-time deterioration
process with the uncertainty of continuous condition variables [38–41]. Moreover, it can
capture the characteristics of the deterioration process in which the rate of deterioration
accelerates over time. In this study, the PTT-WP method was used to develop a deterioration
prediction model for the longitudinal level of a 200 m track segment in the tamping
maintenance cycle.

According to the general form of PTT-WP, for track segment k, the formula for the
deterioration prediction model of the longitudinal level in the tamping maintenance cycle
is as follows:

Xk(t) = X0,k + βkΛ(t; θk) + σkB(Λ(t; θk)), (1)
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where Xk(t) is the predicted value of the standard deviation of the longitudinal level
(SDLL) at time t during the tamping maintenance cycle for track segment k. X0,k is the
initial value of the SDLL during the tamping maintenance cycle. βk is the drift coefficient.
σk is the diffusion coefficient. The Brownian motion, denoted as B(·), is employed to
model the uncertainty inherent in the deterioration process, particularly capturing the
improvements in the SDLL attributable to local maintenance activities. B(·) is characterized
by increments that follow a normal distribution. Specifically, in this study, the increment
B(Λ(t; θk))− B(Λ(s; θk)) follows a normal distribution with a mean of 0 and a variance
of Λ(t; θk)− Λ(s; θk). Combined with the calculation formula for Xk(t) as shown in Equa-
tion (1), it can be further deduced that ∆Xk = Xk(t)− Xk(s), representing the increment of
SDLL at any two time points, is normally distributed with mean βk(Λ(t; θk)− Λ(s; θk)) and
variance σk

2·(Λ(t; θk)− Λ(s; θk)). Λ(t; θk) is a timescale transformation function, for which
the form Λ(t; θk) = tθk was adopted in this study, where θk is a parameter to be estimated.
Values of θk > 1 indicate that the trend curve of the deterioration process is concave,
characterized by an increasing deterioration rate over time. When θk = 1, the trend curve of
the deterioration process is linear, and in this case, the model corresponds to the traditional
linear Wiener deterioration process. Values of θk < 1 indicate that the trend curve of the
deterioration process is convex, meaning that the condition gradually deteriorates to a
saturation point or an asymptotic level. Consequently, the advantage of using the timescale
transformation function in the form of tθk is that it does not necessitate the assumption that
the deterioration process is linear or nonlinear. Instead, it estimates the value of θk using
actual condition inspection data of segment k itself. Based on the estimated result for θk,
the characteristics of the deterioration process can be further analyzed for segment k. This
approach is more adaptable and flexible compared to the traditional modeling methods
based on the linear Wiener process (i.e., in the case of Λ(t; θk) = t). It is important to note
that a substantial body of relevant literature indicates that the track geometry deterioration
between two consecutive tamping operations follows a linear or exponential trend [37].
This suggests that the overall trend of the SDLL is consistently increasing. Therefore, in
this study, it was posited that θk ≥ 1.

2.3. Tamping Maintenance Cycle Prediction

The concept of ‘first hitting time’ plays a crucial role in degradation analysis as it
represents the moment when the system reaches a specified threshold. Building upon this
notion, this study defines the tamping maintenance cycle of track segment k as the time
interval during which the value of SDLL, Xk(t), deteriorates from the initial state X0,k to
the maintenance threshold Xlim for the first time:

Tk = inf{ξk|Xk(ξk) ≥ Xlim} = inf
{

ξk
∣∣βkΛ(ξk; θk) + σkB(Λ(ξk; θk)) ≥ Xlim − X0,k

}
, (2)

where Tk is the tamping maintenance cycle. ξk is a random variable that represents the
degradation time interval from the initial moment. The operator inf {·} denotes the in-
ferior limit of a variable. As previously mentioned, the increment ∆Xk follows a normal
distribution. According to the principles of the Wiener process [41], Λ(ξk; θk) follows an
inverse Gaussian distribution with a location parameter of (X lim − X0,k)/βk and a scale
parameter of (X lim − X0,k)

2/σ2
k . Therefore, the probability density function fk(ξk) for the

tamping maintenance cycle can be expressed as follows:

fk(ξk) =
Xlim − X0,k√

2πσ2
k [Λ(ξk; θk)]

3
exp

−
(Xlim−X0,k−βkΛ(ξk ;θk))

2

2σ2
k Λ(ξk ;θk)

dΛ(ξk; θk)

dξk
, (3)

Substituting Λ(ξk; θk) = ξ
θk
k into Equation (3) yields the following:
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fk(ξk) = θk
Xlim − X0,k√
2πσ2

k

(
ξ

θk
k

)3
exp

−
(Xlim−X0,k−βkξ

θk
k )

2

2σ2
k ξ

θk
k ξ

θk−1
k , (4)

In the field of probabilistic modeling for infrastructure and equipment deterioration
prediction, the life expectancy calculated from the lifespan probability density function is
typically used as the predicted result for the service life [39–41]. Following this approach,
given the known probability density function fk(ξk) for the tamping maintenance cycle of
track segment k, the predicted value Tk for the tamping maintenance cycle can be calculated
using Equation (5):

Tk =
∫ ∞

0
ξk · fk(ξk)dξk, (5)

3. Estimation of Model Parameters

βk, σk, and θk are the parameters to be estimated in the prediction model of the tamping
maintenance cycle for track segment k. To ensure the accuracy of the prediction results, it is
necessary to utilize historical inspection data and select an effective parameter estimation
method to estimate the parameters. Maximum likelihood estimation (MLE) and Markov
chain Monte Carlo (MCMC) methods are widely used to estimate unknown parameters
in stochastic process modeling. Although some studies believe that MCMC can consider
prior information to make parameter estimation results more accurate [13,23,42], there has
been no comparison between the results of MLE and MCMC to verify this view. This study
employed both MLE and adaptive MCMC methods to estimate the model parameters.
Through a case analysis, we compared the accuracy of the estimation results produced by
these two methods for the issues addressed in this research. The two parameter estimation
methods are described below.

3.1. MLE with Marine Predators Algorithm

Let ∆xk,m = xk,m − xk,m−1 represent the deterioration amount of the SDLL for track
segment k between two consecutive inspection times tk,m−1 and tk,m. In accordance with
the properties of the PTT-WP, ∆xk,m follows a normal distribution with the expectation
E(∆xk,m) and variance Var(∆xk,m) given by Equations (6) and (7):

E(∆xk,m) = βk·∆Λ(t; θk)m, (6)

Var(∆xk,m)= σk
2·∆Λ(t; θk)m , (7)

where ∆Λ(t; θk)m = tθk
k,m − tθk

k,m−1. Based on the principles of the MLE method, the historical
inspection data at the longitudinal level for track segment k can be used to construct the
log-likelihood function, given by Equation (8):

ln[L(γγγk|Datak )] = ln[∏Mk
m=2

1√
2πσk

2∆Λ(t; θk)m
exp[−

(
∆xk,m − βk∆Λ

(
t; θk)m)2

2σk
2∆Λ(t; θk)m

]], (8)

where γγγk = {γk1, γk2, γk3} = {βk, θk, σk}, is the vector composed of the model parameters
to be estimated, Datak =

{
(tk,m, xk,m)

∣∣ m = 1, 2, . . . , Mk
}

is the collected dataset of the total
of Mk inspections of track segment k, tk,m is the inspection date of inspection sample m,
and xk,m is the SDLL value obtained for inspection sample m.

According to the theory of MLE, the values of the parameters βk, σk, and θk that maxi-
mize the log-likelihood function, as shown in Equation (8), are the estimated results, de-
noted as β̂k, σ̂k, and θ̂k, respectively. Therefore, this parameter estimation problem is an opti-
mization challenge that involves determining the optimal solution in Equations (9) and (10):

max ln[L(γγγk|Datak )], (9)
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s.t. βk > 0, σk > 0, θk ≥ 1, (10)

Considering the intricate and multimodal characteristics of the objective function as
well as the nonlinear and multidimensional characteristics of the solution space, gradient-
based optimization methods are susceptible to getting trapped in local optima. Conse-
quently, in this study, we employed a high-performance heuristic global optimization
solver known as the marine predators algorithm (MPA). This algorithm was proposed
by Faramarzi et al. [43]. The performance of the MPA in 29 test functions and several
practical engineering cases was evaluated in their study. The proposed MPA performed
better than the genetic algorithm, particle swarm optimization, gravity search algorithm,
and covariance matrix adaptive evolutionary strategy algorithm [43]. Algorithm 1 presents
the pseudocode of MPA used to solve Equations (9) and (10).

Algorithm 1. Pseudocode of MPA

Initialization: n—population size, max_iter—maximum number of iterations, lb—lower bound
of the parameter value range, ub—upper bound of the parameter value range, set the number of

iterations Iter = 0, initial population Preyk =
{

γγγi
k, i = 1, . . . , n

}
Iterative process:
While Iter < max_iter,

1. Calculate the fitness of the population based on Equation (8), i.e.,

ln[L
(

γγγi
k|Datak

)
, construct the Elite matrix Elitek, and accomplish memory saving.

2. Update the population Preyk:
If Iter < max_iter/3

si = RB ⊗
(

Elitei
k − RB ⊗γγγi

k

)
, γγγi

k = γγγi
k + P ∗ R ⊗ si, i = 1, . . . , n

Or else if max_iter/3 < Iter < 2 ∗ max_iter/3
Divide the population into two parts: prey and predators.
The prey perform Lévy flights and updates based on:

si = RL ⊗
(

Elitei
k − RL ⊗γγγi

k

)
, γγγi

k = γγγi
k + P ∗ R ⊗ si, i = 1, . . . , n/2

The predators perform Brownian motion and updates based on:

si = RB ⊗
(

Elitei
k − RB ⊗γγγi

k

)
, γγγi

k = Elitei
k + P·CF ⊗ si, i = n

2 + 1, . . . , n
Or else if Iter > 2 ∗ max_iter/3

si = RL ⊗
(

Elitei
k − RL ⊗γγγi

k

)
, γγγi

k = Elitei
k + P ∗ CF ⊗ si, i = 1, . . . , n

End (if)
3. Accomplish memory saving and Elitek update
4. Applying Fish Aggregating Devices (FADs) effect and update Preyk based on:

γγγi
k =

γγγi
k + CF[lb + R ⊗ (ub − lb)]⊗ U, r ≤ FADs

γγγi
k + [FADs(1 − r) + r]

(
γγγr1

k −γγγr2
k
)
, r > FADs

End While

In the pseudocode mentioned above, P, R, RB, RL, CF, FADs, U, r, r1, and r2 are the
algorithm parameters. Their structure and value-assigning methods were based on rec-
ommendations in the literature [43]. Appendix A provides supplementary explanations
for some key calculation details in the above pseudocode. Moreover, to test the effective-
ness of the MPA in solving the problem presented in this study, a comparative analysis
will be conducted in the case study. The performance of the MPA will be compared to
two other optimization techniques: the genetic algorithm (GA), which is a widely-used
heuristic algorithm, and the gradient descent algorithm (GD), which is a popular gradient-
based method.
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3.2. Adaptive MCMC

As outlined above, MCMC is a quintessential parameter estimation method within a
Bayesian framework. The fundamental concept involves constructing a Markov chain using
sampling techniques to ensure that the steady-state distribution aligns with the posterior
distribution of the target parameter. Adaptive MCMC enhances this process by dynamically
fine-tuning the sampling parameters, thereby boosting sampling efficiency [44].

First, determine the posterior distribution function of the parameters to be estimated.
According to the Bayesian criterion, given the observed data Datak =

{
(tk,m, xk,m)

}
, the

posterior distribution p(γγγk|Datak) of the parameters to be estimated γγγk = {βk, θk, σk} is
proportional to the product of the prior distribution p(γγγk) and the likelihood function
p(Datak|γγγk), as expressed in Equation (11):

p(γγγk|Datak) =
p(Datak|γγγk)·p(γγγk)

p(Datak)
∝ p(Datak|γγγk)·p(γγγk), (11)

where the prior distribution p(γγγk) in this study is a multivariate truncated normal distribu-
tion with a mean of µ =

(
µβ, µσ, µϑ

)
, a covariance matrix of C3×3, and truncation interval

LU = {βk > 0, σk > 0, θk ≥ 1}. This study used the MLE-based results of the parameters
for the deterioration models of all segments. The mean and covariance of these results will
respectively serve as the µ and C3×3 for the prior distribution. According to Equation (8),
the likelihood function is as follows:

p(Datak|γγγk) = ∏Mk
m=2

1√
2πσk

2∆Λ(t; θk)m
exp[−

(
∆xk,m − βk∆Λ

(
t; θk)m)2

2σk
2∆Λ(t; θk)m

], (12)

Secondly, the sampling method and adaptive adjustment rules were determined.
Considering the complexity of sampling from the posterior distribution and the correlation
between parameters, this study adopts the more flexible Metropolis–Hastings algorithm
for the sampling process. For the adaptive adjustment rules, based on the discussion in the
literature [44], the study employs the optimization criterion of aiming to achieve an optimal
acceptance rate range of 0.2 < α* < 0.3 to continuously adjust the covariance matrix of the
proposal distribution during the burn-in period. The adjustment coefficient λ is determined
by conducting parameter estimation on randomly selected track segments and comparing
the convergence under different coefficient values. The length of the burn-in period was set
to 50% of the total number of samples. Samples generated during the burn-in period were
not used for subsequent statistical analyses [44]. In addition, considering that the input
of the initial samples has a significant impact on the convergence speed of the sampling
process and the accuracy of the parameter estimation results, the sampling algorithm
was executed using the MLE-based results as the initial values for the parameters to be
estimated. Algorithm 2 presents the pseudocode for the adaptive MCMC algorithm used
to estimate the model parameter γγγk.
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Algorithm 2. Pseudocode of Adaptive MCMC

Initialization: give the proposal distribution p
(
γγγ′∣∣γγγn−1

)
, the initial covariance matrix C0, the

initial value of the parameter γγγ0, the total number of samples N = 20, 000, the length of the
burn-in period Nb, the lower bound of parameter values lb, the lower bound of parameter values
ub, and the adjustment coefficient λ = 0.05.
Iterative process:
FOR n = 1, . . . , N:

1. Draw a candidate sample γγγ′ from the proposal distribution and generate a random
number from a uniform distribution u ∼ U([0, 1))

2. Calculate the acceptance probability:

αn = min

[
1,

p(γγγ′|Datak)

p
(
γγγn−1

∣∣Datak
) ]

3. Decide whether to accept sample γγγ′:
If u ≤ αn:

γγγn = γγγ′

Otherwise:

γγγn = γγγn−1

End (if)
4. Update the covariance matrix when n ≤ Nb

If αn < 0.2: Cn = (1 + λ) ∗ Cn−1
Otherwise if αn > 0.3: Cn = (1 − λ) ∗ Cn−1
Otherwise: Cn = Cn−1
End (if)

End FOR
Calculate the parameter estimates: γ̂γγ = 1

N−Nb
∑N

n=Nb+1 γγγn

4. Case Study
4.1. Data Description

The Lanxin railway line is an electrified normal-speed railway from Lanzhou to
Sinkiang with a maximum permissible speed of 160 km/h and a total length of 2423 km. It
is an important part of the railway network in Northwest China. Based on dividing the
line into multiple track segments with a unit length of 200 m, 2171 track segments of the
downlink line within the jurisdiction of the Jiayuguan Section of Lanzhou Railway Bureau
(mileage range K548+000 to K982+400) were selected and their tamping maintenance
cycle analyzed using the proposed method, as shown in Figure 3. The track geometry of
the Lanxin Railway is inspected at least twice a month using a track-inspection vehicle.
A fixed-period-based preventive maintenance strategy was employed for the tamping
activities, with the interval typically set to 1–2 years. We collected track longitudinal-level
inspection data with 108,608 records from April 2015 to November 2018 for the selected
2171 track segments and tamping maintenance records. By associating the longitudinal-
level inspection data with the tamping maintenance record data based on mileage and time
information, the longitudinal-level inspection dataset of each track segment can be divided
into multiple data subsets; that is, the inspection data within one tamping maintenance
cycle is a data subset. The subset with the largest sample size from the data was used for
the model construction.
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4.2. Analysis of the Prediction Results

This study employed four parameter estimation methods: maximum likelihood esti-
mation with a marine predators algorithm (MLE-MPA), maximum likelihood estimation
with a genetic algorithm (MLE-GA), maximum likelihood estimation with a gradient
descent algorithm (MLE-GD), and adaptive Markov chain Monte Carlo (AMCMC). The
findings from these estimation methods were integrated into the tamping-cycle prediction
model developed in this study to forecast the time intervals until the SDLL degrades to any
given value Xlim. The validity of the prediction model and the four parameter estimation
methods was analyzed based on the statistical results for the prediction errors.

4.2.1. Results of Parameter Estimations and Tamping Cycle Prediction

The estimation results for βk, σk, and θk for the tamping cycle prediction models for
the 2171 track segments are shown in Figure 4a–c, respectively. The different line colors
in the figure represent the results obtained using different parameter estimation methods.
Taking Xlim = 3 mm as an example, the tamping maintenance cycle of each track segment
was predicted using Equations (4) and (5), as shown in Figure 4d.

As Figure 4 shows, regardless of the parameter estimation method, the parameters
of the longitudinal-level degradation model for each track segment were heterogeneous,
and the prediction results of the tamping maintenance cycle were heterogeneous, reflecting
the heterogeneity of the deterioration process of the track geometry at different spatial
locations. In addition, although the estimation results obtained with the four parameter
estimation methods were not significantly different, the estimation results for the tamping
maintenance cycle were significantly different, as shown in the marked examples of several
representative track segments in Figure 4e. This illustrates the necessity of selecting an ac-
curate and effective parameter estimation method. The next section presents a comparison
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of the prediction errors of the four methods conducted to identify the parameter estimation
method with the highest accuracy.
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Figure 4. Results of parameter estimation and tamping maintenance cycle prediction for the 2171 track
segments in the downlink line of the Lanxin railway: (a) estimation results for parameter βk,
(b) estimation results for parameter σk, (c) estimation results for parameter θk, (d) tamping mainte-
nance cycle prediction results, and (e) difference in the prediction results between different methods.
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4.2.2. Prediction Error Analysis

As the tamping maintenance strategy of combining “periodic preventive maintenance”
with “local corrective maintenance” is still widely adopted in the Chinese railway system,
most segments carried out preventive tamping maintenance operations before the SDLL
degraded to the maintenance threshold (3–3.6 mm). As a result, the actual time interval of
each segment during which the SDLL deteriorates from its initial value to the maintenance
threshold cannot be extracted from the historical inspection data at the longitudinal level,
resulting in the inability to support a prediction error analysis of the tamping maintenance
cycle. The absence of benchmark data hinders prediction error analysis of tamping main-
tenance cycles. The tamping cycle prediction model proposed in this study essentially
serves as a deterioration prediction model for the SDLL between two consecutive tamping
operations. It can predict the time interval required for the SDLL to deteriorate to any
specified threshold value Xlim. Given the situation described above, we set SDLL threshold
values (i.e., Xlim) between 1 and 3 mm at intervals of 0.1 mm and then predicted the time
required for degradation to the different given Xlim values to indirectly verify the predictive
accuracy of the model by comparing the predicted results with the actual time intervals
recorded in the field SDLL historical inspection data.

Figures 5–8 show box plots of the prediction errors corresponding to the parameter
estimation results for MLE-MPA, MLE-GA, MLE-GD, and adaptive MCMC, respectively.
The horizontal coordinate is the given Xlim. For each Xlim value, a box plot was generated to
display the distribution characteristics of the prediction error for the time interval required
for the SDLL to deteriorate to that value. In these box plots, the box itself represents the
interquartile range, with the central line indicating the median. The whiskers extend to the
most extreme data points that fall within 1.5 times the interquartile range. Each figure also
includes two additional reference lines: a yellow dashed line representing the Inner Limit,
which is the maximum value of the upper whiskers across all Xlim values, and a green
dashed line showing the Maximum Error across all Xlim values. At the top of each figure,
the average Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are displayed,
providing overall performance metrics for each method across all scenarios. Figure 9 shows
a comparison of the mean absolute error (MAE) corresponding to the three estimation
methods. Table 1 shows the statistical values of the prediction errors corresponding to
the four parameter estimation methods, including the MAE, the percentage of absolute
error within one month (≤30 days), the percentage of absolute error within two months
(≤60 days), and the percentage of absolute error within three months (≤90 days). It should
be noted that the percentages here represent cumulative frequencies, indicating that the
count of samples with an absolute error of less than two months includes those with an
absolute error of less than 30 days. Figure 10 visually illustrates the distribution of error
ranges for different methods across various scenarios through stacked bars, providing a
graphical representation of the data from Table 1.

The errors in the prediction results obtained using the four parameter estimation
methods were compared and analyzed. Based on the prediction results for the parameter
estimation method with the least error, the validity of the model established in this study is
illustrated in combination with the tamping maintenance planning demand.

• Comparative Analysis of Four Parameter Estimation Methods

Based on the mean absolute errors (MAE) presented in Table 1, it is observed that for
various Xlim values, the maximum MAE value (21 days) of the prediction results obtained
from the MLE-MPA method exhibits reductions of 4.5%, 33.3%, and 48.8% compared to
those of the MLE-GA, MLE-GD, and AMCMC methods, respectively. Furthermore, the
mean MAE value (19 days) achieved by the MLE-MPA method demonstrates decreases
below 5%, 26.9%, and 44.1% when contrasted with those of the MLE-GA, MLE-GD, and
AMCMC methods. Additionally, Figure 9 illustrates that for each given Xlim value, the
MAE associated with predictions using the MLE method consistently outperforms that of
the adaptive MCMC method.
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Table 1. Prediction error results obtained by the four methods for the time interval required for SDLL
to deteriorate to the different specified Xlim values.

Xlim
(mm)

Sample
Size

MAE (Days)
Percentage of Absolute Percentage of Absolute Percentage of Absolute

Error ≤ 30 Days Error ≤ 60 Days Error ≤ 90 Days

MPA GA GD AMCMC MPA GA GD AMCMC MPA GA GD AMCMC MPA GA GD AMCMC

1 1002 19 20 28 25 79% 77% 72% 73% 98% 97% 90% 89% 100% 100% 96% 96%

1.1 1097 20 21 29 28 78% 74% 69% 70% 96% 96% 89% 88% 100% 100% 95% 95%

1.2 1155 20 21 29 30 77% 76% 69% 67% 96% 95% 88% 85% 100% 100% 95% 95%

1.3 1135 20 21 31 32 78% 76% 69% 64% 96% 95% 88% 84% 100% 100% 95% 93%

1.4 1031 20 21 30 34 76% 74% 67% 61% 96% 95% 89% 82% 100% 100% 95% 92%

1.5 931 21 22 31 37 76% 74% 67% 59% 95% 94% 88% 79% 100% 100% 95% 91%

1.6 805 20 21 30 37 76% 75% 68% 58% 97% 96% 90% 79% 100% 100% 95% 91%

1.7 666 19 19 28 39 80% 78% 71% 53% 97% 96% 90% 79% 100% 100% 95% 91%

1.8 557 18 18 30 39 81% 79% 72% 56% 96% 96% 88% 78% 100% 100% 95% 90%

1.9 454 18 19 26 39 80% 78% 74% 55% 96% 96% 90% 79% 100% 100% 96% 90%

2 374 18 18 29 38 82% 80% 72% 57% 97% 96% 88% 79% 100% 100% 95% 91%

2.1 303 17 17 25 39 83% 83% 74% 54% 96% 95% 91% 80% 100% 100% 96% 91%

2.2 223 16 17 23 38 83% 81% 75% 56% 99% 99% 95% 77% 100% 100% 97% 91%

2.3 182 16 17 22 38 82% 79% 74% 59% 97% 98% 93% 77% 100% 100% 96% 91%

2.4 150 16 17 23 41 84% 84% 77% 53% 97% 97% 92% 79% 100% 100% 96% 91%

2.5 130 15 16 20 38 88% 84% 79% 56% 99% 98% 93% 79% 100% 100% 98% 94%

2.6 110 15 16 21 35 87% 85% 79% 56% 99% 99% 92% 78% 100% 100% 95% 96%

2.7 98 14 15 18 35 89% 87% 85% 53% 99% 99% 93% 82% 100% 100% 95% 96%

2.8 76 15 15 23 37 87% 86% 82% 49% 100% 100% 92% 82% 100% 100% 93% 96%

2.9 67 16 16 22 36 81% 79% 83% 51% 97% 97% 94% 79% 100% 100% 97% 93%

3 56 16 14 17 38 82% 88% 81% 52% 98% 98% 94% 79% 100% 100% 94% 89%

Overall
results 10,602 19 20 26 34 79% 77% 74% 62% 96% 96% 91% 82% 100% 99.95% 96% 92.72%

In addition to examining MAE values, an analysis of prediction stability under differ-
ent scenarios can be conducted through root mean square error (RMSE). As depicted in
Figures 5–8, both MLE-GD and AMCMC methods exhibit notably higher average RMSE
values, which not only indicate their inferior performance in terms of prediction errors
as previously demonstrated but also reveal their instability and sensitivity to varying
scenarios. This behavior may be attributed to susceptibility of the gradient descent method
towards local optima when dealing with non-convex and complex objective functions as
well as heavy dependence on initial distributions exhibited by the AMCMC method leading
to significant discrepancies in prediction outcomes across different dataset scenarios.

Regarding the error distribution characteristics outlined in Table 1 and Figure 10,
the prediction results generated by the MLE-MPA method demonstrate that all absolute
errors fall within three months. A substantial proportion (79%) occurs within a span of just
30 days, while only a mere four percent exceed 60 days. The proportions of absolute errors
within one and two months were both higher than those of the other three methods.

Furthermore, from Figure 9, we observe that the absolute errors do not significantly
increase alongside rising Xlim values, contrary to general expectations. This is mainly
because a larger Xlim value during a tamping cycle spans a longer time and provides more
inspection data, resulting in an abundance of effective data for constructing the likelihood
function of each track segment. As a result, prediction accuracy improves as reflected in
the trend of prediction errors with the Xlim value for the MLE-GA and MLE-MPA methods.

It is evident that the estimation results of the MLE methods are superior to those of
the adaptive MCMC method. Furthermore, in terms of computational resource require-
ments and solving speed, using adaptive MCMC to solve the model parameters for the
2171 segments in this case took nearly 26 h, while MLE-MPA, MLE-GA, and MLE-GD
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methods took about 2 h each. MLE methods are more suitable for the prediction needs of
line-level and network-level tamping maintenance cycles, especially when dynamically
updating model parameter estimates such as inspection data accumulate.

Among the MLE methods, the MLE-MPA performs better than the MLE-GA and
MLE-GD, confirming the general conclusions pointed out by Faramarzi et al. [43].

In addition to analyzing the prediction errors, we further conducted a comparative
analysis of the uncertainty in the parameter estimation results by calculating standard
deviations that reflect the confidence level of the estimators for the four methods.

For the MLE framework, we utilized the gradient-based method to calculate the
standard deviation of the parameter estimates for these three methods: MLE-MPA, MLE-
GA, and MLE-GD. Specifically, we approximated the covariance of the parameter estimates
by computing the Hessian matrix. Subsequently, we depicted the standard deviation bars
of the parameters βk, σk, and θk for the 2171 track segments in Figures 11–13, respectively.
In each figure, subplots (a), (b), and (c) correspond to the results of the MLE-MPA, MLE-
GA, and MLE-GD methods, respectively. The results reveal inconsistencies in uncertainty
across different methods, which underscores the importance of employing robust global
optimization algorithms to avoid local optima traps.

For the adaptive MCMC method, we randomly selected a track segment (k = 1986,
starting mileage K945+200) to record the sampling results of the posterior distribution of the
parameters βk, σk, and θk, as shown in Figure 14. The uncertainty of the parameters for this
track segment is high, possibly due to its location at a slope change point of the railway line,
leading to changes in track dynamics forces. Additionally, inherent track irregularities and
vehicle system dynamics contribute to increased uncertainty in track geometry degradation.
Interestingly, we observed that the adaptive MCMC method yields smaller prediction errors
for this specific track segment with high uncertainty. Future research could explore the
relationship between parameter uncertainty and factors such as track environment and
structure to propose a more robust and widely applicable parameter estimation method.
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sampling: (a) parameter βk, (b) parameter σk, and (c) parameter θk.

• Model Validity Analysis

Based on the preceding analysis, we employed the prediction results obtained using
the MLE-MPA parameter estimation method to assess the validity of the model and deter-
mine whether it met the requirements for tamping maintenance planning. We calculated
the coefficient of determination R² of the model to be 0.98. The 80th, 85th, 90th, and 95th
percentiles of the absolute error were 32, 38, 45, and 57 days, respectively.

Regarding the performance of the model, the overall prediction accuracy for the
tamping maintenance cycle of the 2171 track sections was robust, as indicated by the
average MAE and R2 values.

Based on the maximum absolute error value, the overall error of the tamping main-
tenance cycle prediction model for the 2171 track segments was controlled within three
months. Combining the MAE with the percentiles of absolute error, it is evident that
the prediction error for most sections is far less than the maximum error of 89 days. For
long-term (1–5 years) tamping maintenance planning of heavy machinery, the planning
cycle is typically divided into multiple fixed decision-making periods, during which the
segments requiring tamping maintenance in each period are determined. The length of
these decision-making periods is generally set to three or six months [31], allowing tamp-
ing maintenance operations to be scheduled within the available maintenance windows
in each decision-making period. This provides flexibility for opportunistic maintenance
strategies and reduces the track occupation costs. Considering the experience in setting the
decision-making period, the range of prediction errors for this model is acceptable and can
support long-term tamping maintenance planning decisions.
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5. Conclusions and Future Work
5.1. Conclusions

This study proposed a modeling method for predicting the tamping maintenance cycle
of railway tracks by characterizing the deterioration pattern of track longitudinal level. The
following conclusions can be drawn from the study findings.

• The proposed method employed a power-time-transformed Wiener process to con-
struct the prediction model of each 200 m track segment, allowing simultaneous consid-
eration of heterogeneity and uncertainty in the track geometry deterioration process.

• Both the deterioration parameters and the prediction results of the tamping main-
tenance cycle for the studied 200 m track segments (n = 2171) were inconsistent,
indicating spatial heterogeneity in the deterioration pattern of track geometry.

• For the problem scenario considered in this study, the accuracy and solving efficiency
of the MLE method were superior to those of the adaptive MCMC method, and the
results obtained using the higher-performance optimization algorithm solver MPA
when using the MLE method were more accurate.

• The overall prediction performance of all the prediction models for all segments was
robust, meeting the management requirements for tamping maintenance planning
over an annual or even longer time span.

• This study is helpful in assisting railway management in shifting the maintenance strategy
from period-based preventive maintenance to condition-based predictive maintenance.

5.2. Future Work

In this study, the deterioration model parameters, which represent the degradation
trend, were assumed to remain unchanged during different tamping maintenance cycles,
making the proposed model suitable for scenarios in which the subgrade and track structure
are stable, adjacent tamping cycles have a good memory of the track geometry state
deterioration pattern, and the deterioration trend does not change significantly. However,
for track sections that have entered the aging stage of their life cycle, the model may
not adequately capture the changes in the deterioration parameters caused by structural
aging. Therefore, the current model needs to be improved by further considering the
influence of factors such as the amount of tamping maintenance and structural aging on
the tamping maintenance cycle in the future. In other words, the influence of the track-
geometry deterioration parameters βk and θk during the tamping maintenance cycle must
be considered for prospective prediction needs in long-term planning scenarios, such as
5 to 10 years of tamping maintenance or renewal.
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Appendix A. Calculation Details of the Marine Predators Algorithm (MPA)

This appendix offers additional explanations for certain calculation details during the
iterative process of the MPA as presented in Algorithm 1 in Section 3.1.

MPA divides the algorithm process into high-velocity ratio, unit-velocity ratio, and
low-velocity ratio phases based on the current iteration number Iter and maximum iteration
number max_iter. It incorporates the FADs effect to disrupt local optima and ultimately
utilizes marine memory to re-evaluate individual fitness and update the top predator’s
function. In MPA, si denotes the step size of individuals for both prey Preyk and top
predator Elitek, which is influenced by the Lévy movement operator RL, Brownian motion
operator RB, and the Kronecker product of prey and top predator at different phases.

Appendix A.1. Population Update

The following steps are executed in the while loop until the maximum number of
iterations is reached:

Phase 1: In cases of high-velocity ratio or when the predator is moving faster than
the prey, it falls under the first scenario for updating the position. Specifically, when the
current iteration Iter is less than one-third of the maximum number of iterations (max_iter),
the following mathematical model is employed to update the population:

si = RB ⊗
(
Elitei

k − RB ⊗γγγi
k
)
, i = 1, . . . , n

γγγi
k = γγγi

k + P ∗ R ⊗ si
(A1)

where RB follows a standard normal distribution. The symbol ⊗ denotes element-wise
multiplication of vectors. P = 0.5 is a predefined constant. R is a vector of uniformly dis-
tributed numbers in [0, 1]. γi

k represents the ith individual in the Preyk. The multiplication
of RB by γi

k simulates the movement of prey. si determines both the distance and direction
an individual moves within the search space.

Phase 2: When both predator and prey are moving at the same pace, or have a unit
velocity ratio, the population is divided into two parts. The first half acts as prey and
performs Lévy flights, while the second half acts as predator and undergoes Brownian
motion. Specifically, when the current iteration Iter is between one-third and two-thirds of
the maximum iterations (max_iter), the following mathematical model is used to update
the population:

For the first half of the population (prey):

si = RL ⊗
(
Elitei

k − RL ⊗γγγi
k
)
, i = 1, . . . , n/2

γγγi
k = γγγi

k + P ∗ R ⊗ si
(A2)

where RL is a vector of random numbers following the Lévy distribution to simulate the
randomness of Lévy movement.

For the second half of the populations (predator:):

si = RB ⊗
(
Elitei

k − RB ⊗γγγi
k
)
,= n

2 + 1, . . . , n

γγγi
k = Elitei

k + P·CF ⊗ si
(A3)

where CF =
(

1 − Iter
max_iter

)2 Iter
max_iter , is an adaptive parameter used to regulate the step size

for predator movement.
Phase 3: In cases of low-velocity ratio or when the predator moves faster than the prey,

all individuals move in a Lévy manner. This situation occurs during the final phase of the
optimization process, i.e., when the current iteration Iter is greater than two-thirds of the
maximum iterations (max_iter). The following mathematical model is employed to update
the population:
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si = RL ⊗
(
Elitei

k − RL ⊗γγγi
k
)
, i = 1, . . . , n

γγγi
k = Elitei

k + P ∗ CF ⊗ si
(A4)

Appendix A.2. Application of FADs Effect

Fish Aggregating Devices (FADs) effects, a component of the Marine Predators Algo-
rithm (MPA), operate as a mechanism that influences the optimization process by attracting
prey towards promising regions within the search space. This effect is applied with a
probability of 0.2 and is implemented using a binary vector U.

The binary vector U is constructed by generating random numbers between 0 and
1 for each dimension of the search space. If the generated number is less than 0.2 (the
probability of the FADs effect, denoted as FADs), the corresponding element in the binary
vector is set to 0; otherwise, it is set to 1.

The FAD effect is incorporated into the position update equation as follows:

γγγi
k =

γγγi
k + CF[lb + R ⊗ (ub − lb)]⊗ U, r ≤ FADs

γγγi
k + [FADs(1 − r) + r]

(
γγγr1

k −γγγr2
k
)
, r > FADs

(A5)

where lb represents the lower bound of the parameter value range, ub denotes the upper
bound of the parameter value range; r is a uniform random number in [0, 1]; r1 and r2 rep-
resent random indices corresponding to elements in the prey matrix.
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