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Abstract: Out-of-stock prediction refers to the activity of forecasting the time when a product will
not be available for purchase because of an inventory deficiency. Due to difficulties, out-of-stock
forecasting models now face certain challenges. Incorrect demand forecasting may result in a lack
or excess of goods in stock, a factor that affects client satisfaction and the profitability of companies.
Accordingly, the new approach BCHO-TCN LightGBM, which is based on Buzzard Coney Hawk
Optimization with a deep temporal convolutional neural network and the Light Gradient-Boosting
Machine framework, is developed to deal with all challenges in the existing models in the field of
out-of-stock prediction. The role that BCHO plays in the LightGBM-based deep temporal CNNis
rooted in modifying the classifier to improve both accuracy and speed. Integrating BCHO into the
model training process allows us to optimize and adjust the hyperparameters and the weights of
the CNN linked with the temporal DNN, which, in turn, makes the model perform better in the
extraction of temporal features from time-series data. This optimization strategy, which derives
from the cooperative behaviors and evasion tactics of BCHO, is a powerful source of information
for the computational optimization agent. This leads to a faster convergence of the model towards
optimal solutions and therefore improves the overall accuracy and predictive abilities of the temporal
CNN with the LightGBM algorithm. The results indicate that when using data from Amazon India’s
product listings, the model shows a high degree of accuracy, as well as excellent net present value
(NPV), present discounted value (PDV), and threat scores, with values reaching 94.52%, 95.16%,
94.81%, and 95.76%, respectively. Likewise, in a k-fold 10 scenario, the model achieves values of
94.81%, 95.60%, 96.28%, and 95.86% for the same metrics.

Keywords: out-of-stock prediction; LightGBM; temporal convolutional neural network; buzzard
coneyhawk optimization and feature extraction

1. Introduction

Maximizing profits is a key objective for retail stores like supermarkets and conve-
nience stores, and avoiding missed sales opportunities is crucial to achieving this goal.
Monitoring on-shelf availability is essential for boosting profits, as product shortages, also
known as out-of-stock (OOS) situations, are a major cause of revenue loss [1]. Formally,
OOS events occur when a product requested by customers is not available on the market
store shelves, and are addressed when the product(s) is received at the market store [2].
Crisis prediction has been used in the banking sector, as well as in business, investments,
and other areas. Crisis prediction is critical for the financial market, and has attracted many
researchers and academicians [3]. Stock markets were normally predicted by financial
experts in the past. However, data scientists have started solving prediction problems
with the progress of learning techniques [4]. Numerous approaches and different data
can be used to address the problem of OOS detection [5]. To enhance profitability, retail
establishments must focus on minimizing missed sales opportunities. On-shelf availability,
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which refers to the availability of products for purchase in their expected location and at the
desired time, is a significant indicator of lost sales opportunities [6]. When customers find
a desired product out of stock, they may opt to purchase a similar item from a competitor,
resulting in lost revenue for the store [7–9]. Having products readily available on shelves is
essential for boosting profits in retail stores. To further increase profitability, it is important
to place products in areas that are easily seen by shoppers, such as at the front of shelves,
rather than towards the back [10]. The commercial sector is experiencing new challenges
and opportunities as a result of advancements in modern technology [11]. In particular, the
use of recent predictive technologies grounded in deep learning is improving the ability
to effectively address the issue of OOS products that are not available for purchase when
requested by customers [12–14].

Reliable prediction systems accurately anticipate and manage instances of product
unavailability, ensuring adequate shelf stocking to meet customer demand. The occurrence
of an OOS event arises when a customer’s desired product is unavailable in-store and is
resolved once the replenishment of the product(s) is completed [15]. During this specific
time frame, out-of-stock events lead to economic losses based on the level of product
demand. Despite efforts by large companies to minimize the impact of out-of-stock events,
their repercussions on the retail industry remain significant [16]. Studies suggest that
around 4% of the total annual revenue in the commercial sector is lost as a result of out-of-
stock occurrences, leading to more than USD 900 billion in financial losses. Some examples
of unexpected market behavior are educational webinars, persona-based eBook marketing,
and the use of branded schedule magnets. The study referenced found that out-of-stock
events distort actual commercial demand, affecting brand loyalty and market dynamics.
This method takes into account a process with a large number of connections in a multi-
stage and parallel assembly. Priority relationships are established between the assembly
units, and the assembly sequence is represented by a directed acyclic graph. Originally, a
two-part crossover and mutation operators for assembling sequences were proposed. Due
to the complexity of the assembly sequence planning problem, its optimization is required
in order to obtain an efficient computational approach [17].

Utilizing deep learning is the next step in improving prediction models and achieving
better performance. Even with advancements, predicting the stock market remains a
difficult job for data scientists because of the market’s intricate and unpredictable nature, as
well as the connection between investors’ emotions and market movements. Large datasets
and machine learning advancements have led to the creation of several effective object
detection algorithms. However, these algorithms typically necessitate detailed labeling
of a significant quantity of data to train effectively in a different field [18]. Given the
time-consuming nature of the annotation process, weak supervised learning methods and
sparse data labeling have gained popularity recently.

Various proposed solutions focus on tackling OOS issues from the manufacturer’s
standpoint. These solutions rely on point-of-sale data and other distinct characteristics
identified through statistical analysis or machine learning methods. The methods usually
talked about in research papers are statistical models and deep learning strategies, especially
supervised ones, to figure out how likely it is that an OOS event will happen and how to
manage product inventories well to avoid them [19]. However, these scientific approaches
suffer a decline in effectiveness due to the unpredictability of factors that significantly
impact OOS events, making them difficult to model based on previous data. In certain
instances, the dynamics of OOS events exhibit novelty, and didn’t utilize historical market
data. Also, the existing predictive models for OOS events may not take into account all the
random factors that impact this occurrence. This study suggests a new model to address
the limitations experienced by current models [20]. The practical application of artificial
intelligence methods is particularly important for products that are described by numerous
and different parameters. This group includes automotive heat exchangers, which also have
to meet specific exploitative requirements resulting from their working conditions. Constant
artificial neural network parameters are utilized for network learning in the Broyden–



Appl. Sci. 2024, 14, 5906 3 of 24

Fletcher–Goldfarb–Shanno algorithm, in which the number of input neuron connections is
52, and the activation functions are linear, logistic, exponential, and hyperbolic [21].

The new model tackles challenges in a distinct way compared to current solutions
by utilizing a special blend of BCHO, a deep temporal CNN, and LightGBM. Instead
of solely depending on statistical models or shallow learning techniques like traditional
methods, this model incorporates BCHO, which draws inspiration from natural behaviors,
to enhance model training efficiency. With the inclusion of a deep temporal CNN, the
model is able to detect complex temporal patterns in data, leading to a more detailed
analysis of stock market dynamics. Moreover, the partnership with LightGBM allows for
the efficient management of large datasets and sparse data labels, effectively overcoming
the restrictions of data annotation requirements. Furthermore, the proactive approach to
managing stocks made possible by the model allows for the improved forecasting and
management of stockouts, leading to more precise and dependable predictions in stock
market analysis. In general, the model presents a thorough and creative solution that
tackles the obstacles in stock market forecasting by merging cutting-edge optimization
strategies with deep learning technologies and effective data management abilities.

The aim of this research is to increase the accuracy of stock market predictions by
combining BCHO with LightGBM and a deep temporal CNN. BCHO improves model
training by using unique reinforcement and evasion tactics inspired by natural behavior.
Incorporating BCHO with a deep temporal CNN efficiently identifies temporal patterns in
stock market data, enabling a more thorough analysis of market trends. Moreover, working
with LightGBM allows the model to effectively handle large datasets and sparse data labels.
With this integrated approach, the model intends to offer more precise and dependable
predictions through proactive stock management techniques, ultimately overcoming the
obstacles of stock market forecasting. The major contributions are as follows:

• Buzzard Coney Hawk Optimization: BCHO is a heuristic algorithm inspired by the
hunting behaviors of buzzards, coney hawks, and conies. It aims to efficiently search
for the best solutions in complex optimization problems. This optimization strategy
is specifically developed by assembling the features of vultures, rabbits, and Harris
hawks to produce a strong computational optimization agent. BCHO contributes to
the creation of new pathways through its innovative application of the unique qualities
attributed to BCHO.BCHO serves as a tool in the optimization process thatincreases the
accuracy and speed of model training. These cooperative approaches, in combination
with evasion tactics, create an advanced accelerator to make classifiers perform better.

• LightGBM: LightGBM utilizes a fast and scalable algorithm capable of handling large
datasets. It helps to increase training speed and contributes to effective memory
utilization. The combination of BCHO with a TCN helps in the efficient extraction of
temporal aspects and leads to better out-of-stock prediction.

• BCHO-TCN LightGBM: To achieve this efficient out-of-stock prediction model, utilize
BCHO along with a TCN and LightGBM to detect and predict out-of-stock products.
The cooperation of BCHO with a TCN allows for a more efficient extraction of temporal
aspects, leading to more accurate out-of-stock prediction.

We have structured the manuscript as follows: Section 2 details existing works, their
methods, and challenges. Section 3 outlines the process, including the proposed out-of-
stock prediction model using BCHO-TCN LightGBM. Section 4 presents the mathematical
equation for Buzzard Coney Hawk Optimization. Section 5 examines the findings from the
experiment, while Section 6 provides a summary of the conclusions.

2. Motivation

The research aims to optimize out-of-stock predictions as the traditional methods
employed for out-of-stock predictions have some limitations, such as variations in sizes,
the unavailability of products, lacking performance, overfitting issues, and low resolution.
To overcome these challenges, this research proposes a Buzzard Coney Hawk Optimization-
Based LightGBM-Enabled Deep Temporal Convolutional Neural Network (BCHO-TCN
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LightGBM) model. LightGBM utilizes a fast and scalable algorithm capable of handling
large datasets. It helps to increase training speed and contributes to effective memory
utilization. The combination of BCHO with a TCN helps in the efficient extraction of
temporal aspects and leads to better out-of-stock prediction.

2.1. Literature Review

Dario Allegra et al. [1] emphasize the issue of identifying OOS items from a first-
person perspective by introducing then ovel method of annotating the Ego Cart dataset.
Their strategy involves training a model to generate attention maps that can help detect
OOS items in retail environments, enabling retailers to take the necessary actions. The
results show that their approach has the potential to improve restocking processes in retail
settings. The success of the method is significantly influenced by the level of accuracy of
the annotations.

Concetta Giaconia and Aziz Chamas [2] introduced a novel out-of-stock prediction
system that utilizes deep learning and historical data to predict the remaining stock of retail
products in the food distribution industry. The results of the experiments demonstrated the
system’s accuracy, with predictions exceeding 90%. Yet, there are still obstacles to overcome
because of variations in the size, lighting, and background of areas where products are
unavailable, which affect the precision of forecasts.

Nagaraj Naik and Biju R. Mohan [3] introduced a model for predicting stock crises
using the Hybrid Feature Selection (HFS) technique. They first developed the HFS al-
gorithm to eliminate unnecessary financial parameters and identify strong fundamental
stocks to address overfitting problems. However, the model’s performance was still lacking,
necessitating further improvements and adjustments to the eXtreme Gradient Boosting
(XG-Boost) method with a different optimizer. Mojtaba Nabipour et al. [4] performed re-
search on forecasting stock market trends by utilizing machine learning and deep learning
techniques. Initially, they calculated indicators based on continuous stock trading values
and then converted these indicators into binary data for analysis. The results indicated that
deep learning methods performed the best when using binary data for evaluation. How-
ever, the difference in performance between the methods lessened due to the significant
improvement in model performance using the second approach.

Franko Sikic et al. [5] suggest a new DL-driven technique for detecting out-of-distribution
samples, using a two-step training approach and a post-processing method to filter out inac-
curate detections. The two-step training process enhanced the models’ ability to generalize
and improved upon the baseline results. However, incorporating depth estimation into
the current solution could further enhance the outcomes. Saud S. Alotaibi [6] introduced a
novel stock market forecasting model with three key stages: extracting features, selecting
optimal features, and making predictions. During neural network training, the model
fine-tunes the optimal weights to achieve accurate predictions with high performance.
However, the model encountered challenges related to overfitting. KyotaHiga and Kota
Iwamoto [7] introduced a technique for effectively monitoring shelves in retail establish-
ments by utilizing supervised learning to enhance on-shelf availability. This method allows
store employees to uphold a high level of on-shelf availability, thereby boosting profits for
retail stores. Nonetheless, the challenge lies in the low resolution and frame rate of the
videos, hindering the ability to track moving objects across successive images.

2.2. Challenges

➢ The main obstacles presented by the stock market’s volatility and the connection be-
tween investment psychology and market trends are complexity and nonlinearity [5].

➢ It should be emphasized that because acquisition is conducted in actual retail store set-
tings, manually annotating OOS items is quite difficult. This is because of factors such
as perspective, shelf design, lighting, and product placement. Therefore, identifying
OOS items in images proves to be a very subjective task [1].
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➢ Due to the unpredictable, loud, and disorderly nature of data in stock markets,
making accurate predictions is a major challenge. This makes it difficult for investors
to allocate funds effectively in order to generate profits [6].

➢ Utilizing various architectural designs and incorporating depth information can be
complex, but these methods are essential for achieving higher performance [1].

➢ Similarly, enhancing model accuracy by developing diverse fundamental stock and
technical parameters poses a challenge [3].

3. Proposed Methodology for Out-of-Stock Prediction Model Using
BCHO-TCN LightGBM

The main focus of this research is developing a novel out-of-stock prediction system
that combines deep learning techniques with historical data analysis. This process entails
the collection of data from the input dataset [22] and the subsequent preprocessing of this
data for it to be ready and organized for analysis. Next, feature extraction is conducted,
which involves using both statistical features and Autoregressive Fractionally Integrated
Moving-Average (ARFIMA) features that combine to give a holistic image of the nature of
the data. The LightGBM-enabled deep temporal CNN receives these extracted features as
input. The LightGBM-based deep temporal CNN helps to modify the classifier to improve
both accuracy and speed. Incorporating BCHO with a deep temporal CNN efficiently
identifies temporal patterns in stock market data, enabling a more thorough analysis of
market trends. Moreover, working with LightGBM allows the model to effectively handle
large datasets and sparse data labels. With this integrated approach, the model intends
to offer more precise and dependable predictions through proactive stock management
techniques, ultimately overcoming the obstacles of stock market forecasting. To make sure
that the model becomes faster and even more precise, a unique strategy is applied whereby
the classifier is fine-tuned using the Buzzard Coney Hawk Optimization algorithm. This
optimization strategy is specifically developed by assembling the features of vultures [23],
rabbits [24], and Harris hawks [25], which produce a strong computational optimization
agent. When the model is finely tuned, it is then trained using the existing dataset and
finally tested against new data to determine its accuracy and predictive capabilities. This
whole process finally helps to predict stocks in an accurate way, which makes proactive
stock management possible in order to prevent or minimize out-of-stock circumstances.
The architecture of the proposed out-of-stock prediction model is shown in Figure 1.

3.1. Input

The data utilized in the out-of-stock prediction model are gathered from [22], and are
presented in mathematical form as follows:

K =
y

∑
n=1

Kr (1)

Here, K denotes the database and Kr denotes the total number of data present in the
dataset, which is from 1 to y.
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Figure 1. Architecture of the proposed out-of-stock prediction model.

3.2. Pre-Processing

The process of data cleansing involves identifying and correcting or removing incorrect
or noisy data from a dataset. It typically focuses on detecting and replacing incomplete,
inaccurate, irrelevant, or noisy data, or other inappropriate entries. The specific problems
this research focuses on are as follows.

a. Removing irrelevant or duplicate data: Duplications can arise in the dataset when
data are gathered from various sources, including scraped data and data received
from multiple clients. This is a common occurrence in data collection and consolida-
tion processes.

b. Structural error fixing: Inaccuracies arise from the incorrect labeling of categories or
classes. These discrepancies can also stem from unconventional naming practices,
spelling errors, or improper capitalization.

c. Missing values: Missing values are a common occurrence in datasets, often caused by
data validation rules or errors in data collection. However, it is important to address
these missing values as they can impact the overall quality of a model. If only a small
number of values are missing, simple interpolation methods can be used to fill in
the gaps.

This research uses very thorough methods to clean the data in order to make sure that
the dataset is of high quality and is reliable. To start, deduplication methods are used to get
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rid of any unnecessary or copied data, which helps in finding and removing redundant
entries from different data sources. Structural errors, like inconsistencies in labeling and
unusual naming conventions, are fixed through standardized processes to make sure that
the categories and classes are consistent and accurate. Also, missing values are filled in
using interpolation techniques to maintain the completeness and integrity of the dataset.
By methodically tackling these obstacles, the data cleaning procedure improves the dataset
for training models, resulting in more precise and dependable forecasts of out-of-stock
occurrences in the retail setting.

Deduplication: This is the process of removing duplicate data from a dataset. During a
secure data deduplication process, a tool assesses the data to find and remove extra copies,
allowing for the storage of a single instance.

Standardization: Standardization in data processing involves converting data into a
uniform format or scale for greater consistency and comparability. This entails updating the
values of variables in a dataset to have a mean of zero and a standard deviation of one. By
standardizing the variables, differences in scales are eliminated, making data interpretation
and analysis more straightforward [5].

Interpolation: Interpolation methods involve using certain approaches to predict the
values of missing data points in a dataset by referencing the values of neighboring data
points. These methods are utilized when there are holes or missing values in a dataset,
with the goal of filling in these gaps without altering the overall properties of the data [3].
So, after the completion of data cleansing, the preprocessed output is denoted as K∗

r .

3.3. Feature Extraction

The main objective of feature extraction is to recognize important traits within the
input data. This study utilizes the following techniques to extract features.

Statistical Features

In general, statistical characteristics are features such as summary statistics derived
from the dataset that describe its distribution, central tendency, variability, and shape.
These elements offer information about the hidden patterns and features of the data, which
can add value to predictive modeling. Common statistical features include the following:

(a) Mean: The first raw moment that informs about average stock levels during the period
under consideration is a mean. The mean is defined as

M =
1
N ∑N

r=1 K∗
r (2)

Here, the preprocessed data point present in the dataset is denoted as K∗
r , and the

overall number of preprocessed data points is denoted as N.
(b) Variance: Variance can be described as the square of the difference between a random

variable and its average value in arithmetic terms. In Equation (3), the variance
formula itself is given.

σ2 =
1
N ∑N

r=1(K
∗
r − M)

2
(3)

(c) Standard deviation: The standard deviation defines the spread or variability of the
levels of the stock surrounding the mean value. A greater value of standard deviation
demonstrates larger fluctuations, which signifies variations in stock supply over time.

σ =
√

σ2 (4)
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(d) Skewness: This is a statistical concept that measures the asymmetry of a probability dis-
tribution of a random variable compared to its mean. In the field of probability theory
and statistics, the skew of returns may be positive, zero, negative, or undetermined.

SK =
1
N ∑N

r=1(K
∗
r − M)3

σ3 (5)

(e) Kurtosis: This is a mathematical computation that shows that the temporal tails of
a distribution go further than the ones of nominal distribution. This implies that
kurtosis is a measure of the extremes in the tails of a given distribution.

KU =
1
N ∑N

r=1(K
∗
r − M)4

σ4 (6)

(f) Entropy: Entropy quantity is used to measure the level of disorder in a random
variable. This implies that higher entropy values tend to occur in the presence of
greater unpredictability in stock behavior.

En = −∑N
r=1 p(K∗

r ) log2(p(K∗
r )) (7)

Here, in the preprocessed dataset, the probability occurrence of each unique value is
denoted as p(K∗

r ).
(g) Min and max: This feature shows us the maximum and minimum inventory levels

of this dataset. They provide information concerning stock levels and assist in the
comprehension of the best upper and lower bounds of stock availability.

min = min(K∗
1, K∗

2, .......K∗
N) (8)

max = max(K∗
1, K∗

2, .......K∗
N) (9)

(h) Sum: Stock is presented as a sum of stock levels over a period of time. This provides
an overview of stock availability in a given time span, and allows for the analysis of
trends.

S = ∑N
r=1 K∗

r (10)

The final statistical feature output is denoted as s.

3.4. ARFIMA Features

The ARFIMA attribute is applied to the dataset in this research, which stands for
features derived from Autoregressive Fractionally Integrated Moving-Average models.
This involves long-range dependencies and memory effects, making the model more
accurate, especially for complicated tasks where deep learning is involved.

Grange, Joyeux, and Hosking suggested the ARFIMA (q, e, r) model as a way to study
the long-memory property by combining fractional differenced noise and the autoregressive
moving average. The formula for the ARFIMA (q, e, r) model for the time series zt is as
follows:

φ(Z)(1 − Z)ezt = Θ(Z)εt, t = 1, 2, . . . . . . U (11)

The time series zt consists of the autoregressive and moving-average polynomials,
φ(Z) = 1− φ1Z− φ2Z2 − . . .− φqZq and Θ(Z) = 1− θ1Z− θ2Z2 − . . .− θqZr, respectively,
where εt ≈

(
0, σ2) represents the white noise process with a mean of zero and a variance

of σ2. The backward shift operator Z is used to define the fractional differencing operator
(1 − Z)e through a binomial expansion.

(1 − Z)e =
∞

∑
k=0

(
e
k

)
(−1)kZk (12)
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(
e
k

)
(−1)k =

Γ(e + 1)(−1)k

Γ(e − k + 1)Γ(k + 1)
=

Γ(−e + k)
Γ(−e)Γ(k + 1)

(13)

The gamma function is denoted by Γ(∗) and e represents the number of differences
needed for a series to become stationary in an ARFIMA (q, e, r) process. If e ∈ (0, 0.5) is the
number of differences required for the process to be stationary, then the process exhibits
long-memory behavior. The concatenated statistical and ARFIMA features are denoted
as T = [SF, ARFIMA], and form the input for the LightGBM-enabled deep temporal
convolutional neural network model.

3.5. Working of TCN LightGBM in Out-of-Stock Prediction

The concatenated feature extraction output T forms the input for the out-of-stock
prediction model. The deep temporal CNN, which has been designed to support time-
series data, visualizes the temporal conditions of the data through causal convolution and
dilation, and is thus able to capture long-term dependencies without the leakage of future
information. In this way, the entire process aims to provide feedback on these features in
the form of temporal patterns and trends in the LightGBM model. LightGBM, which is a
powerful platform with high efficiency and accuracy, fine-tunes the feature representations
and predicts the occurrence possibility of out-of-stock situations based on the extracted
features. This hybrid approach integrates the strengths of deep learning techniques with
those of the gradient boosting method, which helps to preserve reliability and accuracy
in prediction, and leads to a proactive stock management strategy aimed at preventing or
reducing out-of-stock situations.

Time-series data are effectively handled by TCNs, specialized convolutional neural
networks designed for this purpose. TCNs follow two important principles: maintaining
the output length consistent with the input sequence, like long short-term memory (LSTM)
networks, and avoiding information leakage from the future to the past through the use
of causal convolutions. Unlike standard convolutions, causal convolutions utilized in
TCNs do not take future values as inputs when calculating the output at a given time step.
This means that the output at time t is generated using a kernel size s and the values of
Tt−(s−1), Tt−(s−2), ....., Tt−1, Tt. Additionally, zero padding of length s is implemented at
each layer to maintain consistency in the input sequence length.

In addition, in order to capture more extensive patterns over time, temporal convo-
lutional networks utilize one-dimensional dilated convolutions. These convolutions help
expand the network’s field of perception without the need for pooling operations, ensuring
that resolution is not sacrificed. Dilation involves skipping certain values between input
points in the convolutional process. The overall process of dilated causal convolution across
successive layers can be expressed as follows:

TCN = h

(
s−1

∑
s=o

ws
my(t−(s×e))

(m−1) + bm

)
(14)

At position t in the mth layer of a neural network, TCN represents the neuron output,
s denotes the convolutional kernel width, ws

m is the weight at position s, e is the convolution
dilation factor, and bm is the bias term. Here, h in the equation refers to the activation
function used on the result of the convolution. Rectified Linear Units (ReLU) are commonly
used as the activation function (h(y) = max(0, y)). To increase the network’s receptive
field, multiple TCN blocks can be concatenated, but these result in more parameters and
complicate learning. To address this, a residual connection is added to each TCN block’s
output, following the concept introduced to improve performance in deep architectures,
where the input of the TCN block is added to its output (o = h(y + F(y))).

The characteristics possessed by TCNs make them well suited for tackling complex
time-series issues. One key advantage of TCNs is their ability to manage inputs of vary-
ing lengths through the use of a one-dimensional causal convolutional kernel, similar to
RNNs. Additionally, TCNs are more efficient in terms of memory compared to recurrent
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networks, as they can process long sequences simultaneously due to their shared convo-
lution architecture. Unlike RNNs, which process input sequences sequentially and result
in increased computation time, TCNs are trained using the standard backpropagation
algorithm, eliminating the gradient issues associated with the backpropagation through
time (BPTT) algorithm used in RNNs.

3.5.1. LightGBM

LightGBM is a distributed gradient-boosting framework used for machine learning
that stands out for its implementation of decision trees in tasks such as classification,
ranking, and regression. The purpose of LightGBM is to provide a fast and scalable
algorithm capable of handling large datasets. It is recognized for its fast training speed
and effective memory utilization. Compared to XGBoost, LightGBM has been found to
be faster and more accurate in various benchmarks and experiments. LightGBM’s unique
approach to leaf-wise tree growth sets it apart from other tree-based learning algorithms,
like XGBoost, which typically use level-wise tree growth. While level-based tree growth
advances the structure of a tree step by step, leaf-based tree growth prioritizes expanding
the tree according to the nodes, resulting in the largest reduction in loss.

The leaf-wise tree method has smaller tree nodes compared to the level-wise tree
method of the same depth, resulting in faster training on large datasets. LightGBM uti-
lizes two unique techniques: Gradient One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). GOSS removes data instances with minimal gradients and keeps the rest
of the data to calculate information gain, as instances with higher gradients have a bigger
influence on information gain calculations. By using a smaller dataset, GOSS can accurately
estimate information gain. EFB, the second technique, reduces the number of features by
combining mutually exclusive features. The decision to use LightGBM is based on its con-
siderable success, which is attributed to its advantages over other algorithms. LightGBM
is well known for its rapid training speed, accurate results, and efficient use of memory.
Additionally, it is praised for its ability to support parallel, distributed, and GPU learning,
as well as its capacity to effectively handle extensive datasets. These advantages have made
LightGBM a popular choice in many winning solutions in machine learning competitions.

3.5.2. Concatenation of Both Models

The input value T is first processed by the TCN, after which it goes to LightGBM. Now,
the output of the TCN is denoted as TTCN . The TCN manipulates spatial input using causal
convolutions and dilation to capture temporal patterns using an efficient approximation.
It prevents the release of data at the next time step and can handle variable-length inputs.
The output TTCN encodes the learned characteristics of the input sequence and then feeds
the LightGBM model for the subsequent prediction. Let us call the function that learns for
the LightGBM model lGBM(TTCN), which is used to predict the target variable based on
the information the TCN has extracted. Mathematically, the process can be represented as
follows:

TTCN = lTCN(T) #TCN (15)

PO = lGBM(TTCN) #LGBM (16)

So, the final output is
PO = lGBM(lTCN(T)) (17)

This procedure involves the TCN extracting informative temporal attributes from the
input sequence. These are further integrated into the LightGBM model, which then makes
the predictions. This combination uses the positive features of both models to optimize
the model’s forecasting abilities. The architecture of the proposed LightGBM-enabled deep
temporal convolutional neural network is shown in Figure 2. Here, the input layer is
represented in blue circles, the red circles correspond to hidden layers, and the output layer
is indicated as yellow circles in the TCN. The configuration of the neural network layers is
included in Table 1.
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Table 1. Configurations of the neural network layers.

Layers Dimensions Trainable Weights Output Details

input_1 (Input Layer) [(None, 25, 1, 1)] 0 []

conv2d (Conv2D) (None, 25, 1, 16) 160 [i‘nput_1[0][0]’]

activation (Activation) (None, 25, 1, 16) 0 [c‘onv2d [0][0]’]

batch normalization
(Batch Normalization) (None, 25, 1, 16) 64 [a‘ctivation [0][0]’]

max_pooling2d (MaxPooling2D) (None, 25, 1, 16) 0 [b‘atch_normalization [0][0]’]

dropout (Dropout) (None, 25, 1, 16) 0 [m‘ax_pooling2d [0][0]’]

conv2d_1 (Conv2D) (None, 25, 1, 32) 4640 [d‘ropout [0][0]’]

activation_1 (Activation) (None, 25, 1, 32) 0 [c‘onv2d_1[0][0]’]

batch_normalization_1
(Batch Normalization) (None, 25, 1, 32) 128 [a‘ctivation_1[0][0]’]

conv2d_2 (Conv2D) (None, 25, 1, 64) 18,496 [b‘atch_normalization_1[0][0]’]
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Table 1. Cont.

Layers Dimensions Trainable Weights Output Details

activation_2 (Activation) (None, 25, 1, 64) 0 [c‘onv2d_2[0][0]’]

batch_normalization_2
(Batch Normalization) (None, 25, 1, 64) 256 [a‘ctivation_2[0][0]’]

max_pooling2d_1 (MaxPooling2D) (None, 25, 1, 64) 0 [b‘atch_normalization_2[0][0]’]

dropout_1 (Dropout) (None, 25, 1, 64) 0 [m‘ax_pooling2d_1[0][0]’]

conv2d_3 (Conv2D) (None, 25, 1, 128) 73,856 [d‘ropout_1[0][0]’]

activation_3 (Activation) (None, 25, 1, 128) 0 [c‘onv2d_3[0][0]’]

batch_normalization_3
(Batch Normalization) (None, 25, 1, 128) 512 [a‘ctivation_3[0][0]’]

max_pooling2d_2 (MaxPooling2D) (None, 25, 1, 128) 0 [b‘atch_normalization_3[0][0]’]

(Temporal Attention)

global_average_pooling2d
(Glob alAveragePooling2D) (Glob (None, 128) 0 [m‘ax_pooling2d_2[0][0]’]

global_max_pooling2d_1
(GlobalMaxPooling2D) (None, 128) 0 [g‘lobal_average_pooling2d [0][0]’

reshape (Reshape) (None, 1, 1, 128) 0 [g‘lobal_average_pooling2d [0][0]’

reshape_2 (Reshape) (None, 1, 1, 128) 0 [g‘lobal_max_pooling2d_1[0][0]’]

dense (Dense) (None, 1, 1, 16) 2064 [r‘eshape [0][0]’, r‘eshape_2[0][0]’]

dense_1 (Dense) (None, 1, 1, 128) 2176 [d‘ense [0][0]’, d‘ense [2][0]’]

add (Add) (None, 1, 1, 128) 0 [d‘ense_1[0][0]’, d‘ense_1[2][0]’]

activation_4 (Activation) (None, 1, 1, 128) 0 [‘add [0][0]’]

multiply (Multiply) (None, 25, 1, 128) 0 [m‘ax_pooling2d_2[0][0]’,
a‘ctivation_4[0][0]’]

dropout_2 (Dropout) (None, 25, 1, 128) 0 [‘multiply [0][0]’]

Flatten (Flatten) (None, 3200) 0 [d‘ropout_2[0][0]’]

Features -------->LightGBM------------------> Output

4. Proposed Buzzard Coney Hawk Optimization

Additionally, the BCHO algorithm adjusts the hyperparameters of the classifier in
order to achieve an accurate out-of-stock prediction model. BCHO is an innovative opti-
mization algorithm founded on the hunting strategies and the food-finding behaviors of
rabbits, African vultures, and Harris hawks. The rabbit’s behaviors of instinctual detours
during foraging and random hiding from enemies are adopted as the approach to avoiding
complex search areas. This is incorporated into BCHO. Also, the method fuses the coop-
erative ability and surprise-pounce hunting style of Harris hawks, which allows them to
successfully locate and take down speedy prey. Combining these two distinctive features,
BCHO not only avoids the inborn limitations of other existing optimization algorithms,
but also boosts the speed of convergence. Thus, BCHO is one of the finest candidates for
various applications to solve complex optimization problems, regardless of the field.

BCHO is a heuristic algorithm inspired by the hunting behaviors of buzzards, Coney
hawks, and conies. It aims to efficiently search for the best solutions in complex optimiza-
tion problems. The algorithm starts by creating a group of possible solutions, which are
then assessed using a specific objective function. In the buzzard phase, individuals work
together to explore the solution space and find promising areas with high-quality solutions.
On the other hand, during the Coney hawk phase, individuals compete to further exploit
these areas. By going through rounds of selection, crossover, and mutation, BCHO strikes a
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balance between exploring new possibilities and exploiting known solutions, ultimately
moving towards the best solutions. Pairing BCHO with LightGBM and a temporal CNN
enhances its effectiveness in different situations, especially in predicting stock market
outcomes. For instance, BCHO has the capability to fine-tune the hyperparameters of
LightGBM in order to steer the model towards settings that result in better accuracy and
generalization. Moreover, BCHO can assist in feature engineering and selection by pin-
pointing meaningful predictors from the input data to enhance the efficiency and predictive
capability of the model. When used in conjunction with temporal CNNs, BCHO directs
the investigation of temporal patterns in stock market data, helping to pinpoint crucial
dynamics and trends that impact market fluctuations.

Inspiration:
A remarkable observation of the survival tactics employed in nature, especially evasive

and pursuing behaviors, inspired the development of BCHO. Researchers were greatly
inspired by the adaptability of rabbits, African vultures, and Harris hawks. They observed
the synergy of these characteristics, and thus the thought-out framework of BCHO was
developed. The rabbit adroitly navigates its world through detour foraging and evasive
absconds, and the African vulture maintains a precise searching technique for its food, while
the Harris hawk utilizes a cooperative surprise-pounce technique to secure its prey. The
correlation of these attributes in BCHO portrays a superb amalgamation of nature’s finest
machinations. By combining these characteristics with interdisciplinary synthesis, BCHO
is a demonstration of biomimicry intelligence, offering a novel strategy for optimization
that utilizes the experiences of the animal kingdom to solve complicated problems with
unprecedented accuracy and efficiency.

4.1. Initialization

The starting point of the solution, consisting of a randomly selected population, is
expressed mathematically as

Xt = Xt−1 − r1(u − l)Vt−1 (18)

Here, Xt, Xt−1, and Vt−1 denote the position at t iterations and the velocity at t − 1
iterations; u and l denote the upper and lower bounds; and r1 represents the step-by-step
solution.

4.2. Fitness Evaluation

Fitness evaluation allows problems to be quantified in accordance with predefined
metrics, and hence, the optimization algorithm will move closer to optimal solutions.

4.3. Parameter Update

The parameter update includes parameter tuning, which means that the values of the
parameters in the model or algorithm are adjusted to improve its performance or adapt to
new conditions.

(i) Searching phase:

i f |G| ≥ 1. Here, G represents the satiation factor of the solution.
This above condition shows the solution has a satiation value greater than or equal

to 1. This shows the solution has been satiated and it should be in the exploration phase.
Finding food for the solution may become difficult due to the increased search space. Thus,
it may need to travel long distances to search for food. Thus, it uses a technique to save
energy levels, which is known as a detour foraging characteristic. This involves tracking
the food traces of other leading solutions and approaching the food.

Xt+1 =

[
(Xrand − r2|Xrand(t)− 2r3Xt|) +

(
Xt + R

∣∣Xg − Xt
∣∣+ round(0.5(0.05 + r4)).n

)]
2

, i f q ≥ 0.5 (19)
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The equation seems to describe a way of shifting the position Xt+1 of a solution during
the search process, and encompasses a detour foraging model, the determination of the
exploration phase, the approach of other solutions’ food traces, and energy conservation.
It is a strategy in which solutions change their location in response to random factors,
current positions, and the positions of other solutions in the search space when the goal is
to ultimately find the best solution.

Xt+1 =
Xprey − Xt

mean − r3(l + r5(u − l)) +
[
Xt + R

∣∣Xg − Xt
∣∣+ rand(0.5(0.05 + r4))

]
2

, i f q ≥ 0.5 (20)

Here, q denotes the perching factor and Xrand denotes the random position.

r2 =

[
1 −

(
et−1

et

)
.t
]

, r3ε(0, 2) (21)

Here, 2r is an error adjustment factor that is considered important in optimization
procedures. This equation calculates 2r with the help of a relative change of error between
two sequential time steps, t and t − 1, by multiplying

(
et−1

et

)
with t and subtracting it

from 1,adjusting r2, and affecting the optimization. The parameter r3 is constrained to the
interval (0, 2), so there are adjustments within certain limits. Therefore, r2 controls the
behavior of the optimization by controlling the relative error change, while r3 controls the
magnitude of this charge. This formulation gives a simplified effective way of adjusting
the optimization process according to new error trends, which is vital when it comes to
optimizing the optimization results.

R =

(
e − e

(
t − 1
tmax

)2
)

. sin(2π) (22)

Here, the term R represents a foraging character with respect to direction, r4 denotes
the anonymous factor, n denotes the random population number, N denotes the total
population, round means rounding factor, and r5 means hectic value (ε 2 to 1).

(ii) CNN

i f |G| < 1. This condition shows the predator is in a hunger state and it prefers
exploitation to exploration.

Subcase: (i) i f |El | ≥ |Thel |. This is the aggressive attack phase, where El , denotes the
energy level of prey, Thel denotes the energy level of prey, and Thel

∼= 0.5.
The previous condition shows the prey has an energy level greater or equal to the

required threshold level. Then, the solution uses the aggressive safe-fight strategy to slow
down the movement and energy level of the prey. Due to continuous surprise-pounce
attacks by the solution, the movement of the prey is eventually stopped.

Xt+1 =

{
0.5
[

B1+B2
2

]
+

0.5
[(

Xprey − Xt
)
− El/J

(
Xprey − Xt

)] (23)

Here, El denotes the energy level of the prey. J = 2 − k
tmax

, where J means the escape
factor and the k term represents the conditional movement of the prey. The t in Xt+1 is
literally a subscript showing that we are at a certain step of the iteration. The equation
formulates the update rule for the position X of an entity at time t + 1, depending on
Xprey, Xt, E, J and constants B1 and BB2.

B1 = Xt
g −

Xt
g.Xt

Xt
g − (Xt)

2 .G (24)
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B2 = Xt−1
g −

Xt−
g .Xt

Xt−1
g − (Xt)

2 .G (25)

Here, B1 and B2 are the fractional global best-based positional vectors (Xt
g and Xt−1

g ).
Subcase (ii): i f |El | < |Thel |. This is the rotational flight phase.
The condition shows the prey energy condition is less than the needed threshold level

to escape. Thus, the solution is to undertake rotational flight frequency until the energy
level of the solution prey is exhausted. Thus, the energy consumption for the solution is
decreased in manner. Thus,

Xt+1 =

[
Xg − (s1 + s2)

]
+
[

Xprey − El

∣∣∣JXt
prey − Xmean

∣∣∣]
2

(26)

Here, Xmean denotes the average position of the solution.

s1 = Xg.
(

r6.Xt

2π

)
. cos(Xt) (27)

s2 = Xg.
(

r7.Xt

2π

)
. sin(Xt) (28)

s1 and s2 are the angular function-based positional vectors; r6 and r7 represent the
clockwise and anticlockwise movements of the solution ε(−1, 1).

The flowchart for the proposed Buzzard Coney Hawk Optimization method is shown in
Figure 3. The arrow mark indicates the flow of optimizations and if the condition is satisfied
the process flows through the ‘yes’ side otherwise, the process flows through the ‘no’ side.
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5. Result and Discussion

After implementing the BCHO-TCN LightGBM model for forecasting out-of-stock
items, the model’s efficiency was evaluated by measuring its performance against other
top models.

5.1. Experimental Setup

To conduct the out-of-stock experiment, a Python program was run on a Windows 10
system with an 8 GB memory capacity.

5.2. Dataset Description

Product listing from Amazon India dataset [22]: This dataset contains approximately
30,000 records and includes information such as total record count (553,724), domain name
(amazon.in), date range (1–31 October 2019), and file extension (CSV). Fields that are
available include unique ID, crawl timestamp, category, title of product, description of
product, brand, quantity or pack size, MRP, price, name of site, discounts, bundle deals,
stock availability, ASIN of product, and URLs of images.

5.3. Performance Analysis Based on TP

Figure 4 showcases the results of using the BCHO-TCN LightGBM model for pre-
dicting out-of-stock occurrences. Figure 4a shows the accuracy for epochs 100, 200, 300,
400, and 500 as 89.78%, 89.8%, 93.92%, 94.09%, and 94.52%, respectively, with a TP of 90.
Likewise, Figure 4b displays the outcomes of the BCHO-TCN LightGBM model in terms
of NPV with a TP of 90, with values of 86.04%, 86.76%, 92.68%, 93.91%, and 95.16%. The
results shown in Figure 4c for epoch values of 100, 200, 300, 400, and 500 are 87.90%, 91.43%,
92.60%, 94.60%, and 94.81% for PDV at a TP of 90. Similarly, Figure 4d illustrates the
findings of the BCHO-TCN LightGBM model in terms of threat score with a TP of 90, with
values of 86.63%, 91.68%, 93.00%, 93.79%, and 95.76%.
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5.4. Performance Analysis Based on K-Fold

Figure 5 showcases the results of the BCHO-TCN LightGBM model for predicting
out-of-stock occurrences. Figure 5a shows that the accuracy increases with each epoch
value, with percentages of 83.35%, 88.01%, 90.26%, 92.51%, and 94.81% for epochs of 100,
200, 300, 400, and 500, respectively, using a 10-fold method. Likewise, Figure 5b displays
the outcomes of the BCHO-TCN Light GBM model for NPV with a k-fold of 10, with values
of 93.34%, 93.48%, 93.49%, 94.76%, and 95.60%. The results shown in Figure 5c for the
epoch values of 100, 200, 300, 400, and 500 are 91.29%, 91.76%, 92.86%, 93.63%, and 96.28%
for PDV at a k-fold of 10. Similarly, Figure 5d illustrates the findings of the BCHO-TCN
LightGBM model in terms of threat score with a k-fold of 10, with values of 88.25%, 93.93%,
94.14%, 94.34%, and 95.86%.
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5.5. Comparative Methods

To highlight the accomplishments of the BCHO-TCN LightGBM model, a comparison
was conducted. This assessment included an analysis of different approaches like percep-
tron [26], CNN-LSTM [27], BiLSTM [28], rabbit-TCN Light GBM, hawk-TCN LightGBM,
and vulture-TCN LightGBM.

5.5.1. Comparative Analysis Based on TP

Figure 6a–d show the comparative analysis based on TP for accuracy, NPV, PDV,
and threat score. The BCHO-TCN LightGBM model demonstrates superior accuracy in
predicting out-of-stock events, with a 2.13% improvement over the vulture-TCN LightGBM
model, achieving an accuracy of 94.52%.
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The BCHO-TCN LightGBM model shows better performance in predicting out-of-stock
situations compared to the vulture-TCN LightGBM model. It surpasses the vulture-TCN
model by 1.28% and achieves an NPV of 95.16% with a TP of 90.

The BCHO-TCN LightGBM model outperforms the vulture-TCN LightGBM model in
out-of-stock prediction by a margin of 13.08%. With a TP of 90, it boasts a PPV of 94.81%,
surpassing existing methods.

The BCHO-TCN LightGBM model shows better performance in predicting out-of-
stock events compared to the vulture-TCN LightGBM model. It surpasses the vulture-TCN
model by 6.81%, achieving a threat score of 95.76% with TP 90.

5.5.2. Comparative Analysis Based on K-Fold

Figure 7a–d show the comparative analysis based on k-fold for accuracy, NPV, PDV,
and threat score. The BCHO-TCN LightGBM model demonstrates superior accuracy in pre-
dicting out-of-stock events, with a 10.09% improvement over the vulture-TCN LightGBM
model, achieving an accuracy of 94.81%.

The BCHO-TCN LightGBM model shows better performance in predicting out-of-stock
situations compared to the vulture-TCN LightGBM model. It surpasses the vulture-TCN
model by 1.04% and achieves an NPV of 95.60% with a TP of 90.

The BCHO-TCN LightGBM model outperforms the vulture-TCN LightGBM model in
out-of-stock prediction by a margin of 0.40%. With a TP of 90, it boasts a PPV of 96.28%,
surpassing existing methods.

The BCHO-TCN LightGBM model shows better performance in predicting out-of-
stock events compared to the vulture-TCN LightGBM model. It surpasses the vulture-TCN
model by 5.84%, achieving a threat score of 95.86% with a TP of 90.
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5.5.3. Statistical Analysis Based on TP

Statistical analyses based on TP for accuracy, NPV, PDV, and threat score are included
in Tables 2–5. The BCHO-TCN LightGBM model demonstrates the best accuracy in predict-
ing out-of-stock prediction, with a 2.13% improvement over the vulture-TCN LightGBM
model, achieving a maximum of 94.52%.

The BCHO-TCN LightGBM model demonstrates the best NPV when predicting out-
of-stock prediction, with a 1.28% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 95.16%.

The BCHO-TCN LightGBM model demonstrates the best PPV when predicting out-
of-stock prediction, with a 13.08% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 94.81%.

The BCHO-TCN LightGBM model demonstrates the best threat score in predicting
out-of-stock prediction, with a 6.81% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 95.76%.
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Table 2. Statistical analysis based on TP for accuracy.

Method Best Mean Variance

Perceptron 86.74 77.70 67.32

CNN-LSTM 89.31 84.40 18.65

BiLSTM 87.03 79.67 30.99

Rabbit-TCN Light GBM 92.66 83.33 74.69

Hawk-TCN Light GBM 90.65 81.87 47.56

Vulture-TCN Light GBM 92.51 80.72 90.60

BCHO-TCN Light GBM 94.52 91.62 5.13

Table 3. Statistical analysis based on TP for NPV.

Method Best Mean Variance

Perceptron 85.07 76.86378 43.44928

CNN-LSTM 89.88 81.43829 21.82321

BiLSTM 87.95 77.17706 43.94623

Rabbit-TCN Light GBM 89.22 78.00761 57.04131

Hawk-TCN Light GBM 83.91 77.85161 13.83371

Vulture-TCN Light GBM 93.95 81.17866 84.12889

BCHO-TCN Light GBM 95.16 88.26374 31.11267

Table 4. Statistical analysis based on TP for PPV.

Method Best Mean Variance

Perceptron 89.05 79.4469 54.95356

CNN-LSTM 92.16 86.61442 13.39274

BiLSTM 82.18 74.00379 17.94495

Rabbit-TCN Light GBM 91.17 76.33485 52.0083

Hawk-TCN Light GBM 79.25 74.79213 13.57551

Vulture-TCN Light GBM 82.41 75.39529 15.62542

BCHO-TCN Light GBM 94.81 91.95131 6.807469

Table 5. Statistical analysis based on TP for threat score.

Method Best Mean Variance

Perceptron 80.93 74.12895 12.94691

CNN-LSTM 92.08 79.67916 65.8623

BiLSTM 85.99 77.19707 31.61515

Rabbit-TCN Light GBM 83.07 74.68913 20.41043

Hawk-TCN Light GBM 87.25 79.09748 47.22807

Vulture-TCN Light GBM 89.24 80.36782 50.166

BCHO-TCN Light GBM 95.76 91.45962 13.36229

5.5.4. Statistical Analysis Based on K-Fold

Statistical analyses based on K-fold for accuracy, NPV, PDV, and threat score are
included in Tables 6–9. The BCHO-TCN LightGBM model demonstrates the best accuracy
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in predicting out-of-stock prediction, with a 10.09% improvement over the vulture-TCN
LightGBM model, achieving a maximum of 94.81%.

The BCHO-TCN LightGBM model demonstrates the best NPV when predicting out-
of-stock prediction, with a 1.04% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 95.60%.

The BCHO-TCN LightGBM model demonstrates the best PDV when predicting out-
of-stock prediction, with a 0.40% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 96.28%.

The BCHO-TCN LightGBM model demonstrates the best threat score when predicting
out-of-stock prediction, with a 5.84% improvement over the vulture-TCN LightGBM model,
achieving a maximum of 95.86%.

Table 6. Statistical analysis based on k-fold for accuracy.

Method Best Mean Variance

Perceptron 92.37 82.20 44.41

CNN-LSTM 91.00 80.87 38.75

BiLSTM 93.40 83.41 39.55

Rabbit-TCN Light GBM 90.67 83.04 31.98

Hawk-TCN Light GBM 93.49 80.59 68.66

Vulture-TCN Light GBM 85.25 81.56 18.25

BCHO-TCN Light GBM 94.81 93.87 0.32

Table 7. Statistical analysis based on k-fold for NPV.

Method Best Mean Variance

Perceptron 89.06 82.88 12.68

CNN-LSTM 93.09 82.77 41.04

BiLSTM 91.61 82.11 32.71

Rabbit-TCN Light GBM 92.84 82.20 53.54

Hawk-TCN Light GBM 87.70 77.90 36.03

Vulture-TCN Light GBM 94.61 88.54 18.49

BCHO-TCN Light GBM 95.60 94.76 0.79

Table 8. Statistical analysis based on k-fold for PDV.

Method Best Mean Variance

Perceptron 93.88 79.06 56.27

CNN-LSTM 95.95 87.93 57.12

BiLSTM 82.38 76.63 9.67

Rabbit-TCN Light GBM 88.12 77.96 32.00

Hawk-TCN Light GBM 92.88 81.05 48.38

Vulture-TCN Light GBM 95.89 80.97 65.97

BCHO-TCN Light GBM 96.28 93.77 12.00
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Table 9. Statistical analysis based on k-fold for threat score.

Method Best Mean Variance

Perceptron 93.49 79.86 50.45

CNN-LSTM 92.42 83.77 41.86

BiLSTM 93.24 86.19 34.28

Rabbit-TCN Light GBM 91.15 82.63 54.56

Hawk-TCN Light GBM 90.09 83.39 50.63

Vulture-TCN Light GBM 90.26 79.98 48.54

BCHO-TCN Light GBM 95.86 94.98 0.80

5.6. Comparative Discussion

The findings from comparing the BCHO-TCN LightGBM model with existing methods
highlight its significant implications for predicting out-of-stock events and the results are
presented in Table 10. By surpassing traditional techniques like perceptron, CNN-LSTM,
and BiLSTM, the BCHO-TCN LightGBM model demonstrates the potential of combining
models to enhance prediction accuracy and dependability. Despite its achievements, we
should consider potential limitations such as data quality, scalability, and model inter-
pretability. Nevertheless, the model’s potential impact on industry practices is substantial.
By integrating BCHO for fine-tuning, a TCN for feature extraction, and LightGBM for pre-
diction, the method effectively captures complex temporal patterns and achieves superior
accuracy. Compared to traditional and advanced models like perceptron, CNN-LSTM,
and BiLSTM, the BCHO-TCN LightGBM model demonstrates enhanced performance.
Additionally, it surpasses other hybrid models like rabbit-TCN LightGBM, hawk-TCN
LightGBM, and vulture-TCN LightGBM, showcasing its effectiveness in proactive stock
management. In order to showcase its excellence, the BCHO-TCN LightGBM model was
tested against other models to assess its performance. The evaluation involved analyzing
metrics with a TP of 90 and a k-fold of 10. The findings demonstrate that when utilizing the
product listings from the Amazon India dataset, the model exhibits high levels of accuracy,
in addition to excellent NPV, PDV, and threat scores, reaching values of 94.52%, 95.16%,
94.81%, and 95.76%, respectively. Similarly, at ak-fold of 10, the model achieves values of
94.81%, 95.60%, 96.28%, and 95.86% for the same metrics.

Table 10. Comparative discussion table for TP and K-fold.

Models
TP 90 k-Fold 10

Accuracy NPV PDV Threat Score Accuracy NPV PDV Threat Score

Perceptron 84.61 70.24 89.05 74.35 72.21 81.75 77.44 78.09

CNN-LSTM 75.81 82.48 88.46 83.14 72.30 86.41 74.17 81.92

BiLSTM 83.69 82.63 82.18 68.44 93.40 91.61 75.68 84.52

Rabbit-TCN LightGBM 92.66 89.22 91.17 83.07 90.67 92.84 88.12 91.15

Hawk-TCN LightGBM 90.65 83.91 79.25 87.25 93.49 87.70 92.88 90.09

Vulture-TCN LightGBM 92.51 93.95 82.41 89.24 85.25 94.61 95.89 90.26

BCHO-TCN LightGBM 94.52 95.16 94.81 95.76 94.81 95.60 96.28 95.86

6. Conclusions

This study presents the innovative BCHO-TCN LightGBM model and offers valuable
new insights and practical benefits for industry use, especially in predicting out-of-stock
situations. Our research highlights its superior accuracy and reliability compared to con-
ventional methods. The model has the best predictive performance of any that combines
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Buzzard Coney Hawk Optimization with LightGBM and convolutional neural networks.
LightGBM utilizes a fast and scalable algorithm capable of handling large datasets. It
helps to increase training speed and contributes to effective memory utilization. This
advancement shows great potential for industries that rely heavily on inventory manage-
ment, such as retail, manufacturing, and supply chain logistics. By implementing this
model in real-world scenarios for out-of-stock prediction, businesses can improve their
inventory management efficiency, reduce instances of stockouts, and enhance overall cus-
tomer satisfaction. Using advanced methods and strategies, the model allows for proactive
decision-making, the optimization of inventory levels, and the simplification of supply
chain operations. Ultimately, the BCHO-TCN LightGBM model has practical benefits
that include improving business performance, reducing revenue losses caused by stock
shortages, and promoting operational efficiency in different industry sectors. The results
show that when using product listingsfrom the Amazon India dataset, the models achieve
high levels of accuracy, as well as excellent NPV, PDV, and threat scores, with values of
94.52%, 95.16%, 94.81%, and 95.76%, respectively. Likewise, at k-fold of 10, the model
attains values of 94.81%, 95.60%, 96.28%, and 95.86% for the same metrics. While these
achievements are very promising, we should also consider the potential limitations of the
proposed method, such as data quality, scalability, and model interpretability. Moreover,
in the future, improving the interpretability of the model and developing post-processing
techniques for actionable insights are important aspects to consider.
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