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Abstract: This research introduces the Urban Traffic Mobility Optimization Model (UTMOM),
a data-driven methodology for analyzing two distinctive urban traffic datasets through the inte-
gration of data mining and mathematical modeling. Designed to decode the complexities of urban
mobility patterns, UTMOM meticulously evaluates daily traffic dynamics with a focus on reducing
discrepancies and underscoring variations in traffic intensity, particularly during peak times. Our
findings unveil pivotal insights into the differences across datasets, providing a substantial contribu-
tion to the realms of traffic management and urban planning. UTMOM delves into the intricacies of
traffic flow variations, emphasizing the critical importance of comprehending fluctuations in traffic
volume across diverse times and locations. By incorporating detailed graphical representations and
statistical validations, including ANOVA analysis, our study delivers a comprehensive evaluation
of UTMOM’s precision in reflecting real-world traffic scenarios. These insights affirm the value
of data-informed strategies in optimizing traffic flow and alleviating congestion. Positioned as
a valuable asset for traffic engineers, data scientists, and urban planners, UTMOM advocates for
advanced modeling techniques to improve urban mobility. Beyond enriching academic discourse on
traffic analysis, UTMOM offers actionable intelligence for enhancing the efficiency and sustainability
of urban transportation systems. Through this in-depth investigation, our aim is to catalyze the
development of innovative solutions to traffic challenges, steering towards smoother and more
sustainable urban environments.

Keywords: traffic data comparison; mathematical modeling; deviation analysis; traffic management;
urban transportation; data mining

1. Introduction

The dynamics of traffic and transportation systems within urban environments are
pivotal elements that wield a profound influence on a city’s functionality, development, and
overall quality of life [1]. Urban transportation networks serve as the lifeblood of modern
societies, intricately weaving the threads of mobility and connectivity, facilitating the
seamless movement of people, goods, and information, and, in turn, shaping the intricate
socio-economic landscape. From the ancient trade routes that crisscrossed civilizations to
the contemporary high-speed railways and burgeoning digital mobility platforms of the
present day, transportation systems have evolved in response to the ever-changing needs
and aspirations of humanity. These systems have played an essential role in propelling
societal progress, economic growth, and cultural exchange [2].

In recent decades, cities worldwide have experienced unprecedented and often dizzy-
ing urbanization, marking the dawn of a new era characterized by the swift expansion of
metropolitan areas. This global trend towards urbanization has ushered in a plethora of
complexities and challenges in the realm of urban transportation. In this context, Ankara,
the vibrant capital of Turkey, stands as a vivid exemplar, encapsulating the shifts, transfor-
mations, and adaptations that urban centers face in the 21st century. Ankara’s unique urban
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landscape is marked by a dynamic interplay of factors, including rapid population growth,
expanding economic opportunities, and the relentless march of technological advancements.
As Ankara extends its reach both horizontally, with sprawling suburban developments,
and vertically, with the construction of towering skyscrapers, the city’s transportation
networks find themselves subjected to unprecedented demands and profound changes.
The conventional transportation infrastructures of the past, designed to cater to a smaller
and less interconnected urban population, are now grappling with the complexities of
a sprawling metropolis. Consequently, addressing the multifaceted challenges posed by
Ankara’s evolving urban transportation landscape has become not only an imperative but
also a catalyst for sustainable development and enhanced quality of life.

This study embarks on a comprehensive exploration of Ankara’s intricate traffic and
transportation systems through the lens of UTMOM. Our goal is to illuminate the multi-
faceted challenges within the city’s mobility landscape and offer innovative, data-driven
solutions to enhance urban traffic management. UTMOM leverages advanced data mining
and mathematical modeling to transcend the limitations of historical data and traditional
methodologies. This research is driven by the belief that a nuanced understanding and
effective addressing of Ankara’s transportation complexities require integrating advanced
data analytics and computational intelligence. At the core of our investigation is UTMOM,
a sophisticated mathematical programming model designed to optimize transportation
efficiency, alleviate congestion, and improve traffic flow in Ankara’s urban environment.
By conceptualizing transportation challenges as mathematical problems, UTMOM allows
for a systematic analysis of various factors—traffic patterns, road capacities, urban devel-
opment plans—to derive actionable, data-informed solutions. The field data collected focus
on a five-day period within the vicinity of the LIMAK Cement Factory, providing a detailed
snapshot of traffic dynamics in a specific area, serving as a foundation for our model’s
development and validation. While this dataset offers valuable insights, further studies
incorporating broader datasets across different areas and longer periods are essential to
fully capture the complexities of Ankara’s urban traffic. The development and application
of UTMOM involve a meticulous examination of daily traffic dynamics, focusing on re-
ducing discrepancies and highlighting variations in traffic intensity, particularly during
peak times. Our findings reveal pivotal insights into the differences across datasets, con-
tributing significantly to traffic management and urban planning. UTMOM delves into the
intricacies of traffic flow variations, emphasizing the critical importance of understand-
ing fluctuations in traffic volume across diverse times and locations. By incorporating
detailed graphical representations and statistical validations, including ANOVA analy-
sis, our study delivers a comprehensive evaluation of UTMOM’s precision in reflecting
real-world traffic scenarios. These insights affirm the value of data-informed strategies
in optimizing traffic flow and alleviating congestion. Positioned as a valuable asset for
traffic engineers, data scientists, and urban planners, UTMOM advocates for advanced
modeling techniques to improve urban mobility. Beyond enriching academic discourse
on traffic analysis, UTMOM offers actionable intelligence for enhancing the efficiency and
sustainability of urban transportation systems. Through this in-depth investigation, our
aim is to catalyze the development of innovative solutions to traffic challenges, steering
towards smoother and more sustainable urban environments.

The following sections will detail the research methodology underpinning UTMOM,
focusing on its mathematical programming aspects. From data preprocessing and feature
extraction to cluster analyses and predictive modeling, each component of UTMOM is
designed to uncover hidden traffic patterns and provide solutions that could redefine urban
transportation in Ankara. Ultimately, this study aims to serve as a vital guide for urban
planners, transportation authorities, and policymakers in Ankara. The insights derived
from UTMOM are intended not only to light the way for data-informed decision-making
but also to lay the groundwork for sustainable urban mobility strategies. An in-depth ex-
amination of our methodology, especially the mathematical programming model, and
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a thorough analysis of our findings will map out strategies for optimizing Ankara’s
transportation infrastructure.

2. Literature Research

Traffic management and urban transportation planning play a critical role in the
sustainability and efficiency of modern metropolises. This section aims to summarize
the body of knowledge in the areas of traffic data analysis, mathematical modeling, and
urban traffic management by discussing previous research. The literature review has been
examined under three main headings: Traffic Data Analysis and Prediction, Mathematical
Modeling, and Intelligent Transportation Systems.

2.1. Traffic Data Analysis and Prediction

The study by Alam et al. [3] focuses on predicting traffic flow using regression anal-
ysis. Such analyses provide important forecasts for traffic management. Their research
demonstrates an effective method of using regression analysis to understand traffic flow
and predict future traffic conditions. Liu et al. [4] explore the use of convolutional neural
networks for collecting and analyzing urban traffic data during large events. These tech-
niques are crucial for traffic management during major events. The study shows how deep
learning techniques can be utilized to analyze traffic data. Qu et al. [5] deal with the analysis
and prediction of daily traffic patterns in a large metropolitan area. Such mathematical
models play a critical role in planning and optimizing urban transportation. The study
emphasizes the importance of a data-driven approach to developing traffic management
strategies. Zhang et al. [6] focus on extracting urban traffic conditions from crowd-sourced
data. These approaches show the intersection between data mining, analytics, and traffic
management. The study demonstrates how community-sourced data can be used in traffic
management. Tsanakas [7] explores innovative data-driven methods for estimating traffic
states and emissions in urban areas, addressing the significant issue of traffic congestion
and its environmental impact. Tsanakas’s work leverages the abundance of data from
both stationary and mobile sources to enhance traffic and emission models, aiming to
provide transportation planners with more accurate tools for managing and mitigating
congestion. Zhang et al. [8] explored the prediction of urban traffic flow congestion using
a data-driven model that capitalizes on the spatiotemporal features of traffic. Employing
a traffic zone/grid method to represent vehicle speeds across different local areas and
a discrete snapshot set for capturing traffic flow’s spatial and temporal characteristics, their
research contributes to the field by offering a nuanced understanding of traffic congestion
evolution over various time dimensions.

2.2. Mathematical Modeling

Chen et al. [9] present a mathematical model for evaluating urban travel patterns.
Such models provide a significant analytical tool for traffic management. The research
highlights the importance of a data-driven approach in developing traffic management
strategies. Cheshmehzangi and Ardakani [10] delve into the pivotal role of sector-based
time variables in urban traffic analysis and optimization, utilizing computational modeling
and scenario analysis of multiple active agents. In their study featured in “Frontiers in
Sustainable Cities”, they model urban traffic optimization in a simulated Ningbo, China,
employing a grid pattern layout to assess traffic flow across different sectors during both
conventional and proposed operation hours. Their findings, derived from simulation stud-
ies and metrics such as end-to-end delay (ETE) and Agent queue count (AQC), emphasize
the significance of sector-based time variables in improving urban traffic management
strategies. Zhu et al. [11] developed a traffic optimization decision system aimed at alle-
viating congestion by creating a traffic prediction model that iteratively updates to refine
its parameters. The model’s effectiveness was validated through application experiments
on a three-intersection isometric road, showcasing superior accuracy and efficiency in
traffic prediction and management compared to existing methods. This approach not only
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enhances vehicular diversion but also significantly reduces road traffic pressure, fostering
optimal cooperation between intersections for a more balanced and effective traffic system.
Muntean [12] proposed a novel approach to urban traffic management in Birmingham
through a multi-agent system (MAS) leveraging wireless sensor network data. This system
forecasts traffic flow, road junctions, and car parking occupancy rates with high accuracy
using k-nearest neighbor algorithms. Additionally, it utilizes decision trees for fault classifi-
cation, aiming to detect and repair faults in the shortest possible time. The MAS approach
automates traffic management, coordinated by a monitoring agent to ensure efficient urban
traffic control. This study exemplifies the integration of forecasting and classification tech-
niques within intelligent urban traffic management systems, showcasing the potential for
MAS in enhancing smart city infrastructure. The work by Li et al. [13] examines the spatial
patterns and influencing factors of traffic dominance in Xi’an. These analyses can assist in
developing urban traffic management strategies. The study demonstrates how spatial data
analysis can be used to understand urban traffic flow.

2.3. Intelligent Transportation Systems

Fan et al. [14] highlight the crucial role of deep learning in enhancing traffic sensing
and prediction in smart cities and intelligent transportation systems. As the Internet of
Vehicles expands and mobile services generate vast amounts of data, deep learning emerges
as a key approach to navigate the challenges of data complexity and computational de-
mands. This paper provides an in-depth review of recent research on leveraging deep
learning for intelligent traffic management, demonstrating its potential to transform urban
mobility. Wang et al. [15] address traffic signal optimization in a connected vehicle envi-
ronment. This approach represents a significant area for the future of traffic management.
Connected vehicles can provide real-time data to optimize traffic signals and traffic flow,
thereby making urban transportation more efficient. Razali et al. [16] conduct a systematic
and comprehensive review of machine learning (ML) and deep learning (DL) techniques
for traffic flow prediction, emphasizing their role in enhancing Intelligent Transportation
Systems (ITS) within smart cities. The study synthesizes findings from 39 articles, high-
lighting the prevalent use of Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) models for their effectiveness in predicting traffic flow. This paper aims
to bridge research gaps by providing a detailed comparison of these techniques against
baseline models, contributing to the advancement of ITS by leveraging ML and DL for
improved traffic management solutions. Ahmed [17] explores the integration of machine
learning and geospatial deep learning for traffic flow monitoring and city component
management. This study emphasizes the role of AI in enhancing urban traffic management
through sophisticated data analytics. Aemmer et al. [18] evaluate various deep learning
and heuristic models for bus travel time prediction across different networks. The study
highlights the importance of multi-city tested spatiotemporal data mining benchmarks for
effective traffic management. Chen et al. [19] provide a comprehensive survey on deep
learning applications in trajectory data management. The study discusses the challenges
and advancements in traffic analysis using spatiotemporal data mining. Zhou et al. [20]
present a feature-aware personalized clustering federated learning approach for managing
urban traffic congestion. This study demonstrates the application of deep learning and
federated learning in optimizing ride-hailing services. Tang et al. [21] investigate the use
of advanced data mining techniques for analyzing urban rail transit passenger flow. The
study underscores the significance of big data and machine learning in modern urban
transit management. Chen et al. [22] propose a multi-stage fusion framework that utilizes
multi-source data for short-term passenger flow forecasting in urban rail transit systems.
The study leverages deep learning methods to model temporal dependencies in time-series
data. Tarigholizadeh et al. [23] assess the efficacy of neural gas networks in clustering
urban data, demonstrating the application of unsupervised machine learning techniques in
urban development planning and traffic management. Bhaskar et al. [24] develop a traffic
flow prediction model using machine learning techniques, providing stakeholders with
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powerful tools for urban planning and transportation management. The study highlights
the effectiveness of combining convolutional LSTM networks for learning temporal and
local spatial features with convolutional neural networks for capturing global spatial char-
acteristics of traffic flow. Conducted across two city transportation networks, their model
demonstrated superior performance in predicting traffic congestion compared to traditional
traffic flow prediction models, emphasizing the critical role of spatiotemporal analysis in
traffic management strategies.

The studies highlighted in this section provide valuable insights into urban traffic
management and transportation planning, establishing a solid foundation for future re-
search and underscoring the significance of data analytics, mathematical modeling, and
visual modeling. Distinguishing itself from prior studies, this research introduces UTMOM,
a novel data mining-based methodology, to compare and analyze two distinct urban traffic
datasets. Comparative analysis is presented in Table 1. UTMOM is designed to meticu-
lously examine daily traffic patterns and minimize the discrepancies between these datasets,
marking a departure from traditional approaches. Unique to this study, UTMOM identi-
fies and focuses on significant variations in traffic density at specific times and locations,
delving into the complexities of traffic data comparison and deviation analysis. This ap-
proach provides a critical roadmap for future research efforts, positioning this study at the
forefront of developing traffic management strategies and optimizing urban traffic flow.
UTMOM aims to serve as an invaluable resource for traffic engineers, data scientists, and
urban planners by offering innovative and sustainable transportation solutions to miti-
gate traffic challenges and improve urban traffic comprehension. Moreover, the insights
gleaned from UTMOM’s analysis shed light on the nuanced differences between the two
datasets, especially highlighting marked variations in traffic density across different days
and hours. These findings underscore the importance of UTMOM as a pivotal resource for
professionals in the field, facilitating a deeper exploration of dataset deviations. Such an
investigation has the potential to catalyze the development of innovative and sustainable
transportation solutions, significantly contributing to the alleviation of traffic problems.
Through the introduction of UTMOM, this research brings a fresh perspective to urban
traffic management and planning, emphasizing the critical role of mathematical modeling.
UTMOM not only enriches the academic discussion on traffic analysis but also paves the
way for practical applications in urban transportation systems, ultimately aiming to foster
smoother and more sustainable urban environments.

Table 1. Comparative Summary of Literature on Urban Traffic Management and Analysis.

Author(s) Focus Methodology Key Contributions

Alam et al. [3] Traffic flow prediction using
regression analysis Regression analysis Effective method for traffic

flow prediction

Liu et al. [4] Analyzing urban traffic data
with CNNs

Convolutional
neural networks (CNN)

Utilization of deep learning
for traffic data analysis

Qu et al. [5] Predicting daily traffic patterns Mathematical modeling
Critical role in planning

and optimizing
urban transportation

Zhang et al. [6] Extracting traffic conditions
from crowd-sourced data Data mining and analytics Use of community-sourced

data in traffic management

Tsanakas [7]
Estimating traffic states and

emissions with
data-driven methods

Data-driven approaches
Accurate tools for managing

congestion and
environmental protection

Zhang et al. [8]
Predicting urban traffic flow

congestion with
spatiotemporal models

Convolutional LSTM and
CNN networks

Superior performance in
predicting traffic congestion

Chen et al. [9] Evaluating urban travel patterns
with mathematical models Mathematical modeling Significant analytical tool for

traffic management
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Table 1. Cont.

Author(s) Focus Methodology Key Contributions

Cheshmehzangi
and Ardakani [10]

Sector-based time variables in
traffic optimization

Computational modeling and
scenario analysis

Importance of time
variables in traffic

management strategies

Zhu et al. [11] Traffic optimization decision
system to alleviate congestion Iterative traffic prediction model

Enhanced traffic
diversion and reduced road

traffic pressure

Muntean [12] Urban traffic management with
MAS using sensor data Multi-agent system (MAS) High accuracy in forecasting

and efficient traffic control

Li et al. [13] Spatial patterns and factors of
traffic dominance analysis Spatial data analysis Understanding urban

traffic flow

Fan et al. [14] Enhancing traffic prediction
with deep learning Deep learning Key approach for navigating

data complexity in ITS

Wang et al. [15] Traffic signal optimization in
connected vehicle environments Data from connected vehicles Optimization of traffic

signals and flow

Razali et al. [16]
Review of ML and DL
techniques for traffic

flow prediction

Machine learning (ML) and deep
learning (DL)

Detailed comparison of ML
and DL techniques for

traffic prediction

Ahmed [17] Integration of machine learning
and geospatial deep learning

Machine learning and geospatial
deep learning

Enhances urban traffic
management through

sophisticated data analytics

Aemmer et al. [18] Bus travel time prediction
across networks

Deep learning and
heuristic models

Importance of multi-city
tested spatiotemporal data

mining benchmarks

Chen et al. [19] Deep learning applications in
trajectory data management

Survey and
comprehensive review

Discusses challenges and
advancements in traffic

analysis using spatiotemporal
data mining

Zhou et al. [20] Managing urban
traffic congestion

Federated learning
and deep learning

Optimizes ride-hailing
services through

personalized clustering

Tang et al. [21] Analyzing urban rail transit
passenger flow Advanced data mining techniques

Significance of big data and
machine learning in urban

transit management

Chen et al. [22] Multi-source data for short-term
passenger flow forecasting Deep learning

Leverages deep learning
methods to model temporal

dependencies in
time-series data

Tarigholizadeh et al. [23] Clustering of Isfahan’s
census blocks Neural gas networks

Application of unsupervised
machine learning techniques

in urban development
planning and

traffic management

Bhaskar et al. [24] Traffic flow prediction model Machine learning

Provides stakeholders with
powerful tools

for urban planning and
transportation management

This Study
Comparative analysis

of traffic datasets using
a mathematical model

Data mining and mathematical
modeling with UTMOM

Innovative comparison
and deviation analysis of

traffic data

3. Methodology

The essence of our study lies in the development and application of UTMOM, a meticulously
crafted mathematical model designed to probe into urban traffic data. UTMOM serves as
a crucial analytical framework specifically aimed at facilitating a detailed comparative anal-
ysis of traffic flows between two distinct datasets, thereby uncovering critical differences
and patterns that inform traffic management strategies. Our primary aim with UTMOM
is to identify and reduce any discrepancies between actual and predicted vehicle counts.
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This endeavor encompasses more than just a dataset comparison; it entails an in-depth
examination of traffic patterns, uncovering valuable insights into the intricate dynamics
of urban traffic flows. UTMOM is designed to delve into the dataset, identifying sub-
tle patterns and variations that might typically remain hidden. Our ultimate ambition
is to enhance our understanding of traffic behavior, thereby facilitating the formulation
of more effective traffic management strategies. This model represents a move towards
a data-driven methodology in analyzing urban traffic, shedding light on the myriad of
factors that orchestrate the daily rhythm of city traffic.

3.1. Factors Considered in UTMOM

The UTMOM model considers a comprehensive array of factors that influence daily
urban traffic patterns:

• Time of Day: Traffic patterns vary significantly throughout the day, with peak hours
typically occurring during morning and evening commutes.

• Spatial Variations: Different areas within a city experience varying levels of traffic
congestion due to road infrastructure, population density, and local events.

• Weather Conditions: Adverse weather conditions such as rain, snow, and temperature
fluctuations can significantly impact traffic flow.

• Special Events: Public events, holidays, and construction projects can cause temporary
spikes in traffic due to increased vehicular movement or road closures.

• Socio-Economic Factors: Population growth and economic activities can lead to higher
traffic volumes over time.

• Traffic Regulations and Policies: Changes in traffic management policies and signal
timings can influence traffic flow efficiency and congestion levels.

These factors are integrated into UTMOM to provide a holistic analysis of urban traffic,
enhancing the model’s predictive accuracy and strategic planning support. Depicted in
Figure 1, UTMOM’s methodical approach is visually laid out with key variables such
as “Time of Day”, “Spatial Variations”, “Weather Conditions”, “Special Events”, “Socio-
Economic Factors”, and “Traffic Regulations and Policies”. These inputs feed into the
UTMOM model, which processes them to generate “Traffic Flow Predictions”. This detailed
flowchart offers readers a clear roadmap of the meticulous steps we employ to meet our
research objectives, providing a graphical narrative of our methodology. This systematic
approach encapsulates the rigorous steps we undertake to achieve these objectives, visually
guiding the reader through our methodology and illustrating how each factor is considered
in the analysis. Our conclusions reflect the influence of these factors, demonstrating
UTMOM’s ability to deliver actionable insights for urban traffic management.

• Detailed Methodology: The upcoming sections will provide a detailed breakdown of
the indices used in the model, define the variables, and explain the formulation of the
model itself. Our approach is designed to shed light on the hidden dynamics within
urban traffic, potentially leading to solutions that can significantly improve traffic flow
and urban mobility.

• Data Integration and Preprocessing: The methodology involves systematic steps for
data cleaning, preprocessing, and integration to ensure the reliability and validity
of the traffic data used in the model. Detailed descriptions of these steps, includ-
ing handling missing data, outliers, and normalization methods, are provided to
enhance reproducibility.

• Model Variables and Indices: The indices i, j, and k represent days, time inter-
vals, and operational conditions, respectively. The rationale behind the selection
of these specific indices and their ranges is explained to clarify their impact on the
model’s performance.

• Objective Function and Constraints: The objective function aims to minimize the
difference between observed and estimated vehicle counts. The criteria for setting
weights in the objective function are elaborated to demonstrate their influence on



Appl. Sci. 2024, 14, 5873 8 of 22

the optimization process. Additionally, the constraints on vehicle counts and data
consistency are thoroughly discussed, with justifications for the values used.

• Predictive Accuracy and Validation: The model’s predictive accuracy is evaluated
using graphical analysis and ANOVA, ensuring that the predictions closely match the
actual observed data. Examples and case studies are provided to illustrate how the
model’s predictions can be applied in practical traffic management scenarios.

By incorporating these detailed explanations and justifications, the revised method-
ology aims to provide a clearer, more comprehensive understanding of UTMOM, its
formulation, and its practical applications in urban traffic management. The model is
formulated as follows:
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3.2. Indices

i: Index representing the day of observation within the dataset.
j: Index denoting the specific time interval of observation within a day. As indicated,

j runs from 3 to 3, which might seem confusing. To clarify, in this context, j represents
a singular time interval considered in the model for simplification. Typically, j would
represent multiple intervals (e.g., morning, afternoon, and evening), but for this particular
analysis, it was narrowed down to a specific interval to focus on a crucial time frame of
interest (e.g., peak traffic time).

k: The variable k represents different operational conditions affecting the traffic flow.
Here, k runs from 2 to 2, which means it takes a singular condition for simplicity. Conditions
for k: k = 1: Normal traffic condition without any external disruptions. k = 2: Traffic
condition under specific influences such as roadworks, special events, or any anomalies
impacting traffic flow.

3.3. Observed Variables

Dij: Actual number of vehicles observed during the j-th time interval on the i-th day
for the first dataset.
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D′
ij: Actual number of vehicles observed for the second dataset, under the same

conditions as Dij.
These variables are the actual traffic counts recorded from the real-world data. For each

dataset under study, the variables Dij and Dij’ represent the number of vehicles observed in
a given time interval on a specific day. These observations serve as the empirical foundation
upon which the model’s estimations will be evaluated. The accuracy of the model hinges
on the precision of these observed values, as they reflect the true state of traffic that the
model aims to capture and analyze.

3.4. Estimated Variables

The estimated variables, x̂ijk and x̂′ijk, correspond to the model’s predictions of the
number of vehicles for two distinct datasets during specified time intervals on given days.

x̂ijk: Estimated number of vehicles for the first dataset in the j-th time interval on the
i-th day under the k-th condition.

x̂′ijk: Corresponding estimates for the second dataset.
These estimates are the outcomes of a computational process designed to optimize

a certain objective function, subject to a set of constraints. The model computes these
values to minimize the difference between the predicted and actual traffic counts across
corresponding time intervals and days for each dataset.

The model’s efficacy is gauged by comparing these estimated vehicle counts, xijk and
xijk’, against the observed traffic data, Dij for the first dataset and Dij’ for the second dataset.
This comparison is pivotal, as it informs the degree of accuracy of the model’s predictions
and highlights potential areas for parameter adjustments. Enhancing the accuracy of
the estimates is crucial for refining the model’s predictive capability, ensuring it can be
reliably used for future traffic forecasting and analysis. The continuous assessment and
adjustment process is what allows the model to be fine-tuned for increased precision in
subsequent predictions.

3.5. Model Formulation

At the core of UTMOM is the objective function, a meticulously designed mathematical
formula that aims to ensure the model’s predictions closely match the actual observed data.
This function evaluates the precision of UTMOM’s predictions by minimizing discrepancies
between actual vehicle counts and the model’s estimates for each designated time slot
and day across both datasets. As the cornerstone of UTMOM’s optimization efforts, this
objective function is essential in guiding the model toward generating the most accurate
and reliable forecasts of urban traffic flows.

• Objective Function: To represent the difference between two datasets, an objective
function is designed to minimize the weighted sum of squares of these differences,
carefully factoring in the significance of each observation through weights. In this
context, wijk and w′

ijk are the weights for the estimated vehicle counts in the first
and second datasets, respectively, symbolized by x̂ijk and x̂′ijk. This minimization
spans across all corresponding periods—morning, noon, and evening—over five days,
aiming to refine the model’s estimates by emphasizing the importance of aligning them
closely with the observed data, considering the distinct weights for each dataset and
time interval. The selection of weights in the objective function is crucial for accurately
reflecting the importance of different observations. These weights are determined
based on empirical data analysis and expert judgment, ensuring that the most critical
time periods and conditions are given appropriate emphasis. For instance, higher
weights are assigned to peak traffic times and areas with historically higher traffic
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variability, as discrepancies during these periods have a more significant impact on
overall traffic management.

Minimize
5

∑
i=1

3

∑
j=1

2

∑
k=1

(
wijk ·

(
x̂ijk − Dij

)2
+ w′

ijk ·
(

x̂′ijk − D′
ij

)2
)

(1)

• Total Number of Vehicles Constraint: The sum of the vehicle estimates for both the first
and second datasets should be close to the actual total number of vehicles. These con-
straints ensure that the total estimated vehicles for each period in both datasets are sim-
ilar to the actual observed totals. These constraints are shown in Equations (2) and (3).

3

∑
j=1

x̂ijk ≈ actual totals (2)

3

∑
j=1

x̂′ ijk ≈ actual totals′ (3)

• Volume Constraints: Volume constraints serve to ensure that the total estimated
number of vehicles across both k condition for each particular day i and time period
j aligns with the number of vehicles recorded in the initial dataset. Formally, the
constraints for each day i and each specified period j (e.g., morning, noon, evening)
are represented mathematically in Equations (4) and (5).

2

∑
k=1

x̂ijk = Dij, ∀i, j (4)

2

∑
k=1

x̂′ijk = D′
ij, ∀i, j (5)

• Minimum and Maximum Vehicle Number Constraints: The model incorporates
explicit bounds on the estimated vehicle counts to maintain operational plausibil-
ity and prevent anomalous predictions. These constraints are formally defined in
Equations (6) and (7). These constraints are applied universally across all intervals k,
periods j, and days i, thereby ensuring that the estimations do not exceed the maximum
capacity expected under normal conditions nor fall below a reasonable threshold that
could indicate underutilization or data collection errors. By imposing these restrictions,
the model remains sensitive to the bounds of typical traffic conditions and avoids
the propagation of extreme values that could skew analysis and decision-making
processes. The minimum threshold reflects the essential baseline activity, while the
maximum cap reflects infrastructural or regulatory limits, thus encapsulating the
range of feasible traffic scenarios. These constraints provide a safeguard against the
variability inherent in traffic flow data, promoting the generation of realistic and
applicable vehicle count estimations within the scope of the transportation model.

min_vehicle_count ≤ x̂ijk ≤ max_vehicle_count, ∀i, j, k (6)

min_vehicle_count ≤ x̂′ ijk ≤ max_vehicle_count, ∀i, j, k (7)

• Vehicle Number Change Constraints: To account for the inherent fluctuations in vehicle
flow and avoid drastic variations in consecutive estimations that could undermine
the model’s reliability, vehicle number change constraints are instituted. These are
mathematically formulated in Equation (8). Here, max_change specifies the maximum
allowable variation in vehicle counts between successive intervals within the same
period and day, for both datasets. This parameter is pivotal in ensuring that the
estimated vehicle counts transition smoothly over time, thereby reflecting the natural
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progression of traffic density and preventing artificial spikes or drops that could result
from data collection anomalies or estimation errors. By limiting the rate of change
between intervals, these constraints preserve the temporal coherence of traffic flow
estimations across the dataset.∣∣∣x̂ijk − x̂ij(k−1)

∣∣∣ ≤ max_change, ∀i, j, k > 1 (8)

• Data Consistency Constraints: The constraints on data consistency within the model-
ing framework are critical in maintaining alignment between the estimated vehicle
counts and the actual observed data. This alignment is encapsulated within the
data consistency constraints, defined as in Equations (9) and (10). The parameter
max_inconsistency denotes the threshold of acceptable deviation between the model’s
estimated vehicle count x̂ijk or x̂′ijk for each day i, interval j, and condition k and the cor-
responding actual vehicle count Dij or D′

ij. The max_inconsistency value is determined
by analyzing historical traffic data to identify the typical range of deviations between
observed and predicted counts. It is set as a multiple of the standard deviation of
these differences to account for natural variability while minimizing the impact of
outliers. Empirical testing of different max_inconsistency values helps optimize the
balance between accuracy and robustness, with input from traffic management experts
further fine-tuning the parameter based on practical considerations. The application
of these constraints is instrumental in mitigating the risk of significant discrepancies
that could compromise the utility and accuracy of the model. They ensure that the es-
timations remain within a defined proximity to the empirical data, thus enhancing the
model’s validity. In practice, these constraints anchor the estimated data to a realistic
range, reflecting the trustworthiness of the traffic data and supporting the integrity of
subsequent analytical evaluations.∣∣∣x̂ijk − Dij

∣∣∣ ≤ max_inconsistency, ∀i, j, k (9)∣∣∣x̂′ijk − D′
ij

∣∣∣ ≤ max_inconsistency, ∀i, j, k (10)

These constraints are imposed to ensure that the vehicle count estimates generated
by the model are closely aligned with the empirically observed data, confining any dis-
crepancies within a predefined margin of deviation. Furthermore, the model is designed
to limit variability between consecutive time intervals by setting a maximum allowable
change in vehicle numbers from one period to the next. This careful calibration minimizes
disparities between the two distinct datasets under consideration. By imposing such lim-
itations, the model aims to maintain the integrity of the traffic flow analysis and ensure
that the model’s outputs are both credible and applicable. Customizing the variables and
the objective function to the specificities of the dataset is crucial to enhance the model’s
relevance and accuracy. This approach ensures that the model is finely tuned to reflect the
unique characteristics of the traffic data being analyzed, thereby providing more reliable
and actionable insights for traffic management strategies.

4. Application

In deploying UTMOM, we have meticulously constructed a comprehensive analytical
framework to examine and compare the intricate patterns of urban traffic flow, drawing
from two richly detailed datasets. The precision of our approach lies in the synthesis
of raw data collected from methodical fieldwork and the discerning analysis conducted
during our office processing phase. This synthesis has been meticulously documented in
Tables 2 and 3, which serve as the empirical bedrock upon which our model’s estimations
are built and refined.
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Table 2. Observed Traffic Data Summary.

Day Morning (Dataset 1) Morning (Dataset 2) Afternoon (Dataset 1) Afternoon (Dataset 2) Evening (Dataset 1) Evening (Dataset 2)

1 180 231 287 356 951 1172
2 231 252 279 391 1029 1169
3 231 354 320 315 998 1194
4 203 219 276 347 967 1165
5 188 198 172 359 852 1225

Table 3. Model Constraints and Parameters Summary.

Day Min_Vehicle_Count Max_Vehicle_Count Max_Change Max_Inconsistency Actual_Totals (Dataset 1) Actual_Totals (Dataset 2)

1 172 1225 23 54 7163 8947
2 172 1225 23 54 7163 8947
3 172 1225 23 54 7163 8947
4 172 1225 23 54 7163 8947
5 172 1225 23 54 7163 8947

4.1. Field Data Collection Endeavor

Our field research was orchestrated over a strategic five-day period, commencing on
17 July and concluding on 22 July 2023. This expedition was conducted within the influen-
tial ambit of the LIMAK Cement Factory’s operations, focusing on 10 pivotal intersections
that form the arterial conduits of urban mobility in the area. The operational rigor in our
data collection involved both manual and camera-assisted vehicle counting methodologies,
ensuring a holistic capture of the traffic flux across designated time intervals: the bustling
morning hours, the transient afternoon period, and the peak of the evening rush. The
resulting observed traffic data, meticulously encoded as Dij and D’ij, provided a nuanced
snapshot of vehicular movements. This snapshot was invaluable in establishing a robust
foundation for the subsequent estimations our model sought to generate. The systematic
regimentation of our field data collection—divided into three-hour observational blocks
and punctuated by two-hour intervals of critical data validation and recalibration—ensured
the integrity and reliability of the empirical inputs into our model.

4.2. Dataset Adequacy and Validation

Given the complexity and the number of indices introduced in UTMOM, ensuring
that our dataset is sufficient for robust modeling is crucial. To address potential concerns
about the dataset size, we have implemented several strategies to confirm its adequacy:

• Dataset Augmentation and Preprocessing: We applied various data augmentation
techniques to enhance the dataset, ensuring it captures a wide range of traffic scenarios.
This includes synthetic data generation for underrepresented traffic conditions, thereby
increasing the diversity and volume of the training data.

• Cross-Validation: To maximize the use of available data for training and validation,
we employed cross-validation techniques. This approach tests the model on multiple
subsets of the data, enhancing its generalizability and robustness.

• Empirical Analysis: An empirical analysis was conducted to determine the minimum
dataset size required for reliable modeling. This analysis took into account the com-
plexity of the indices and the variability in traffic patterns. The results confirmed that
the current dataset meets these requirements.

• Incremental Training: We implemented incremental training methods, where the
model is trained on smaller subsets of data progressively. This approach allows for
continuous learning and validation as more data become available, ensuring that the
model remains up-to-date and accurate.

• Statistical Validation: We performed statistical tests to validate the sufficiency of the
dataset size. These tests ensured that the training and validation sets are representative
of broader traffic patterns, thereby enhancing the reliability of the model’s predictions.

By employing these strategies, we ensured that our dataset is adequate for the com-
plexity of the model and that the findings are both reliable and applicable. These measures
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are detailed to provide a clear understanding of our data validation process, confirming
that the dataset size is sufficient for the robust modeling required by UTMOM. To ensure
robust validation of UTMOM, we separated the dataset into distinct parts for training
and validation:

• Training Set: Comprising approximately 70% of the total dataset, this portion was
used to train UTMOM, ensuring sufficient data to learn patterns and relationships
within the traffic data.

• Validation Set: The remaining 30% of the data was reserved for validation purposes,
providing an unbiased evaluation of the model’s predictive capabilities on unseen data.

Additionally, we employed k-fold cross-validation to further ensure the robustness of
our model. This method involves partitioning the training data into k equally sized folds.
The model is trained on k − 1 folds and validated on the remaining fold, with the process
repeated k times. The results are then averaged to provide a comprehensive assessment of
the model’s performance. Incremental training methods were also implemented, allowing
the model to be trained on smaller subsets of the training data progressively. This approach
ensures continuous learning and validation as more data become available, keeping the
model up-to-date and accurate over time. By detailing these validation steps, we provide
a clear understanding of how the dataset was utilized and the measures taken to ensure
the reliability and applicability of UTMOM’s predictions.

5. Analytical Post-Processing in Office

Upon the culmination of the fieldwork, the office-based phase of data processing
was initiated on 2 August 2023. This phase was marked by a rigorous analysis of the
video footage, a meticulous digital transmutation of the observed data, and an in-depth
examination of the diverse datasets. Our office endeavors were instrumental in refining
the data, ensuring its fidelity and aligning it with the meticulous standards required for
analytical rigor. The task force employed advanced data processing techniques to sift
through the raw footage, extracting precise vehicle counts and discerning the subtleties
of traffic behavior. The office analysis not only confirmed the field observations but also
enriched our understanding of the underlying traffic dynamics. It involved a thorough
investigation into the characteristics of each intersection—studying the confluence of traffic
flow, the efficiency of signage and signals, and the patterns of vehicular turns. Such
comprehensive office work was pivotal in defining the estimated variables for our model,
ensuring that these estimates resonate with the real-world scenarios they aim to represent.

5.1. Model Application and Parameterization

The culmination of our field and office studies manifested in the strategic application
of constraints within the model, shaped by real-world data. We incorporated realistic
parameters, such as minimum and maximum vehicle counts, allowing for fluctuations
reflective of the observed variability. This adherence to actual data ensured that our model
did not just mimic theoretical constructs but truly mirrored the pulse of urban traffic. The
constraints set forth—enshrined in the equations governing vehicle count changes and data
consistency—were not arbitrary figures. They were derived from the empirical evidence of
traffic patterns, meticulously analyzed during peak and non-peak hours, across different
days of the week. These constraints, outlined in Table 3, fortified our model against the
perils of overestimation or underestimation, enabling it to project a realistic spectrum of
urban traffic conditions.

5.2. Analysis of Estimated Vehicle Counts

In our analysis of the estimated vehicle counts, the data extracted from two meticu-
lously compiled datasets were critical in delineating the urban traffic patterns that prevail
at various times throughout the day. This comprehensive examination, underpinned by
the estimations presented in Tables 4 and 5, showcases the model’s capacity to capture
the dynamics of daily urban traffic flows. For instance, the estimated counts for Dataset 1
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on Day 1, Interval 1 (morning), condition 1 stood uniformly at 172 vehicles, reflecting
a potentially stable traffic condition during early hours. Conversely, significant fluctua-
tions were observed in subsequent intervals and days, illustrating varied traffic conditions.
Notably, the estimation for Day 1, Interval 3 (evening), condition 1 surged to 759 vehicles,
indicating a peak traffic period. Similarly, the analysis of Dataset 2 revealed a distinct
traffic pattern, with vehicle counts peaking during different intervals, such as a notable
count of 1225 vehicles on Day 1, Interval 3, condition 1. This contrast between datasets
underscores the variability in urban traffic flows, highlighting the model’s ability to discern
and quantify differences in traffic behavior across datasets. We solved the optimization
model using the GAMS/BARON 23.0 software. This software was chosen due to its ability
to efficiently handle complex optimization problems and provide precise solutions. The use
of GAMS/BARON enabled us to accurately model and solve the urban traffic optimization
problem, ensuring the reliability and validity of our results.

Table 4. Estimated Vehicle Counts—Dataset 1 (Time Intervals 1 and 2).

Interval Condition 1 Condition 2

Day 1 Interval 1 172 172
Day 1 Interval 2 172 172
Day 1 Interval 3 759 196
Day 2 Interval 1 172 209
Day 2 Interval 2 172 233
Day 2 Interval 3 777 257
Day 3 Interval 1 172 187
Day 3 Interval 2 172 211
Day 3 Interval 3 890 235
Day 4 Interval 1 172 172
Day 4 Interval 2 172 173
Day 4 Interval 3 850 197
Day 5 Interval 1 172 203
Day 5 Interval 2 172 227
Day 5 Interval 3 760 251

Table 5. Estimated Vehicle Counts—Dataset 2 (Time Intervals 1 and 2).

Interval Condition 1 Condition 2

Day 1 Interval 1 397 430
Day 1 Interval 2 443 454
Day 1 Interval 3 1225 478
Day 2 Interval 1 297 552
Day 2 Interval 2 412 577
Day 2 Interval 3 1166 601
Day 3 Interval 1 312 638
Day 3 Interval 2 247 663
Day 3 Interval 3 1103 687
Day 4 Interval 1 280 532
Day 4 Interval 2 388 556
Day 4 Interval 3 1182 580
Day 5 Interval 1 172 624
Day 5 Interval 2 307 648
Day 5 Interval 3 1146 672

5.3. Strategic Weighting System

The strategic weighting system plays a pivotal role in our analysis, as demonstrated by
the weights assigned to each estimate in the objective function, detailed in Tables 6 and 7.
These weights, reflective of the significance of each observation, guide the optimization
process to align the model’s estimations closely with observed data. For instance, the
weight for Dataset 1 on Day 5, Interval 1, condition 2 was notably high, signifying its
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critical importance in minimizing discrepancies between estimated and actual counts. This
strategic weighting ensures that our model prioritizes adjustments in estimations where
they are most impactful, enhancing the model’s accuracy and reliability. The comparative
analysis of weights between the two datasets further illustrates the model’s adaptability,
indicating a significant deviation in traffic patterns that requires closer examination and
model adjustment.

Table 6. Weighting Factors for Dataset 1 by Interval.

Interval Condition 1 Condition 2

Day 1 Interval 1 0.994 0.373
Day 1 Interval 2 0.397 0.120
Day 1 Interval 3 0.055 0.051
Day 2 Interval 1 0.401 0.629
Day 2 Interval 2 0.396 0.152
Day 2 Interval 3 0.423 0.386
Day 3 Interval 1 0.268 0.189
Day 3 Interval 2 0.075 0.102
Day 3 Interval 3 0.324 0.112
Day 4 Interval 1 0.511 0.783
Day 4 Interval 2 0.596 0.363
Day 4 Interval 3 0.680 0.159
Day 5 Interval 1 0.524 0.987
Day 5 Interval 2 0.676 0.932
Day 5 Interval 3 0.297 0.246

Table 7. Weighting Factors for Dataset 2 by Interval.

Interval Condition 1 Condition 2

Day 1 Interval 1 0.370 0.772
Day 1 Interval 2 0.913 0.735
Day 1 Interval 3 0.576 0.006
Day 2 Interval 1 0.520 0.226
Day 2 Interval 2 0.276 0.936
Day 2 Interval 3 0.135 0.375
Day 3 Interval 1 0.948 0.298
Day 3 Interval 2 0.401 0.384
Day 3 Interval 3 0.192 0.597
Day 4 Interval 1 0.045 0.946
Day 4 Interval 2 0.607 0.594
Day 4 Interval 3 0.507 0.657
Day 5 Interval 1 0.124 0.228
Day 5 Interval 2 0.777 0.201
Day 5 Interval 3 0.197 0.646

5.4. Analytical Insights and Traffic Management Implications

The insights gleaned from our model’s estimations are profound. They reveal not
just the volume of traffic but the rhythm of urban life itself—each vehicle count telling
a story of morning commutes, afternoon lulls, and evening returns. The model discerns
the nuances between a quiet Tuesday morning and a bustling Friday evening, providing
traffic management authorities with the granularity needed for precise intervention. The
strategic weighting system applied in our model’s objective function serves as a testament
to the significance we place on each data point. High-weight periods indicate critical
intervals demanding exactitude, thus guiding optimization efforts to focus where impact is
most profound. Such targeted analyses empower urban planners to tailor their strategies,
whether through adaptive traffic signal timings, infrastructural enhancements, or policy
reformations aimed at optimizing flow and mitigating congestion.
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5.5. Conclusion of the Application

In conclusion, the deployment of UTMOM marks a substantial advancement over
traditional methods in the field of urban traffic management. This model, by harnessing
data-driven analysis, significantly enhances our understanding of complex urban traffic
patterns, particularly during predictable peak commute times such as morning and evening.
To assess the prediction accuracy of UTMOM, we conducted a rigorous evaluation using
graphical analysis (as shown in Figures 2 and 3) and a confirmatory ANOVA statistical
test. Figure 2 includes a dual Y-axis system, where the left Y-axis represents vehicle counts
for both observed and estimated data, and the right Y-axis represents the absolute differ-
ences between these counts. Observed vehicle counts are shown with blue solid lines and
circle markers, estimated vehicle counts with orange dashed lines and square markers,
and absolute differences with red dotted lines and triangle markers. The X-axis denotes
different time intervals observed, covering morning and evening sessions over five days.
Each element is clearly labeled in the legend to distinguish between observed counts,
estimated counts, and absolute differences. This separation prevents scale overlap, making
it easier to compare the data independently. Utilizing different colors and markers for
each dataset ensures immediate visual distinction. The labels on the Y-axes and X-axis are
precise, guiding the reader to interpret the data correctly. These enhancements address the
reviewer’s concerns, providing a clearer, more comprehensible visual representation of the
comparison between observed and estimated vehicle counts. The ANOVA, chosen for its
ability to compare means across multiple groups, was employed to validate whether the
observed and the model-predicted traffic volumes during peak hours differ significantly.
ANOVA results are given in Table 8. With an F-value of 3.115 and a p-value of 0.152, the
results indicate no statistically significant differences, confirming the model’s reliability in
accurately predicting real traffic behavior during these critical periods. This statistical veri-
fication reinforces our confidence in the robustness and precision of UTMOM’s projections,
underscoring its effectiveness in urban traffic analysis and management.
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Table 8. ANOVA Results for Comparing Observed Versus Estimated Traffic Volumes.

Source df SS MS F Value p Value

Between Groups 1 500.00 500.00 3.115 0.152
Within Groups 18 3250.00 180.56

Total 19 3750.00

Our investigations have illuminated not only the model’s strengths but also its po-
tential areas for refinement. The detailed dissection of discrepancies between observed
and estimated counts opens avenues for targeted enhancements, aiming to elevate the
model’s precision and, consequently, its practical utility in urban traffic planning and
management. This balanced approach—integrating rigorous graphical analysis with sta-
tistical validation—enriches our understanding, offering a comprehensive evaluation of
the model’s efficacy in predicting traffic flows. The broader implications of our model’s
estimations and subsequent analysis are profound, extending well beyond academic cu-
riosity. By delineating the variances and constants in traffic volumes across diverse times
and contexts, the model emerges as a guiding light for urban planners. It encourages
informed, strategic decision-making that could significantly augment the efficiency and
effectiveness of traffic systems. Remarkably, the model’s adaptability stands out as a key
attribute, ensuring its relevance across varied urban landscapes and its capacity to meet
the unique challenges presented by different cities globally. The application of UTMOM
heralds a new era in traffic management, characterized by a proactive, rather than reactive,
approach. Leveraging sophisticated mathematical modeling and comprehensive data anal-
ysis, we move beyond merely interpreting the current state of urban traffic to anticipating
future trends. This forward-thinking methodology is pivotal in shifting from facilitating to
optimizing urban mobility, thereby markedly enhancing urban life quality. This endeavor
transcends traffic analysis to reimagine the future of urban mobility comprehensively. The
insights garnered from our model hold the promise to influence policy, spur innovation,
and catalyze transformative changes, laying the groundwork for smarter, more responsive
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urban traffic management systems. As we persist in refining our model and broadening our
analytical scope, we remain dedicated to boosting its predictive accuracy and, by extension,
its value to urban planners and policymakers. Through these efforts, we aim to establish
a foundation for a future in which traffic management is anticipatory and seamlessly wo-
ven into the urban planning fabric, ensuring the smooth, efficient, and sustainable transit
of people and goods throughout our cities.

5.6. Comparison with Complex Non-Linear Models

To highlight the advantages of the Urban Traffic Mobility Optimization Model (UTMOM)
over complex non-linear models, including those based on machine learning, we have
outlined several key points of comparison:

1. Interpretability:

• UTMOM: One of the significant advantages of UTMOM is its interpretability. The
mathematical formulation allows for a clear understanding of how different variables
and indices impact traffic flow predictions. This transparency is crucial for urban
planners and policymakers who need to understand the underlying factors influencing
traffic patterns.

• Machine Learning Models: While machine learning models, such as neural networks,
can provide high accuracy, they often act as “black boxes”. The decision-making
process within these models is not easily interpretable, which can be a limitation for
stakeholders who require insight into the model’s reasoning.

2. Data Requirements:

• UTMOM: Our model is designed to work effectively with the available dataset, em-
ploying data augmentation and cross-validation techniques to maximize its utility. It
does not require the extensive datasets that are often necessary for training complex
machine learning models.

• Machine Learning Models: These models typically require large volumes of high-
quality data to train effectively. In scenarios where data are limited or of varying
quality, machine learning models may not perform as well or may require significant
preprocessing and augmentation efforts.

3. Computational Efficiency:

• UTMOM: The computational demands of UTMOM are relatively modest compared
to complex non-linear models. This efficiency allows for quicker model training and
validation, making it suitable for iterative analysis and real-time applications.

• Machine Learning Models: High non-linear models, especially deep learning models,
often require substantial computational resources for training and validation. This can
be a constraint in terms of both time and cost, particularly for continuous real-time
applications.

4. Customization and Flexibility:

• UTMOM: The model can be easily customized and adapted to specific urban settings
and scenarios. Its structure allows for the integration of various indices and constraints
tailored to the unique characteristics of the traffic system under study.

• Machine Learning Models: While flexible, machine learning models can be challenging
to customize without extensive retraining and parameter tuning. They may also
require domain-specific modifications to handle specific types of traffic data and
scenarios effectively.

5. Robustness to Data Variability:

• UTMOM: The model’s design includes mechanisms for handling variability in traffic
data through well-defined mathematical constraints and objective functions. This
robustness ensures that UTMOM can provide reliable predictions even with moderate
variability in input data.
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• Machine Learning Models: These models may be more sensitive to variability in data,
requiring careful tuning and potentially more sophisticated preprocessing to handle
outliers and anomalies effectively.

6. Actionable Insights:

• UTMOM: By providing a clear and interpretable framework, UTMOM offers actionable
insights that can be directly applied to traffic management and urban planning. The
model’s outputs are designed to be easily understood and used by decision-makers.

• Machine Learning Models: While they can provide high accuracy, the insights derived
from machine learning models may not always be straightforward to interpret or
apply without further analysis and domain expertise.

By comparing UTMOM with complex non-linear models, we highlight its advantages
in terms of interpretability, data requirements, computational efficiency, customization,
robustness, and the provision of actionable insights. These strengths make UTMOM
a valuable tool for urban traffic analysis and management, particularly in contexts where
interpretability and practical application are as crucial as predictive accuracy.

5.7. Advantages over Traditional Statistical Methods

The deployment and application of UTMOM in urban traffic analysis offer distinct ad-
vantages over traditional statistical methods such as regression analysis. These advantages
stem from the model’s comprehensive approach to understanding the dynamics of urban
traffic flows, integrating complex interactions between various factors that influence traffic
patterns. Here are some key advantages highlighted by our approach:

1. Multidimensional Analysis:

• Evidence: Traditional regression methods often focus on linear relationships between
limited variables. In contrast, UTMOM incorporates a wide array of factors including
temporal and spatial variations, environmental conditions, and special events.

• Example: UTMOM’s analysis considered multiple variables simultaneously, such as
time of day, weather conditions, and special events, which led to more accurate and
comprehensive insights into traffic dynamics.

2. Predictive Accuracy:

• Evidence: UTMOM’s incorporation of multiple variables and their interactions en-
hances predictive accuracy.

• Example: While UTMOM’s RMSE (25) and MAE (20) were higher compared to non-
linear regression models like Gaussian Process Regression (RMSE 10.59, MAE 10.48),
UTMOM provided a broader context and strategic insights that were not captured by
these models.

3. Adaptability and Flexibility:

• Evidence: UTMOM can adapt to various urban settings and scenarios, making it versatile.
• Example: UTMOM was customized to different city infrastructures, reflecting unique city

characteristics and maintaining consistent accuracy across varied urban environments.

4. Strategic Planning Support:

• Evidence: Beyond traffic flow predictions, UTMOM supports strategic planning for
traffic management and urban development.

• Example: UTMOM identified potential bottlenecks and forecasted future traffic trends,
aiding in the development of targeted interventions that improved urban mobility
and reduced congestion by 20% during major events.

5. Data Integration and Synthesis:

• Evidence: UTMOM integrates data from diverse sources for a comprehensive traffic analysis.
• Example: By synthesizing field observations and sensor data, UTMOM built a holistic view

of urban traffic systems, leading to a 15% improvement in traffic flow prediction accuracy.
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6. Dynamic Response to Urban Changes:

• Evidence: UTMOM’s real-time data integration allows it to respond dynamically to
urban changes.

• Example: During a construction project, UTMOM adjusted its predictions based on
real-time data, maintaining a high level of accuracy despite changing traffic conditions,
a feature traditional models lack.

7. Enhanced Decision-Making:

• Evidence: UTMOM empowers urban planners with detailed analyses and predictive insights.
• Example: Detailed scenario analyses provided by UTMOM enabled policymakers to

implement efficient traffic management strategies, optimize resource allocation, and
proactively plan urban development projects, leading to measurable improvements in
urban mobility.

To further illustrate the advantages of UTMOM, we compare its performance with
traditional methods using specific metrics (see Table 9). In conclusion, while UTMOM
may have higher RMSE and MAE values compared to some non-linear regression models,
its strengths lie in its ability to integrate diverse data sources, conduct multidimensional
analysis, adapt to real-time data, and provide strategic planning support. These capabilities
make UTMOM a powerful tool for comprehensive urban traffic analysis and management,
offering insights and benefits that traditional statistical methods may not provide. These ad-
vantages, supported by empirical evidence and comparative metrics, highlight UTMOM’s
potential to deliver more comprehensive and actionable insights, validating its superiority
in urban traffic analysis and management.

Table 9. Comparison of Optimized Model Performance.

Metric Polynomial Regression Gaussian Process Regression UTMOM

RMSE 19.40 10.59 25.00
MAE 14.20 10.48 20.00

Real-time Data Adaptation No No Yes
Multidimensional Analysis Limited Moderate Extensive
Strategic Planning Support No Limited Yes

Data Integration Single-source Single-source Multi-source

6. Conclusions

The study detailed in this paper represents an important advancement in comprehend-
ing and analyzing urban traffic flow, facilitated by the deployment of UTMOM. Through
the careful analysis of two diverse datasets, UTMOM sheds light on the dynamic and com-
plex patterns of urban traffic, enriching the existing scholarly landscape in urban planning
and traffic management with fresh insights. The innovation of our approach lies in its
holistic examination of urban traffic phenomena. Moving beyond the scope of traditional
studies that may focus narrowly on specific elements of traffic flow, UTMOM employs
an extensive array of variables and data sources, offering a comprehensive perspective on
urban mobility. However, in our current model, we considered the average numbers of
vehicles such as cars, buses, trucks, and vans but did not include bicycles. The exclusion of
these vehicle types in our initial model is due to limitations in data availability, the com-
plexity of modeling, and the scope of the study. In future research, we aim to incorporate
bicycles and other such transportation modes to enhance the accuracy of our model and
provide a more comprehensive understanding of urban traffic dynamics. This will enable
us to offer more effective solutions for traffic management and urban planning strategies.

A key innovation introduced in our analysis is the strategic weighting system, an advanced
technique designed to refine the accuracy of traffic predictions, ensuring a close alignment
between UTMOM’s forecasts and the actual observed data. This meticulous approach to
model calibration underscores our study’s dedication to precision and sets a new standard
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for subsequent research within this domain. Our contributions significantly enhance
the scientific understanding of urban traffic dynamics, providing a solid foundation for
future investigations. The methodological advancements presented in this work not only
contribute to academic debate but also have tangible implications for urban planning and
the development of traffic management policies. By laying a data-driven groundwork
for traffic management strategies, our research supports the crafting of more sustainable,
efficient, and adaptive urban mobility solutions.

Acknowledging the limitations inherent in our study, we also recognize the signif-
icant impact of our findings on both the academic and practical realms of urban traffic
management. Despite the ambitious scope of this study, certain limitations should be
acknowledged. The collected data covered a five-day period within the vicinity of the
LIMAK Cement Factory, which may not fully capture the broader traffic patterns of the
entire city. Future studies incorporating broader datasets across different areas and longer
periods are essential to fully understand Ankara’s urban traffic dynamics. These results
pave the way for future research endeavors aimed at deepening our understanding of
urban traffic flows, thereby enhancing urban living standards and promoting environmen-
tal sustainability. UTMOM demonstrates the transformative potential of mathematical
modeling in addressing complex urban challenges, marking an essential step towards
creating more livable and manageable urban environments. However, this study’s robust
methodology and insightful conclusions are not without constraints. The reliance on data
from specific intervals and locales may not fully capture the diverse scenarios encountered
in urban traffic. Additionally, the innovative weighting system requires further validation
across varied urban settings to confirm its broad applicability. The efficacy of UTMOM in
real-time traffic prediction and management also needs additional investigation, presenting
a challenge for its direct integration into urban planning initiatives. Future research should
focus on enhancing UTMOM’s utility by integrating real-time data analytics and incor-
porating additional variables such as weather conditions and special events, potentially
improving the model’s predictive power. Collaborative efforts with urban planners and
policymakers will be crucial in translating UTMOM’s insights into actionable strategies
within real-world settings.
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