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Abstract: Accurate and early prediction of breast cancer recurrence is crucial to guide medical
decisions and treatment success. Machine learning (ML) has shown promise in this domain. However,
its effectiveness critically depends on proper hyperparameter setting, a step that is not always
performed systematically in the development of ML models. In this study, we aimed to highlight the
impact that this process has on the final performance of ML models through a real-world case study by
predicting the five-year recurrence of breast cancer patients. We compared the performance of five ML
algorithms (Logistic Regression, Decision Tree, Gradient Boosting, eXtreme Gradient Boost, and Deep
Neural Network) before and after optimizing their hyperparameters. Simpler algorithms showed
better performance using the default hyperparameters. However, after the optimization process, the
more complex algorithms demonstrated superior performance. The AUCs obtained before and after
adjustment were 0.7 vs. 0.84 for XGB, 0.64 vs. 0.75 for DNN, 0.7 vs. 0.8 for GB, 0.62 vs. 0.7 for DT, and
0.77 vs. 0.72 for LR. The results underscore the critical importance of hyperparameter selection in
the development of ML algorithms for the prediction of cancer recurrence. Neglecting this step can
undermine the potential of more powerful algorithms and lead to the choice of suboptimal models.

Keywords: hyperparameter optimization; breast cancer; recurrence prediction; machine learning

1. Introduction

Breast cancer is the most prevalent form of cancer, accounting for 12.5% of total annual
cancer cases, and is one of the main causes of mortality among women worldwide [1,2].
Despite the high mortality rates, breast cancer is one of the malignancies with the best
prognosis; when diagnosed at an early and localized stage, its five-year survival rate reaches
96% in Europe. However, survival for women diagnosed at an advanced stage is around
38% [3]. It is clear that early detection of breast cancer and its recurrence not only improves
treatment opportunities, but it also significantly improves patient survival rates. However,
despite notable advances in early detection methods, accurately predicting the prognosis
of breast cancer is still a major challenge [4,5].

The use of machine learning (ML) is generating great research interest in the biomedical
domain. In particular, ML is increasingly being used in applications such as disease
detection and diagnosis [6–8], improvement in patient safety [9,10], and reduction in
healthcare costs [11,12]. In cancer prognosis, ML algorithms have been shown to be
promising tools capable of assisting in the prediction of cancer recurrence, providing
doctors with valuable information for clinical decision-making [13,14].
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The performance of ML models depends critically upon a wise choice of hyperpa-
rameter values guided by systematic analyses. One of the main challenges hindering the
effective use of ML to predict clinical events is the difficulty in determining the optimal
combination of an algorithm and its hyperparameter values. The selection of these hyper-
parameters is a process that requires specialized knowledge and often involves several
time-consuming manual iterations [15]. There is ample evidence that hyperparameter
optimization improves overall performance [16,17], and a number of methods have been
proposed to automatically choose hyperparameter values in order to make ML more acces-
sible to less experienced users [18]. The goal of these methods is to try to quickly identify a
combination of optimal—or, at least, efficient—hyperparameters that maximize a given
performance metric for the ML task at hand.

For the past few decades, the grid-search method has been the predominant standard
for parameter optimization in ML. This method systematically explores a predefined set of
hyperparameter values to find the best combination for a given model. Although other ap-
proaches have been proposed, such as Random Search [19], Bayesian Optimization [20], and
Gradient Optimization [21], the grid-search method remains the preferred method due to
its ease of execution, parallelization capability, and effectiveness in low-dimensional spaces.

However, despite the advances made in the field of ML and the existence of automated
hyperparameter optimization techniques, it is still common to find research in the literature
that overlooks this crucial step in the process of developing ML algorithms. For example,
Ebrahim et al. [22] performed a comparative analysis of seven ML models used to predict
breast cancer. They investigated the effect of feature selection but did not optimize the
model hyperparameters. Kaushik et al. [23] trained an XGB model to predict cervical cancer.
They specified the hyperparameter values used but did not mention how these values
were chosen or whether any optimization was performed. A model that combines SVM
with an extremely randomized trees classifier for breast cancer diagnosis was proposed
by Alfian et al. [24]. They specified the values used for the hyperparameters but did not
explain how they were selected, and they also compared their proposed model to other
ML algorithms, for which default hyperparameters were used. Lou et al. [25] trained
several ML algorithms and performed a statistical analysis to compare their accuracy in
predicting breast cancer recurrence in 10 years after surgery. However, no mention was
made about whether a hyperparameter optimization process was carried out. In the case of
Ganggayah et al. [26], six ML algorithms were compared for breast cancer survival analysis,
achieving a similar performance. The authors acknowledged using the default values of the
software package used in the study. However, the study could have reached substantially
different findings if hyperparameter optimization had been performed. Massafra et al. [27]
compared the performance of three ML algorithms in predicting invasive breast cancer
recurrence. The authors also omitted a hyperparameter optimization step, but admitted
its importance and left it for future work. Failure to adequately address the selection
of hyperparameters may weaken the robustness and validity of the findings obtained in
these studies.

This article aims to assess the importance of performing the hyperparameter optimiza-
tion process through a case study that uses real-world data and five modeling approaches
to predict five-year recurrence of breast cancer. Through our study, we aim to encourage
the adoption of automatic hyperparameter selection methodologies for the analysis of
healthcare data, resulting in the development of more efficient and accurate predictive
algorithms in future research.

2. Materials and Methods
2.1. Data Preparation

In this study, we used a cohort of 3839 patients diagnosed with breast cancer be-
tween 2010 and 2020 at the CHU de Liège hospital [13]. To normalize the representation
of Electronic Health Record (EHR) data, we first mapped patient data to the CASIDE
data model [28], adhering to the Fast Healthcare Interoperability Resources (FHIR) stan-
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dard. This mapping allowed the data to be represented in a consistent manner, laying the
foundations for the subsequent analysis.

Next, a data cleaning process was carried out to improve the quality of the data. We
eliminated duplicated records and excluded patients who were missing essential infor-
mation, including TNM stage, information on the type of treatment administered, and
confirmation of survival of at least 5 years after diagnosis or recurrence within that period.

We applied feature transformation to prepare the data for automatic analysis. We
transformed dates into numerical representations, such as patient age or age at diagnosis,
facilitating their use in quantitative analysis. We then converted nominal features into
binary class data. Additionally, some features were aggregated to create more informative
representations of them. For example, we mapped diagnosis codes to Elixhauser cate-
gories [29], counting the number of different diagnoses per category for each patient. To
ensure robust statistical analysis, only categories with 50 or more instances in the dataset
were retained.

To address scale variations and ensure uniformity in the impact of different features,
we applied scaling to normalize the numerical variables. This process was crucial to
mitigate the impact of variable scales on the performance of ML models, promoting more
reliable and meaningful results.

The resulting set of features included sex, age at diagnosis, BMI, ECOG, comorbidities,
tumor grade and staging, breast cancer biomarkers and treatment. A detailed analysis of the
composition and statistical characteristics of this dataset has been described elsewhere [13].

2.2. Model Training, Hyperparameter Optimization, and Evaluation

To assess the effect of hyperparameter optimization on model performance, we trained,
optimized, and evaluated five distinct ML algorithms for predicting breast cancer re-
currence within 5 years, namely Logistic Regression (LR), Decision Tree (DT), Gradient
Boosting (GB), eXtreme Gradient Boosting (XGB), and Deep Neural Network (DNN). The
implementation of the ML algorithms and hyperparameter tuning has been carried out in
Python, using the Scikit-Learn [30], XGBoost [31], and Tensorflow [32] libraries.

To analyze the effectiveness of hyperparameter optimization on model prediction, we
compared the performance of each model before (i.e., using default hyperparameters of
the respective ML libraries) versus after optimization. To build and evaluate the models,
we adopted a combination of hold-out and cross-validation strategies, thereby ensuring a
robust evaluation by assessing model performance on unseen data [33].

The dataset was randomly divided into two mutually exclusive sets with 90% of the
samples allocated for training and fine-tuning and 10% for testing. First, we trained all
the algorithms using the default value for hyperparameters specified in the corresponding
software package based on experience and general recommendations. In the case of the
DNN, some extra configuration was required. A network with a single hidden layer with
as many neurons as input features was chosen as the basis. In addition, as recommended
for classification problems [34], binary cross-entropy was set as the loss function.

Subsequently, hyperparameter optimization was performed using the grid-search
method, implemented through three rounds of stratified 6-fold cross-validation on the
training set. Each pass of cross-validation utilized 75% of the whole dataset for training
and 15% for validation. This strategy allowed us to systematically explore multiple combi-
nations of hyperparameters and select the most effective set for each algorithm. Table 1
describes the parameters that were optimized in each of the algorithms, along with the
search space used.
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Table 1. Optimized parameters and search space.

Algorithm Package Version Parameter Search Space

LR scikit-learn 1.0.2

solver ‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’
penalty ‘none’, ‘l1’, ‘l2’, ‘elasticnet’

C 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 10, 100
l1_ratio 0.1, 0.3, 0.5, 0.7, 0.9

class_weight None, ‘balanced’

DT scikit-learn 1.0.2

criterion ‘gini’, ‘entropy’
splitter ‘best’, ‘random’

max depth 2, 3, 5, 8, 12, 20, None
min_samples_split 2, 3, 4, 5, 6, 7, 8
min_samples_leaf 1, 5, 10, 20, 30, 40, 50

max_leaf_nodes
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50

max_features ‘sqrt’, ‘log2’, None

GB scikit-learn 1.0.2

min_samples_split 0.1, 0.3, 0.5, 0.7, 0.9, 1
min_samples_leaf 0.1, 0.2, 0.3, 0.4, 0.5, 1

max_features ‘auto’, ‘sqrt’, ‘log2’, None
max_leaf_nodes 8, 16, 64, 100, None

learning_rate 0.01, 0.05, 0.1, 0.25
n_estimators 8, 16, 32, 64, 100, 200
max_depth 2, 3, 5, 8, 12, 20

XGB xgboost 1.5.2

n_estimators 35, 50, 65, 80, 100, 115, 130, 150, 300
learning_rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3
max_depth 4, 6, 8, 10

min_child_weight 1, 4, 6, 8
subsample 0.5, 0.8, 1.0

colsample_bytree 0.5, 0.8, 1.0
gamma 0, 0.01, 0.25, 0.5, 1

scale_pos_weight 1, 4, 7
reg_alpha 0, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10

reg_lambda 0, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10

DNN tensorflow 2.7.0

number hidden layer 1, 2, 3
epochs 10, 20, 30, 40, 50, 70, 90, 110, 150

batch_size 1, 16, 32, 64
dropout 0.0, 0.25, 0.5

units 40, 80, 100

kernel_initializer ‘uniform’, ‘lecun_uniform’, ‘normal’, ‘zero’, ‘glorot_normal’,
‘glorot_uniform’, ‘he_normal’, ‘he_uniform’

activation ‘softmax’, ‘softplus’, ‘softsign’, ‘relu’, ‘tanh’, ‘sigmoid’,
‘hard_sigmoid’, ‘linear’

kernel_constraint 1, 2, 3, 4, 5
learning_rate 0.001, 0.01, 0.1, 0.2, 0.3

optimizer SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam

A critical problem in training ML algorithms on healthcare data is the inherent im-
balance of the datasets. The class imbalance distribution biases classifiers towards the
majority class, which results in an unsatisfactory prediction performance for the minority
class [35]. In our dataset, we found that the number of patients who eventually had cancer
recurrence in five years was 13% of the total sample. To mitigate the impact of imbalanced
data, we applied the Synthetic Minority Over-sampling Technique (SMOTE) [36] in each
cross-validation pass. This technique oversampled the minority class, ensuring equal repre-
sentation and reducing bias in the model towards the majority class. A k-value of 5 was
employed to generate synthetic samples, contributing to a more representative training set.

Once the best hyperparameters for each algorithm were identified, we refitted the
models using the entire training partition. Subsequently, we evaluated the performance of
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the optimized models on the test hold-out, providing an unbiased assessment using the
data that had not been previously seen in both the training and optimization phases.

Performance evaluation was conducted using the area under the ROC curve (AUC) as
the primary outcome, and precision, recall, and F1 measure as the secondary outcomes.

3. Results

The five algorithms analyzed in this study have been adjusted to determine their
optimal combination of hyperparameters, as described in Table 2.

Table 2. Optimal combination of hyperparameters for each algorithm.

Algorithm Optimized Hyperparameters

R solver = ‘saga’, penalty = ‘l1’, C = 1, l1_ratio = 0.1, class_weight = None

DT criterion = ‘gini’, splitter = ‘best’, max_depth = 3, min_samples_split = 2,
min_samples_leaf = 1, max_leaf_nodes = 6, max_features = None

GB min_samples_split = 0.1, min_samples_leaf = 1, max_features = ‘log2’,
max_leaf_nodes = 8, learning_rate = 0.05, n_estimators = 16, max_depth = 5

XGB
n_estimators = 50, learning_rate = 0.1, max_depth = 4,

min_child_weight = 1, subsample = 0.5, colsample_bytree = 1, gamma = 0,
scale_pos_weight = 1, reg_alpha = 0, reg_lambda = 1

DNN
number_hidden_layer = 1, epochs = 30, batch_size = 64, dropout = 0.5,

units = 100, kernel_initializer = ‘he_normal’, activation = ‘relu’,
kernel_constraint = 1, learning_rate = 0.001, optimizer = ‘Adam’

Table 3 shows a comparison of the predictive performance of the five ML algorithms
before optimization (using the default values of the corresponding software package) and
after performing hyperparameter tuning. The results before hyperparameter optimization
show that simpler models, such as LR and DT, outperformed more complex algorithms
like XGB and DNN in various metrics. LR achieved the best precision and AUC (0.87 and
0.77, respectively), while GB exhibited the highest performance for recall and F1 score (0.88
and 0.87, respectively).

Table 3. Performance of ML models before and after Hyperparameter (HP) Optimization.

Before HP Optimization After HP Optimization

Precision Recall F1 AUC Precision Recall F1 AUC
LR 0.87 0.83 0.85 0.77 0.86 0.8 0.82 0.72
DT 0.83 0.78 0.8 0.62 0.87 0.86 0.86 0.7
GB 0.86 0.88 0.87 0.7 0.91 0.9 0.91 0.8

XGB 0.81 0.86 0.83 0.7 0.92 0.93 0.92 0.84
DNN 0.82 0.72 0.76 0.64 0.91 0.92 0.91 0.75

After hyperparameter optimization, all algorithms demonstrated improved perfor-
mance across every metric, except for LR, which exhibited a decrease in overall performance.
The AUCs obtained before and after adjustment were 0.7 vs. 0.84 for XGB, 0.64 vs. 0.75
for DNN, 0.7 vs. 0.8 for GB, 0.62 vs. 0.7 for DT, and 0.77 vs. 0.72 for LR. This decrease in
the results of LR may have happened because the optimal hyperparameters in each fold
did not average to values that improve performance on the unseen test partition. This
unexpected outcome could be attributed to collinearity issues, a phenomenon well known
to regression models but less prevalent in other algorithms.

Notably, the improvement in performance was substantial for XGB and DNN in
all metrics. DNN showed substantial improvements over the results obtained using the
predefined parameters, achieving up to a 20% increase in recall. For its part, XGB was
the algorithm that achieved the highest performance among all, reaching precision = 0.92,
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recall = 0.93, F1 = 0.92, and AUC = 0.84. These results suggest that algorithms with a higher
number of hyperparameters, such as XGB and DNN, may derive greater benefits from
hyperparameter optimization.

4. Discussion

The development of ML models for solving practical problems with real-world data
requires careful attention to the appropriate selection of hyperparameters to handle specific
datasets. In particular, our study highlights the critical role of hyperparameter optimization
in ML algorithms trained for predicting breast cancer recurrence.

Looking at the optimal combinations of the resulting hyperparameters in Table 2, we
can see that for LR, the choice of the ‘saga’ solver and the ‘l1’ penalty suggests that L1
regularization is effective in handling high dimensionality and multicollinearity in the data.
As for DT, a reduced maximum depth of estimators and limited number of maximum leaf
nodes reflect a preference for simpler, shallower models, which are less prone to overfitting
and can generalize better on our dataset. In the cases of GB and XGB, a low learning rate
and a moderate maximum depth of estimators show that models with slower learning and
less depth tend to improve performance, possibly by avoiding overfitting. Finally, for DNN,
the choice of a single hidden layer with 100 neurons, together with the Adam optimizer
and a low learning rate, turned out to be the most effective, suggesting that even in shallow
architectures, it is possible to obtain good performance when they are properly optimized.

Not all the models in this study benefited equally from hyperparameter optimization.
Simpler models, such as LR, experienced virtually no benefit, suggesting that using their
default settings might be a reasonable approach for the task at hand. However, the im-
provements obtained with hyperparameter optimization become more significant as the
models grow in complexity—that is, a greater number of hyperparameters. In our study,
the improvement in performance was greater in the more complex models, i.e., GB, XGB,
and DNN. For example, the DNN model showed a substantial increase, from 0.72 in recall
and 0.76 in F1, using the default values, to 0.92 and 0.91 with the hyperparameter values
optimized, respectively.

The results also highlight the crucial role that hyperparameter selection has in deter-
mining the final performance of the models, as well as hint at the possible consequences of
not investing sufficient effort in the optimization phase. Before optimization, one would
have chosen to use LR or GB, depending on the metric to maximize. However, after hy-
perparameter tuning, XGB is clearly positioned as the optimal choice. Therefore, the lack
of systematic hyperparameter optimization risks discarding a more efficient and robust
algorithm in favor of a simpler one that requires minimal adjustment, but that is incapable
of modeling complex non-linear data, as is often the case in the healthcare domain [37].

In the context of predicting breast cancer recurrence, the absence of hyperparameter
optimization in prior studies, like Lou et al. [25], Ganggayah et al. [26], and Massafra
et al. [27], raises concerns about the validity of their conclusions. Hyperparameter op-
timization could have led to a significantly higher performance for the models used or
even revealed a different superior model, one better suited to capturing the intricacies of
health data.

Our observations add to a growing body of research supporting the importance of
hyperparameter optimization in the development of ML models for healthcare. Several
previous studies have shown substantial performance gains after implementing this tech-
nique [38–40]. This reinforces our findings that prioritizing hyperparameter optimization
can significantly enhance model accuracy and robustness. Therefore, rigorous hyperpa-
rameter optimization should be a standard practice in future research to ensure a fair
comparison of ML models and fully leverage their capabilities in healthcare.

The improvement in the performance of the algorithm selected after optimization has
significant implications as it can have profound consequences in decision-making regarding
prevention, early detection, and treatment strategies for breast cancer recurrence [41]. A
higher precision algorithm ensures that recurrence predictions are more accurate, reducing
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the likelihood of false positives. An algorithm that allows for the identification of high-risk
patients accurately becomes a powerful tool to help healthcare providers in decision-
making. Clinicians could confidently tailor interventions based on the specific risk profile
and prioritize follow-up and surveillance for those patients at highest risk of recurrence. For
low-risk patients, the application of unnecessary and burdensome treatments or techniques
could be avoided. Conversely, patients at higher risk could receive more aggressive
interventions, potentially improving survival rates and avoiding potential delays in critical
therapeutic measures.

Some limitations need to be acknowledged in our study. First, the findings are specific
to the prediction of breast cancer recurrence and may not be directly applicable to other
predictive modelling tasks. Additionally, the scope of the study is limited only to a cohort of
patients from the CHU hospital in Liège, which is not representative of a wider population.
Therefore, generalization to other populations, patient demographics, and healthcare
settings is uncertain. It would be of great interest to extend this study to a variety of centers
to verify if the results obtained are generalizable to other cohorts of patients. Furthermore,
only five ML algorithms were analyzed in this study, and the applicability of the results to
other algorithms remains unexplored. Moreover, in the field of survival analysis, there are
methods such as models based on Cox proportional hazards that offer greater granularity
in predictions regarding the time of recurrence. Although binary classifiers such as those
used in this study have the potential to achieve greater predictive accuracy and can be
useful in situations where a quick and clear decision is critical, they lack the interpretability
and flexibility provided by modeling the event probabilities as a function of time [42].
Future research should explore the implementation and comparison of time-sensitive
methods for the prediction of breast cancer recurrence. Finally, this study was based on
a single hyperparameter selection method, and exploring a broader range of methods
could provide additional insights. Future work should compare the search efficiency and
overall ML model performance using different hyperparameter selection methods, such as
random search, Bayesian optimization, or hyperparameter search using genetic algorithms.
Furthermore, it would also be interesting to investigate the interactions among different
hyperparameters, and how these affect the selection process and the ability to find optimal
values. Understanding how hyperparameters influence each other could provide valuable
information to improve the efficiency and efficacy of automatic selection methods.

5. Conclusions

The results obtained in this study show that the adequate selection of hyperparameter
values significantly improved the performance of the evaluated models. This is especially
relevant for more complex algorithms like XGB and DNN, which translates into greater
performance in the prediction of breast cancer recurrence. The study demonstrated that
skipping hyperparameter optimization can lead to the selection of less accurate models
with suboptimal predictive capabilities for a given task. Therefore, our findings confirm
the significance of performing hyperparameter optimization as an essential step in the
development of ML models, especially in healthcare, where the data complexity requires
more careful modeling.

Optimized ML models have the potential to achieve higher accuracy levels, becoming
valuable tools that can help clinicians make more informed decisions. The findings pre-
sented in this study contribute to the ongoing efforts to leverage ML in healthcare, moving
the medical community one step closer to more precise, effective, and patient-centered
approaches for cancer treatment and management, ultimately contributing to improved
patient outcomes.
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