Impact of Hyperparameter Optimization to Enhance Machine Learning Performance: A Case Study on Breast Cancer Recurrence Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Model Training, Hyperparameter Optimization, and Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Facts and Statistics. Available online: https://www.breastcancer.org/facts-statistics (accessed on 8 April 2024).
- Breast Cancer Outcomes. Available online: https://www.oecd-ilibrary.org/sites/c63a671a-en/index.html?itemId=/content/component/c63a671a-en# (accessed on 8 April 2024).
- Tufail, A.B.; Ma, Y.K.; Kaabar, M.K.; Martínez, F.; Junejo, A.R.; Ullah, I.; Khan, R. Deep learning in cancer diagnosis and prognosis prediction: A minireview on challenges, recent trends, and future directions. Comput. Math. Methods Med. 2021, 2021, 9025470. [Google Scholar] [CrossRef] [PubMed]
- Madani, M.; Behzadi, M.M.; Nabavi, S. The role of deep learning in advancing breast cancer detection using different imaging modalities: A systematic review. Cancers 2022, 14, 5334. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Xie, W.; Xu, L.; He, X.; Zhang, Y.; You, M.; Yang, G.; Chen, Y. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int. J. Med. Inform. 2017, 97, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Arsalan, M.; Owais, M.; Lee, M.B.; Park, K.R. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. J. Clin. Med. 2020, 9, 749. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kumari, S.; Senapati, A.; Ambasta, R.K.; Kumar, P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Res. Rev. 2023, 90, 102013. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.-W.; Newman, S.-F.; Kim, J.; et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef]
- Divya, P.; Susmita, A.; Sushmitha, P.; Ch, R.; Chandini, K. Automation in pharmacovigilance: Artificial intelligence and machine learning for patient safety. J. Innov. Appl. Pharm. Sci. 2022, 7, 118–122. [Google Scholar] [CrossRef]
- Lo-Ciganic, W.H.; Donohue, J.M.; Thorpe, J.M.; Perera, S.; Thorpe, C.T.; Marcum, Z.A.; Gellad, W.F. Using machine learning to examine medication adherence thresholds and risk of hospitalization. Med. Care 2015, 53, 720. [Google Scholar] [CrossRef]
- Huang, Y.; Talwar, A.; Chatterjee, S.; Aparasu, R.R. Application of machine learning in predicting hospital readmissions: A scoping review of the literature. BMC Med. Res. Methodol. 2021, 21, 96. [Google Scholar] [CrossRef]
- González-Castro, L.; Chávez, M.; Duflot, P.; Bleret, V.; Martin, A.G.; Zobel, M.; Nateqi, J.; Lin, S.; Pazos-Arias, J.J.; Del Fiol, G.; et al. Machine Learning Algorithms to Predict Breast Cancer Recurrence Using Structured and Unstructured Sources from Electronic Health Records. Cancers 2023, 15, 2741. [Google Scholar] [CrossRef] [PubMed]
- Alzu’bi, A.; Najadat, H.; Doulat, W.; Al-Shari, O.; Zhou, L. Predicting the recurrence of breast cancer using machine learning algorithms. Multimed. Tools Appl. 2021, 80, 13787–13800. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 2019, 20, 1934–1965. [Google Scholar]
- Van Rijn, J.N.; Hutter, F. Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2367–2376. [Google Scholar] [CrossRef]
- Luo, G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinform. 2016, 5, 18. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
- Bakhteev, O.Y.; Strijov, V.V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms. Ann. Oper. Res. 2020, 289, 51–65. [Google Scholar] [CrossRef]
- Ebrahim, M.; Sedky, A.A.H.; Mesbah, S. Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer. Data 2023, 8, 35. [Google Scholar] [CrossRef]
- Kaushik, K.; Bhardwaj, A.; Bharany, S.; Alsharabi, N.; Rehman, A.U.; Eldin, E.T.; Ghamry, N.A. A machine learning-based framework for the prediction of cervical cancer risk in women. Sustainability 2022, 14, 11947. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Fahrurrozi, I.; Fitriyani, N.L.; Atmaji, F.T.D.; Widodo, T.; Bahiyah, N.; Benes, F.; Rhee, J. Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method. Computers 2022, 11, 136. [Google Scholar] [CrossRef]
- Lou, S.J.; Hou, M.F.; Chang, H.T.; Chiu, C.C.; Lee, H.H.; Yeh, S.C.J.; Shi, H.Y. Machine learning algorithms to predict recurrence within 10 years after breast cancer surgery: A prospective cohort study. Cancers 2020, 12, 3817. [Google Scholar] [CrossRef] [PubMed]
- Ganggayah, M.D.; Taib, N.A.; Har, Y.C.; Lio, P.; Dhillon, S.K. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 2019, 19, 48. [Google Scholar] [CrossRef]
- Massafra, R.; Latorre, A.; Fanizzi, A.; Bellotti, R.; Didonna, V.; Giotta, F.; La Forgia, D.; Nardone, A.; Pastena, M.; Ressa, C.M.; et al. A clinical decision support system for predicting invasive breast cancer recurrence: Preliminary results. Front. Oncol. 2021, 11, 576007. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, L.; Cal-González, V.M.; Del Fiol, G.; López-Nores, M. CASIDE: A data model for interoperable cancer survivorship information based on FHIR. J. Biomed. Inform. 2021, 124, 103953. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- XGBoost. Available online: https://xgboost.readthedocs.io/ (accessed on 8 April 2024).
- Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 8 April 2024).
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef]
- Le, P.B.; Nguyen, Z.T. ROC curves, loss functions, and distorted probabilities in binary classification. Mathematics 2022, 10, 1410. [Google Scholar] [CrossRef]
- Fotouhi, S.; Asadi, S.; Kattan, M.W. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J. Biomed. Inform. 2019, 90, 103089. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Rahman, S.A.; Walker, R.C.; A Lloyd, M.; Grace, B.L.; I van Boxel, G.; Kingma, B.F.; Ruurda, J.P.; van Hillegersberg, R.; Harris, S.; Mercer, S.; et al. Machine learning to predict early recurrence after oesophageal cancer surgery. J. Br. Surg. 2020, 107, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Ratul, I.J.; Al-Monsur, A.; Tabassum, B.; Ar-Rafi, A.M.; Nishat, M.M.; Faisal, F. Early risk prediction of cervical cancer: A machine learning approach. In Proceedings of the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, 24–27 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Talukder, M.S.H.; Akter, S. An improved ensemble model of hyper parameter tuned ML algorithms for fetal health prediction. Int. J. Inf. Technol. 2024, 16, 1831–1840. [Google Scholar] [CrossRef]
- Siddiq, M. Integration of Machine Learning in Clinical Decision Support Systems. Eduvest-J. Univers. Stud. 2021, 1, 1579–1591. [Google Scholar] [CrossRef]
- Kvamme, H.; Borgan, Ø.; Scheel, I. Time-to-event prediction with neural networks and Cox regression. J. Mach. Learn. Res. 2019, 20, 1–30. [Google Scholar]
Algorithm | Package Version | Parameter | Search Space |
---|---|---|---|
LR | scikit-learn 1.0.2 | solver | ‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’ |
penalty | ‘none’, ‘l1’, ‘l2’, ‘elasticnet’ | ||
C | 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 10, 100 | ||
l1_ratio | 0.1, 0.3, 0.5, 0.7, 0.9 | ||
class_weight | None, ‘balanced’ | ||
DT | scikit-learn 1.0.2 | criterion | ‘gini’, ‘entropy’ |
splitter | ‘best’, ‘random’ | ||
max depth | 2, 3, 5, 8, 12, 20, None | ||
min_samples_split | 2, 3, 4, 5, 6, 7, 8 | ||
min_samples_leaf | 1, 5, 10, 20, 30, 40, 50 | ||
max_leaf_nodes | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 | ||
max_features | ‘sqrt’, ‘log2’, None | ||
GB | scikit-learn 1.0.2 | min_samples_split | 0.1, 0.3, 0.5, 0.7, 0.9, 1 |
min_samples_leaf | 0.1, 0.2, 0.3, 0.4, 0.5, 1 | ||
max_features | ‘auto’, ‘sqrt’, ‘log2’, None | ||
max_leaf_nodes | 8, 16, 64, 100, None | ||
learning_rate | 0.01, 0.05, 0.1, 0.25 | ||
n_estimators | 8, 16, 32, 64, 100, 200 | ||
max_depth | 2, 3, 5, 8, 12, 20 | ||
XGB | xgboost 1.5.2 | n_estimators | 35, 50, 65, 80, 100, 115, 130, 150, 300 |
learning_rate | 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3 | ||
max_depth | 4, 6, 8, 10 | ||
min_child_weight | 1, 4, 6, 8 | ||
subsample | 0.5, 0.8, 1.0 | ||
colsample_bytree | 0.5, 0.8, 1.0 | ||
gamma | 0, 0.01, 0.25, 0.5, 1 | ||
scale_pos_weight | 1, 4, 7 | ||
reg_alpha | 0, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10 | ||
reg_lambda | 0, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10 | ||
DNN | tensorflow 2.7.0 | number hidden layer | 1, 2, 3 |
epochs | 10, 20, 30, 40, 50, 70, 90, 110, 150 | ||
batch_size | 1, 16, 32, 64 | ||
dropout | 0.0, 0.25, 0.5 | ||
units | 40, 80, 100 | ||
kernel_initializer | ‘uniform’, ‘lecun_uniform’, ‘normal’, ‘zero’, ‘glorot_normal’, ‘glorot_uniform’, ‘he_normal’, ‘he_uniform’ | ||
activation | ‘softmax’, ‘softplus’, ‘softsign’, ‘relu’, ‘tanh’, ‘sigmoid’, ‘hard_sigmoid’, ‘linear’ | ||
kernel_constraint | 1, 2, 3, 4, 5 | ||
learning_rate | 0.001, 0.01, 0.1, 0.2, 0.3 | ||
optimizer | SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam |
Algorithm | Optimized Hyperparameters |
---|---|
R | solver = ‘saga’, penalty = ‘l1’, C = 1, l1_ratio = 0.1, class_weight = None |
DT | criterion = ‘gini’, splitter = ‘best’, max_depth = 3, min_samples_split = 2, min_samples_leaf = 1, max_leaf_nodes = 6, max_features = None |
GB | min_samples_split = 0.1, min_samples_leaf = 1, max_features = ‘log2’, max_leaf_nodes = 8, learning_rate = 0.05, n_estimators = 16, max_depth = 5 |
XGB | n_estimators = 50, learning_rate = 0.1, max_depth = 4, min_child_weight = 1, subsample = 0.5, colsample_bytree = 1, gamma = 0, scale_pos_weight = 1, reg_alpha = 0, reg_lambda = 1 |
DNN | number_hidden_layer = 1, epochs = 30, batch_size = 64, dropout = 0.5, units = 100, kernel_initializer = ‘he_normal’, activation = ‘relu’, kernel_constraint = 1, learning_rate = 0.001, optimizer = ‘Adam’ |
Before HP Optimization | After HP Optimization | |||||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | AUC | Precision | Recall | F1 | AUC | |
LR | 0.87 | 0.83 | 0.85 | 0.77 | 0.86 | 0.8 | 0.82 | 0.72 |
DT | 0.83 | 0.78 | 0.8 | 0.62 | 0.87 | 0.86 | 0.86 | 0.7 |
GB | 0.86 | 0.88 | 0.87 | 0.7 | 0.91 | 0.9 | 0.91 | 0.8 |
XGB | 0.81 | 0.86 | 0.83 | 0.7 | 0.92 | 0.93 | 0.92 | 0.84 |
DNN | 0.82 | 0.72 | 0.76 | 0.64 | 0.91 | 0.92 | 0.91 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Castro, L.; Chávez, M.; Duflot, P.; Bleret, V.; Del Fiol, G.; López-Nores, M. Impact of Hyperparameter Optimization to Enhance Machine Learning Performance: A Case Study on Breast Cancer Recurrence Prediction. Appl. Sci. 2024, 14, 5909. https://doi.org/10.3390/app14135909
González-Castro L, Chávez M, Duflot P, Bleret V, Del Fiol G, López-Nores M. Impact of Hyperparameter Optimization to Enhance Machine Learning Performance: A Case Study on Breast Cancer Recurrence Prediction. Applied Sciences. 2024; 14(13):5909. https://doi.org/10.3390/app14135909
Chicago/Turabian StyleGonzález-Castro, Lorena, Marcela Chávez, Patrick Duflot, Valérie Bleret, Guilherme Del Fiol, and Martín López-Nores. 2024. "Impact of Hyperparameter Optimization to Enhance Machine Learning Performance: A Case Study on Breast Cancer Recurrence Prediction" Applied Sciences 14, no. 13: 5909. https://doi.org/10.3390/app14135909
APA StyleGonzález-Castro, L., Chávez, M., Duflot, P., Bleret, V., Del Fiol, G., & López-Nores, M. (2024). Impact of Hyperparameter Optimization to Enhance Machine Learning Performance: A Case Study on Breast Cancer Recurrence Prediction. Applied Sciences, 14(13), 5909. https://doi.org/10.3390/app14135909