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Abstract: In recent multiple object tracking (MOT) research, there have not been many traditional
methods and optimizations for matching. Most of today’s popular tracking methods are implemented
using deep learning. But many monitoring devices do not have high computing power, so real-time
tracking via neural networks is difficult. Furthermore, matching takes less time than detection and
embedding, but it still takes some time, especially for many targets in a scene. Therefore, in order to
solve these problems, we propose a new method by using grayscale maps to obtain spatial-temporal
features based on traditional methods. Using this method allows us to directly find the position and
region in previous frames of the target and significantly reduce the number of IDs that the target
needs to match. At the same time, compared to some end-to-end paradigms, our method can quickly
obtain spatial-temporal features using traditional methods, which reduces some calculations. Further,
we joined embedding and matching to further reduce the time spent on tracking. Our method
reduces the calculations in feature extraction and reduces unnecessary matching in the matching
stage. Our method was evaluated on benchmark dataset MOT16, and it achieved great performance;
the tracking accuracy metric MOTA reached 46.7%. The tracking FPS reached 17.6, and it ran only on
a CPU without GPU acceleration.
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1. Introduction

Multiple object tracking (MOT) is an important research field in computer vision,
and it is also an integral part of cutting-edge technologies such as action recognition.
Recently, MOT has achieved a wide range of applications in artificial intelligence, such
as autonomous driving, intelligent traffic management, and video monitoring. It aims to
detect the target of interest, assign each target a separate ID, maintain target identities,
and generate their respective trajectories throughout the entire video stream. With the
development of MOT algorithms, it is still a challenge to improve the accuracy and speed,
as the overlap matching between many objects can cause the target detection to fail or slow.

In early computer vision, tracking relied on the features of interest points, which was
simple and fast but poorly robust. In recent years, deep learning has developed rapidly
and has been widely used in the image field. With the continuous iteration of YOLO [1],
Faster R-CNN [2], and other models [3], the speed and accuracy of the target detection
algorithm have been significantly improved. So much MOT research is based on tracking
by detection (TBD) [4]. However, the TBD model not only takes a long time for target
detection but also requires some calculation time for feature extraction and ID matching.
In order to solve this problem, a new model that joins detection and embedding (JDE) [5]
is proposed. Although the JDE model reduces the amount of calculation compared to the
TBD model, it only combines the two parts of target detection and feature extraction, so
the complexity of the model is still high. Recently, a new model named joint detection and
tracking (JDT) [6] was proposed by combining target detection, feature extraction, and data
association in a single network, which simplifies tracking. But the association strategy still
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has a lot of complexity and calculation, as each target needs to be matched multiple times.
Many JDT models use spatial-temporal features; however, their use of neural networks to
extract spatial-temporal features requires extensive computation.

Today, many monitoring devices do not have high computing power and do not
support real-time tracking through neural networks. But most of the popular methods
today are implemented using deep learning. Therefore, there are two problems to be solved
in this paper. The first is how to quickly obtain spatial-temporal features in the traditional
way. The second is how to reduce unnecessary feature extraction and matching. In order to
solve these problems, we propose a new method to obtain spatial-temporal features, which
is convenient only based on grayscale maps. The proposed spatial-temporal feature is called
the grayscale spatial-temporal feature. This spatial-temporal feature marks each target with
different grayscale values in each frame, which can quickly obtain the spatial-temporal
features of the target. At the same time, the matching of grayscale spatial-temporal features
is also convenient and fast. We also optimize the association strategy by joint feature
extraction and matching to reduce unnecessary feature extraction. Our feature extraction
and matching operations are performed in a traditional way without deep learning. In
this paper, we extract motion features through the Kalman filter algorithm and predict the
target position of the next frame through the state equation and the target position of the
historical frame. However, the Kalman filter algorithm is only applicable to linear motion,
so it is necessary to extract appearance features to increase the robustness of tracking.
The color histogram is used to obtain the appearance features. The color histogram can
intuitively reflect the color distribution and color characteristics of the image. The color
histogram is more efficient than the scale-invariant feature transform (SIFT) in extracting
appearance features and is simpler to calculate. Although the optical flow estimation
algorithm has high computational efficiency, it is sensitive to illumination changes and is
not suitable for target occlusion or large-scale target tracking. Therefore, we do not need
many computation resources and data to train. Its accuracy is comparable to some current
deep learning methods on MOT16 benchmarks [7]. In summary, this paper proposed the
following four contributions:

– A way to quickly extract spatial-temporal features just by traditional methods. The
spatial-temporal features can deliver information perfectly between two frames. This
way can quickly obtain the spatial-temporal features of the target. This method does
not require the use of deep learning methods.

– A method to reduce ID matching times. This method reduces matching times to less
than three times for most targets by using the spatial-temporal features.

– A method joins feature extraction and matching to reduce unnecessary feature extrac-
tion and matching. Target matching is performed in three stages. Different strategies
are adopted for matching and feature extraction according to each stage.

– A better way to deal with occlusion problems. Based on the spatial-temporal features,
we can infer the region where the occluded target disappears. After it is re-detected,
matching is performed in this region, which reduces the interference of similar targets
outside the area.

2. Related Work

Some research on TBD mainly relied on the motion features or appearance features of
the target. Bewley et al. [4] modeled the position and velocity of each target and then, based
on the Intersection-over-Union (IoU), matched the target. Due to the long-term loss of the
detected target, the Kalman filter parameters deviated from the true value, and tracking
might fail. To solve this problem, Cao et al. [8] proposed OC-SORT, which proposed
an observation-centric update strategy to reduce the accumulated errors with time. Qin
et al. [9] also aimed to solve the problem of long-term tracking and designed a recovery
module to stitch together fragmented trajectories. Unmatched detections and trajectories
were matched by calculating the velocity–time relationship between them. Yu et al. [10]
designed a feature extraction network based on GoogleNet [11] to extract the appearance
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features of the target and associated targets through the k-dense neighbor algorithm [12].
However, the tracking capability of these methods, which relied on the motion features, was
reduced for scenes with complex motion trajectories, and the appearance model was easily
affected by lighting, occlusion, and other conditions, which might cause tracking failure.

In order to further improve the tracking accuracy, some methods combined motion
and appearance features. Li et al. [13] designed a self-correcting KF for predicting the target
position and evaluated the similarity between targets through a recurrent neural network.
Yang et al. [14] combined motion features with appearance. They used a newly introduced
strategy of weak cues (confidence state and height state) to increase the robustness for
occlusion. However, due to the high complexity of the network and the large number of
calculations, the tracking speed of these algorithms is slow, making it difficult to meet the
requirements of real-time tracking.

Therefore, the paradigm of completing object detection and feature extraction in a
single network has attracted attention. Wang et al. [5] proposed the JDE864 algorithm,
which integrates object detection and feature extraction into one network. Lu et al. [15]
added a branch for extracting instance-level Re-ID features based on RetinaNet [16] for
subsequent data association. Jin et al. [17] designed a feature decoupling module and
proposed a simple three-stage data association. The combination of detection and re-
identification modules in these methods can improve efficiency and reduce the time for
feature extraction. But object detection and re-identification are two different tasks, so
balancing the differences between the two tasks is a difficult problem, and this paradigm
still does not consider optimizing matching.

In recent years, the paradigm of completing three subtasks of detection, embedding,
and tracking in a single network has attracted the attention of many scholars. Recently,
transformer [18] achieved remarkable success in multiple computer vision tasks. Trans-
former has powerful feature representation capabilities and good parallel computing capa-
bilities. An end-to-end paradigm is proposed based on Transformer. Meinhardt et al. [19]
proposed a new MOT framework, TrackFormer. This framework is based on DETR [20]
and is an end-to-end framework that uses tracking-by-attention as a new idea to achieve
data association between frames. Zhang et al. [21] proposed MOTRv2 based on MOTR [22].
They think that it is conflicting for the DETR network to perform the two tasks of detection
and data association at the same time. Therefore, they added an additional object detector
based on MOTR, and the model is an end-to-end model. Transformer has powerful feature
representation capabilities and good parallel computing capabilities. But its computational
complexity is high, and its real-time performance is poor.

There are some other methods to tracking targets. Ballester et al. [23] proposed DOT
(dynamic object tracking), which combines instance segmentation and multi-view geometry.
Yu et al. [24] proposed trajectory masks for tracking. The trajectory mask network is used
to extract multidimensional information, including the estimate, approximate location, and
shape of the target. Saleh et al. [25] proposed a probabilistic autoregressive motion model,
which learns and generates multimodal distributions of motion trajectories, matching based
on trajectories and detection frames.

In these paradigms, there are not many ways to use traditional methods to extract
features and optimize ID matching. In the matching stage, as the number of detection
targets increases, the matching times will increase significantly, and in order to increase the
real-time performance of the program, it is necessary to reduce the use of neural networks
to extract features. The grayscale spatial-temporal feature we proposed can reduce a large
number of calculations, and it has better robustness during occlusion.

3. Method
3.1. Overview

In order to better explain the proposed method, there are a few symbols that need to
be defined:
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Pi
t : represents a one-dimensional set at frame t, and i is the size of this set, for example,

Pi
t =

{
p0

t , p1
t , p2

t , . . . , pi−1
t ,

}
.

RcIDk
t,i : represents a two-dimensional set at frame t: k is the size of a one-dimensional

set, and i is the number of one-dimensional sets in this two-dimensional set, for example,
RcIDk

t,i =
{{

rcID0
t,0, . . . , rcIDk−1

t,0 ,
}

, . . . ,
{

rcID0
t,i−1, . . . , rcIDk−1

t,i−1,
}}

.
In the following, the region spatial-temporal feature is abbreviated as region-STF and

target spatial-temporal feature is abbreviated as target-STF. Table 1 shows the interpretation
of notation in the manuscript.

Table 1. The notation in the manuscript.

Notation Interpretation

t Frame
Pi

t Detection targets
Pbi

t Bounding box for each target
Pmi

t Segmentation mask for each target
FmIt Foreground mask map
PsIt Target-STF map
RsIt Region-STF map

Psk
t,i+1 Matching results of the target-STF

Rrsk
t,i Matching results of the region-STF

Rsi
t The region to which the target belongs

PcIdi
t The successfully matched IDs

RcIDk
t,i The successfully matched IDs contained in each region

RIDk
t,i Unmatched IDs of the previous frame in each region

UIDi
t

Unmatched IDs of the previous frame do not belong to any region
in the current frame

As shown in Figure 1, our framework is based on tracking-by-detection, with embed-
ding and tracking combined.
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Figure 1. The framework of our method.

It performs online tracking in four steps:
In module1, continuous frames are input into the yolov5s module to obtain the target

information. As the yolov5s module has image segmentation function, we can not only
obtain the bounding box (Pbi

t) of each target (Pi
t) but also obtain the segmentation mask

(Pmi
t) of each target.
In module2, we obtain the foreground mask map (FmIt), target-STF map (PsIt), and

region-STF map (RsIt), which rely on Pbi
t and Pmi

t.
In module3, we match spatial-temporal features and use the Pst and Rrst to save the

matching results of the target-STF and region-STF, respectively.
In module4, we classify targets by Pst. According to the classification results, the

targets are matched hierarchically. Continuously detected targets are matched first, then
re-detected targets are matched. We use a histogram to extract the appearance features
of the target and use the yolov5seg model to cut the target. This can remove background
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noise interference when extracting appearance features and remove interference between
occluded targets.

After matching, we update the trajectory of the target and record the ID for each target
Pi

t by using PcIdi
t. The successfully matched IDs contained in each region are recorded by

the set RcIDk
t,i. The unmatched targets in the previous frame are stored in RIDk

t,i or UIDi
t.

For the unmatched IDs in each region in the previous frame, if their region spatial-temporal
features are not successfully matched in the current frame, these targets are recorded in
UIDi

t, and if they are matched successfully, they are recorded in RIDk
t,i. The IDs contained

in RIDi
t only keep 200 frames. The IDs contained in UIDi

t only keep 50 frames.

3.2. Grayscale Spatial-Temporal Features

Grayscale spatial-temporal feature includes two features: target-STF and region-STF.
These two spatial-temporal features of all targets in each frame are saved with two grayscale
images, respectively, and each grayscale value in the map corresponds to a spatial-temporal
feature. As shown in Figure 2, the grayscale maps on the left are target-STF maps, and the
grayscale maps on the right are region-STF maps. In the target-STF map, each target-STF
corresponds to a target. In the region-STF map, each region-STF corresponds to one or
more targets.
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The target-STF applies different grayscale values to mark targets. We obtain the
bounding box of the target and find the grayscale values of the previous frame within
the bounding box. Then, we can quickly find the targets that need to be matched based
on these grayscale values. As shown in Figure 2, take the pink target as an example. At
frame t = 0, assign an ID to the target and obtain the target-STF. At frame t − 1 and t, after
matching the target-STF, obtain the target ID that needs to be matched by grayscale value,
then perform target ID matching.

For re-identified targets, they were not detected and did not have the target-STF in
the previous frame. Therefore, we proposed region-STF. The region-STF uses different
grayscale values to mark regions. For a re-identified target, we find the region that the
target previously belonged to by region-STF and perform target ID matching in this region.
As shown in Figure 2, take the green target as an example. At frame t = 0, assign an ID to
the target and obtain the region-STF. Store the successfully matched target ID in the region
where the target is located. A target ID that has not been successfully matched for a long
time will be removed from this region. At frame t − 1, the green target detection failed. At
frame t, the green target is re-detected, and we use region-STF to find the area in which
the green target belongs and match the green target with the target ID contained in this
area. The region-STF effectively handles the problems caused by occlusion and improves
the robustness of tracking.



Appl. Sci. 2024, 14, 5900 6 of 13

3.3. Obtain Grayscale Spatial-Temporal Map

The process of obtaining spatial-temporal features is shown in Figure 3. In the image
PsIt and RsIt, for the convenience of observation, different grayscale values are chosen for
the target.
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First, after inputting the current frame It into the yolov5 module, we obtain the
bounding box and the segmentation mask of each target. Then, we apply these data into
the foreground mask module and target-STF module to obtain the foreground mask and
target-STF map, respectively. Finally, we use the foreground mask on the region-STF
module to obtain the region-STF map.

In the target-STF module, first, we create a single-channel grayscale map PsIt of the
same size as frame It with a grayscale value of 0. Second, according to the bounding box
and the segmentation mask, we copy the mask of each target to the grayscale map with
different grayscale values using Equation (1):

gvPmi
t
(x, y) > 0: gvPsIt(x, y) = i + 1 (1)

gvpmi
t
(x, y) is the grayscale value of (x, y) in segmentation mask Pmi

t and gvPsIt(x, y)
is the grayscale value of (x, y) in map PsIt. After the operation is completed, we will obtain
the target-STF map, and the grayscale value of target pi

t is i + 1 in the target-STF map.
The foreground mask module is similar to the target spatial-temporal features module.

First, we create a single-channel grayscale map FmIt of the same size as It with a grayscale
value of 0. Then, according to the bounding box and the segmentation mask, the mask of
each target is copied to FmIt; with a gray value of 255, we will obtain the foreground mask
FmIt.

In the region spatial-temporal features module, first, dilate the foreground mask,
then fill it with different gray values in each white area in the foreground mask using
Equation (2):

(x, y) ∈ conti
FmIt

, RsIt(x, y) = i + 1 (2)

conti
FmIt

is the set of contours in FmIt, and (x, y) is the point included in conti
FmIt

.
After the operation is completed, we will obtain the target-STF map.

3.4. Spatial-Temporal Feature Matching

The spatial-temporal feature matching process is shown in Figure 4. The spatial-
temporal matching module includes two parts. It can be seen from the visualization results
of Psi

t and Rsi
t. The red rectangular box is the set of target-STF. The green rectangular box is

the set of region-STFs. The black rectangular box is the set of the targets.
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For the first part, we match the target-STF. According to the number of targets Pi
t, we

create the set Psk
t,i+1. The grayscale value in the target-ST map of target pj

t is j + 1, so the

target-STF matching results of target pj
t is psk

t,j+1.
Then, select different points Di(x, y) based on the bounding box of each target using

Equation (3):
Di(x, y) = S(hi, wi, vi, si) (3)

hi is the height of Pbi
t, wi is the width of Pbi

t, vi is the velocity of CPbi
t, and si is the

area of Pbi
t. S(hi, wi, vi, si) is a function to obtain points Di(x, y).

Then, obtain the grayscale values of these points Di(x, y) in the target-STF map PsIt−1.
If the grayscale values of these points are all zero, zero is stored in the set Psk

t,i. If there
is a non-zero gray value, the non-zero gray value is stored in the set Psk

t,i, and the same
value is recorded only once. After the operation is completed, we will obtain the target-STF
matching results Psk

t,i.
For the second part, we match the region spatial-temporal features. This process is

similar to the first part; according to the number of target-STF created, set Rrsi
t to record

the region corresponding relationship between two frames. We create set Rsi
t to record to

which region the target belongs. Rsi
t can be obtained from Equation (4):

rsi
t = gvRsIt(Di(cty, ctx)), 0 ≤ i < Pt.size. (4)

Di(cty, ctx) is the center point of the bounding box of target pi
t. After the operation is

completed, we know the region to which the target belongs.
Last, if the target-STF matching results psk

t,j+1 of target pj
t are not zero, for target pj

t,
select the same points Di(x, y) as in the first part. Obtain the grayscale values of these
points in the target-STF map RsIt−1, and store the non-zero and non-repeating grayscale
values in Rrsk

t,rsj
t
. After this operation is completed, we will obtain Rrsk

t,i. According to rsj
t

and Rrsk
t,rsj

t
, the region to which target pj

t belongs in the previous frame can be obtained.
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3.5. Matching and Feature Extraction

The ID matching and feature extraction process is shown in Figure 5. The green box
represents the continuously detected target. The blue box represents the re-detected target
and new target.
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After obtaining the matching results of these two spatial-temporal features, we can
judge whether a target is detected in both the current frame and the previous frame
according to Psk

t,i:
Psk

t,i, k > 0, re-detected target or new target,
Psk

t,i, k = 0, continuously detected target.
For the continuously detected target, we input it into the first matching module for

priority matching. For the continuously detected target, the target does not need to be
matched with all targets in the previous frame. We can quickly obtain the ID set Idsk

t,i that
the target needs to match using Equation (5):

psk
t,i+1, k > 0, Idsk

t,i = PcId
psk

t,i+1−1
t−1 (5)

PcIdi
t records the ID for each target Pi

t in the t frame, and the gray value of the target-
STF of each target pj

t is j+1 in frame t. Therefore, when we know the psk
t,j+1 and PcIdi

t−1,

we can quickly obtain the ID set Idsk
t,j that the target needs to match. According to Idsk

t,i,
prioritize matching with k values equal to 1 during matching. We only need to calculate the
IoU without calculating the appearance features and motion features when matching the
ID for a continuously detected target. The probability p can be obtained by Equation (6):

p = Max
(

U
(

pi
t, Idsk

t,i

))
(6)

U
(

Pi
t, Idsk

t,i

)
is a function to obtain the IoU. If the p is greater than the set threshold,

the match is successful, and then, we update the trajectory of the target and record the ID
for target Pi

t and region using PcIdi
t and RcIDk

t,i. If the p is less than the threshold, then put
this target into the second stage of matching. According to the different videos, we can
choose a different threshold.

For re-detected targets, new targets, and continuously detected targets that failed to
match in the first stage, we input them into the S matching and feature extraction module
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for second matching. We need to use appearance features and motion features in this
module. The ID set Idsk

t,i that the target needs to match can be obtained by Equation (7):

Idsk
t,i = RIDk

t−1,Rrs
Rst,i
t

∪RcIDk
t−1,Rrs

Rst,i
t

(7)

We find the region where the target belongs in the previous frame according to the
region-STF matching results: Rst,i and Rrsi

t. According to Idsk
t,i, if k = 0, the target pi

t does
not belong to the region in the previous frame, so put this target pi

t into the next stage for
matching. After we obtain Idsk

t,i, we can do ID matching based on appearance features and
motion features. The probability p can be obtained by Equation (8):

p = Max

w1 ∗ U
(

Pi
t, Idst,i

)
+ w2 ∗ HG

(
Pi

t, Idst,i

)
+w3 ∗ MT

(
Pi

t, Idst,i

)  (8)

w1, w2, w3 are the weights of each feature.
U
(

Pi
t, Idst,i

)
is a function to obtain the IoU. HG

(
Pi

t, Idsk
t,i

)
is a function to compare

two histograms. MT
(

Pi
t, Idsk

t,i

)
is a function to obtain the motion features by KF.

If the p is greater than the set threshold, the match is successful, and then, we update
the trajectory of the target and record the ID for the target Pi

t and region by PcIdi
t and

RcIDk
t,i. If the match fails, we put this target in the last stage to match.
In the third matching and feature extraction module, the matching process is similar

to the second stage, except for the difference in the matching range. The matching range
of the target in the second stage is in the region where the target belongs, while the third
stage matches outside of this range. Therefore, we need to use UIDi

t:

Idsk
t,i = UIDi

t−1 (9)

The matching method is the same as Equation (8). But when the probability p is greater
than the set threshold, the matching stops. Then, we update the trajectory of the target and
record the ID for the target pi

t and region by PcIdi
t and RcIDk

t,i. If a target fails to match, we
regard this target as a new target and record the ID for the target pi

t and region using PcIdi
t

and RcIDk
t,i.

Finally, after all matches are completed, store the unmatched target IDs of the previous
frame into RIDk

t,i or UIDi
t. If a region disappears, the RIDk

t−1,i of this region is stored in
UIDi

t. For a re-detected target, the ID of this target is removed from the sets RIDk
t,i and

UIDi
t. Also, in the sets RIDk

t,i and UIDi
t, after some frames, this ID is eliminated.

4. Results
4.1. Datasets, Evaluation Metrics, Environment, and Implementation Details

Datasets. We conduct the experiments on the MOT16 pedestrian tracking dataset.
MOT16 contains seven training sequences and seven test sequences, and these videos were
captured in high-density scenes with heavy occlusion. The video frame rate is around
30 FPS.

Evaluation metrics. We use the official evaluation tools. These evaluation tools contain
many evaluation metrics. There are two most used tracking performance evaluation metrics,
which are multiple object tracking accuracy (MOTA) and IDF1.

MOTA focuses more on the detection side, while IDF1 can better reflect the tracking
side. IDF1 reflects the tracker ability to maintain identities over time and emphasizes
association accuracy.

In addition, the percentage of mostly tracked targets (MT) and the percentage of
mostly lost targets (ML) are also commonly used metrics.

TFPS is tracking FPS, which does not consider the detection time.
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Environment. The proposed approach is implemented in visual studio 2019, and the
program is performed on a laptop with a CPU i7-11800H and GPU RTX3060 laptop.

Implementation Details. We use the public detector deformable parts model (DPM)
provided by MOT16 to detect the target, and yolov5 is only used for target cutting.

4.2. Ablation

To demonstrate the efficiency of our method, we employ a conventional tracking
module as a baseline, which uses the public detector DPM, yolov5seg, appearance features,
and motion features for tracking. Yolov5 is only used for target cutting. Baseline + GSP
adds the grayscale spatial-temporal features (GSP). The tracking algorithms are performed
in the CPU without GPU accelerating. The ablation experiment results are shown in Table 2.

Table 2. Ablation experiment results on MOT16. ↑ indicates that higher is better, ↓ indicates that
lower is better. The best results are shown in bold.

Module MOTA ↑ IDF1 ↑ MT ↑ ML ↓ TFPS ↑
Baseline 20.5 13.6 7.4 51.6 15.4

Baseline + GSP 46.7 52.0 21.5 34.1 17.6

As can be seen from Table 2, after adding grayscale spatial-temporal features, every-
thing improved. The TFPS increased to 17.6, and the FPS not only did not decrease but
increased. This is because, in the TBD paradigm, the number of IDs often increases when
the detection time increases, which will result in more time to match the ID. This is the case
for the baseline method, which spends a lot of time on ID matching. After adding grayscale
spatial-temporal features, most targets only need to match between two IDs, which greatly
reduces the matching time. It can be seen that our algorithm reduces the time of tracking,
and the tracking accuracy is improved. At the same time, the accuracy is also improved.
First, because the range of target matching is reduced, the interference of similar targets is
removed. Second, as shown in Figure 6, the grayscale spatial-temporal features are robust
for long-term occlusion.

Grayscale spatial-temporal features can solve the problems of ID switching and track-
ing target loss caused by occlusion. As shown in Figure 6, our method can effectively
handle occlusion. The top row is the visualization result of the tracker on MOT16-09. The
bottom row is the visualization result of the tracker on MOT16-02. When matching, we
give priority to matching continuously detected targets and, secondly, match re-detected
targets, which effectively avoids ID switching between targets. When occlusion occurs, the
occluded target is recorded in the region where it belongs. When the occluded target is
re-detected, matching IDs are found based on the region where the target belongs. This
reduces the interference of other similar targets.

4.3. Evaluation Comparison with Other State-of-the-Art Trackers

We compare the performance of our tracker with other trackers on the MOT16 bench-
mark. Table 3 lists the performance of our method on MOT16; also, comparisons with other
models are listed.

We can find that the performance of trackers based on private detectors is better than
those based on public detectors. Detectors are divided into public detectors provided
by the dataset and private detectors customized by the algorithm. The public detector
provided by the MOT16 dataset is the deformable parts model (DPM). These private
detectors can be trained by yourself or the state-of-the-art detectors proposed by others.
The reason is that these private detectors obtain more accurate detection results compared
to public detectors. Tracking performance tends to improve with better detection quality;
thus, tracking performance can be improved by using state-of-the-art detectors. But data
association is the main part of tracking, so we use public detector DPM. Compared to the
methods using a public detector in Table 3 on the MOT16 benchmark, our method achieved
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the best score in metric ML and metric MT. The ML and MT metrics reached 21.5 and 34.1,
respectively. This means that we successfully tracked more targets and lost fewer targets
than the other methods. In metric TFPS, the tracking algorithm of ours was performed
using a CPU without GPU accelerating, but it was better than the other trackers, which
reached 17.6. We only used traditional methods for feature extraction and ID matching,
and the MOTA and IDF1 scores were comparable to these state-of-the-art trackers. Our
metric MOTA was only 0.5 lower than the highest metric MOTA of AMIR in Table 3 but
higher than the other methods. Our metric IDF1 was only lower than the metrics of DMAN
and DM but higher than the other methods. Therefore, it can be concluded that our method
maintains tracking accuracy while improving operational efficiency.
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Figure 6. Examples of long-term occlusion. The top row is the visualization result of the tracker on
MOT16-09. The bottom row is the visualization result of the tracker on MOT16-02.

Table 3. Comparison of multi-object tracking methods on MOT16. ↑ indicates that higher is better,
↓ indicates that lower is better. The best results are shown in bold.

Module MOTA ↑ IDF1 ↑ MT ↑ ML ↓ TFPS ↑
MotionTrack [9] (private) 81.1 80.1 - - -

FairMOT [26] (private) 68.7 70.4 39.5 19.0 -
MOTRv2 [21] (private) 78.6 75.0 - - -

STAM16 [27] 46.0 50.0 14.6 43.6 0.2
DMAN [28] 46.1 54.8 17.4 42.7 0.3
DASOT [29] 46.1 49.4 14.6 41.6 9.0
TAMA [30] 46.2 49.4 14.1 44.0 6.3

DM [31] 46.5 52.3 - 35.6 10.1
AMIR [32] 47.2 46.3 14.0 41.6 1.0

Ours 46.7 52.0 21.5 34.1 17.6

5. Conclusions

We propose a novel method on tracking via traditional methods, which are more
suitable to run on monitors than deep learning methods. Compared to deep learning
methods, our method has very low requirements for the computing power. Using this



Appl. Sci. 2024, 14, 5900 12 of 13

method, we obtain target spatial-temporal features and region spatial-temporal features by
grayscale mapping. Our spatial-temporal features are simple and fast to match between
two frames, and we reduce matching times by more than three times for most targets
by using these two spatial-temporal features. This can reduce unnecessary ID matching,
which solves the problem of taking some time to calculate when matching IDs. Our
proposed method is based on traditional methods, so our approach does not require data
to train. Especially for the tracking-by-detection paradigm, if using our method, it will
not only reduce some feature extraction calculations but also reduce some unnecessary
ID matching. Our method maintains or even improves tracking accuracy while reducing
the computations, as demonstrated on the MOT16 benchmark set. For future works, first,
we need to further reduce the number of computations while ensuring accuracy. We
will study how to effectively extract the appearance features of the target through the
histogram without using the yolov5seg cutting function. Second, during the night, motion
features and grayscale spatiotemporal features can still be used, but the appearance features
extracted by a color histogram are useless. Therefore, we will study how to extract effective
appearance features from infrared cameras in the night. We hope that our work can help
MOT research to achieve real-time performance.
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