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Abstract: This evaluation of deep learning and traditional machine learning methods for tool state
recognition in milling processes aims to automate furniture manufacturing. It compares the perfor-
mance of long short-term memory (LSTM) networks, support vector machines (SVMs), and boosting
ensemble decision trees, utilizing sensor data from a CNC machining center. These methods focus on
the challenges and importance of feature selection, data preprocessing, and the application of tailored
machine learning models to specific industrial tasks. Results show that SVM, with an accuracy of 96%,
excels in handling high-dimensional data and robust feature extraction. In contrast, LSTM, which is
appropriate for sequential data, is constrained by limited training data and the absence of pre-trained
networks. Boosting ensemble decision trees also demonstrate efficacy in reducing model bias and
variance. Conclusively, selecting an optimal machine learning strategy is crucial, depending on task
complexity and data characteristics, highlighting the need for further research into domain-specific
models to improve performance in industrial settings.

Keywords: boosting ensemble decision trees; long short-term memory (LSTM); support vector
machine (SVM); tool condition monitoring (TCM); time series analysis

1. Introduction

When addressing problems related to the automation of furniture manufacturing,
using sensors is a common practice, especially while evaluating various stages and trends.
The problem is complex and involves multiple steps that require a high level of precision,
as well as adjustments even after minor changes are introduced. In order to mitigate the
amount of work required, incorporating technological advances into the workflow is a
logical and necessary step. This is particularly true for issues related to tool condition
monitoring. In such applications, incorrect or poorly timed decisions about replacing dif-
ferent elements can lead to poor product quality and financial losses for the manufacturing
company. Finding ways to pinpoint the exact moment when the tool needs to be replaced
is a vast area of research, with different approaches and available solutions [1–4].

Among different parts of the process, one that is a key focus of this paper is milling.
During this stage, any inaccurate decision can be highly influential. To monitor the tool state
during work, using a sensor-based approach offers a fresh perspective and significant im-
provement to the process. While manual tool checks can be done, they are time-consuming
and require a pause in production. Automating the evaluation and providing the operator
with a clear indication that the tool needs to be checked or exchanged is a significant
advancement in the field [5,6].

Appl. Sci. 2024, 14, 5913. https://doi.org/10.3390/app14135913 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14135913
https://doi.org/10.3390/app14135913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-8436-0271
https://orcid.org/0000-0003-3157-3381
https://orcid.org/0000-0003-0383-0897
https://orcid.org/0000-0002-3451-6879
https://orcid.org/0009-0004-9887-1054
https://orcid.org/0009-0004-2808-4960
https://orcid.org/0009-0006-6129-4745
https://orcid.org/0000-0002-2789-4732
https://doi.org/10.3390/app14135913
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14135913?type=check_update&version=2


Appl. Sci. 2024, 14, 5913 2 of 21

While the sensor-based approach provides some interesting possibilities, the subject
of tool condition monitoring is not new and remains a widely discussed one [7,8]. The edge
of the tool gradually deteriorates during the process, which can result in decreased product
quality. It is important to note that two situations need to be avoided in this case: unneces-
sarily stopping the production process and delaying the exchange past the point when the
results start to be unacceptable. Bot situations can generate a loss for the company (either
due to time or wasted materials), and any automatic solution should consider those. The
decision-making process needs to be as precise as possible while providing interactive,
insightful feedback for the operator. Incorporating specialized sensors in the process seems
to be the best approach in that aspect.

While numerous works focus on similar problems, different signals are used, depend-
ing on the chosen tasks. The subsequent evaluation checks and verifies their usefulness in
identifying tool conditions at different stages of the machining process. Additionally, even
though extensive studies cover the problem, there is still a significant need for an automatic
and precise solution that is easy to incorporate into the production process in the actual
work environment. One of the significant innovations presented in this paper focuses on a
way to solve that problem using sensor-based data.

Since the overall task is complex, applying machine learning (ML) to it seems to
be the best approach. The applicability of ML algorithms and the importance of such
solutions in manufacturing has grown in recent years. There are numerous examples of
different algorithms being applied to similar tasks in image and sensor-based systems [9,10].
The work presented in this paper applies those techniques to tool condition monitoring,
extending the overall scope with a novel approach to the task. Depending on the chosen
approach, different aspects and applications are considered. At the same time, solutions
such as tree species recognition, as shown in [11] show the vast possibilities and adaptability
that ML offers. Even the most complicated tasks can be solved, assuming appropriate input
data and a well-designed training workflow.

When specifically considering tool condition monitoring, the main distinction concerns
the parts used. Some existing solutions use images instead of signals, often pairing such input
with convolutional neural networks (CNNs) [1,2,12,13]. The training process itself can be
improved by using pre-trained networks (such as AlexNet [14,15] prepared for the ImageNet
database [16,17]) or data augmentation. Although preferable for ease of input collection,
image-based solutions have some drawbacks. Firstly, to achieve high accuracy, large amounts
of uniform training data are required. Secondly, the data acquisition process needs to be
closely connected to the manufacturer. The key factors that need to be considered during this
process are not always straightforward to derive.

In the aspect of initial problem definition, signals are a better solution, as the measure-
ment process focuses on detecting any changes in them. At the same time, the computation
required to process large amounts of data is an immediate issue that needs addressing.

Using sensor-based data as an input for neural networks can pose some problems.
To do it efficiently, a new handling method was required, which in this case includes a
novel approach to dealing with discrepancies and variations in sensor data. While changes
will occur when the tool state deteriorates, not all sensors will produce the same amount
of feedback. Because of this, pinpointing the actual moment when the tool needs to be
replaced can be challenging. Additionally, the size of data obtained from different sensors
differs significantly. The data files will be much larger, especially for sensors requiring
higher precision. One of the main problems to consider is optimally using the obtained
data while retaining the advantage of precise measurements.

One way to approach this issue is by transferring the signals into an image. For exam-
ple, the authors of [18] do this with sound signals using short-time Fourier transform. The
raw data were denoised and later converted into images, while a pre-trained CNN model
performed deep feature extraction. The final step involves using a support vector machine
for classification. A different approach uses the scalogram as a target format [19] for in-
duction monitor state diagnosis. In this case, Constant-Q transform with non-stationary
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Gabor transform is used. Vibration and acoustic single features are fused with a multi-input
CNN solution. In the authors’ opinion, the continuous wavelet transform (CWT) was too
time-consuming given the initial input structure. Although the overall computation was
faster, it also decreased the obtained.

This paper primarily aims to critically compare various machine learning approaches
for tool condition monitoring in milling processes, utilizing time series data collected from
the machining operations. The specific algorithms include support vector machines (SVMs),
boosting ensemble decision trees, and long short-term memory (LSTM) networks. The
research seeks to understand the comparative effectiveness of those methods in terms of
their ability to accurately classify the tool state based on various performance metrics. This
study hypothesizes that each algorithm will exhibit distinct advantages and limitations
depending on the complexity and nature of the data involved. This comparative analysis is
intended to identify which method provides the most reliable and accurate results under
varying operational conditions.

2. Materials and Methods
2.1. Data Acquisition

Experiments were conducted on a Jet 130 CNC machining center manufactured by Busel-
lato, located in Thiene, Italy. The machine was equipped with a 40 mm cutter head featuring a
single, replaceable carbide cutting edge sourced from Faba SA in Baboszewo, Poland.

A chipboard panel, measuring 300 × 150 mm, served as the test material. This panel was
securely affixed to a measurement platform where a 6 mm groove was milled. The milling
was executed at a spindle speed of 18,000 rpm, a cutting speed of 37.68 m/s, with a feed rate
of 0.15 mm per tooth. Operational parameters were selected based on a comprehensive review
of relevant literature and practical experience in milling chipboard materials.

The condition of the tool was systematically categorized into one of three distinct
states: green, yellow, or red. The ‘green’ state was indicative of a new or well-maintained
tool. The ‘yellow’ category suggested moderate wear, which remained within operational
limits. Finally, the ‘red’ class signaled a critical level of wear, necessitating immediate
replacement. The maximum flank wear (VBmax) parameter served as the criterion for
this classification.

Figure 1 depicts a microscopic examination of tool wear, highlighting the VBmax
parameter utilized for assessing tool conditions. The wear measurement and subsequent
classification into ‘green’, ‘yellow’, or ‘red’ states were performed using a Mitutoyo TM-
505 microscope (Mitutoyo, Kawasaki, Japan), renowned for its precision in measuring
dimensions and angles.

Figure 2 illustrates the schematic layout of the test stand used during the experiments.
The setup includes the Busellato JET 130 CNC machine tool (Busellato, Thiene, Italy), vari-
ous sensors (Kistler 9601A, 8141A, 8152B, B&K 4189 Microphone), amplifiers (Kistler 5125B,
5127B, 5036A, B&K Type 2690-A NEXUS Microphone Conditioner), and data acquisition
cards (NI PCI-6034E, NI PCI-6111) connected to a PC for data collection.

The milling process was frequently paused to examine the condition of the blade using
a Mitutoyo TM-505 microscope. The wear condition of the blade was quantified through
those measurements, allowing classification into one of three distinct wear categories.
The numerical ranges for each class were as follows:

1. A wear state classified as ‘green’ for maximum wear (VBMax) within 0 to 0.15 mm,
encompassing five sublevels of wear;

2. A ‘yellow’ wear state for VBMax values ranging from 0.151 mm to 0.299 mm, incorpo-
rating five sublevels of wear;

3. A ‘red’ wear state for VBMax exceeding 0.299 mm, also with five sublevels of wear.
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Figure 1. Illustration of tool wear measurement using the VBmax parameter.

Figure 2. Scheme of the test stand layout used during the experiments.

Furthermore, the experimental setup was equipped with comprehensive sensors
capable of recording 11 distinct signals, including force, acoustic emission, noise and
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vibration levels, device-related current and voltage, head-rated current and voltage, as well
as servo-rated current and voltage. The sensors used during experiments have the same
specifications as the ones used in previous research, as outlined in [5].

The experimental system has multiple sensors with the ability to collect a total of
11 parameters, as follows:

• The orce value in the (1) X and (2) Y-axes (Kistler 9601A sensor; Impexron GmbH,
Pfullingen, Germany);

• (3) acoustic emission (Kistler 8152B sensor; Kistler Group, Winterthur, Switzerland);
• (4) noise level (Brüel & Kjær 4189 sensor; Brüel and Kjær, Nærum, Denmark);
• (5) vibration level (Kistler 5127B sensor; Kistler Group, Winterthur, Switzerland);
• (6) device-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
• (7) device-rated voltage (Testec TT-Si9001 sensor; Testec, Dreieich, Germany);
• (8) head-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
• (9) head-rated voltage (Testec TT-Si9001 sensor; Testec, Dreieich, Germany);
• (10) servo-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
• (11) servo-rated voltage (Testec TT-Si9001 sensor; Testec, Dreieich, Germany).

For the data acquisition part, two measurement cards were used. National Instruments
PCI-6111 was used for acoustic emission, while the National Instruments PCI-6034E was
utilized for other parameters. This setup ensures comprehensive and consistent analysis,
and its efficiency was also confirmed during previous experiments [5]. For the data
collection part, a PC with Lab ViewTM software was used. The software version from the
National Instruments Corporation (Austin, TX, USA) was 2015 SP1.

The composition of the dataset assembled during this phase is detailed in Table 1. A
total of 75 samples were collected for the experiments, 25 for each of the represented classes.
The number of samples was set at this level to make sure that each class would contain
highly representative examples, outlining the signal characteristics for this specific label.
Figure 3 illustrates sample raw signal plots for acoustic emission, X-axis force, Y-axis force,
and noise levels.

(a) Acoustic emission signal sample (b) Force X signal sample

(c) Force Y signal sample (d) Noise level signal sample
Figure 3. Illustrative examples of raw signal data for (a) acoustic emission, (b) X-axis force, (c) Y-axis
force, and (d) noise levels.
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Table 1. Overview of variable configuration within datasets.

Dataset Name Measured Parameter Trial Duration Sampling Rate
(Hz)

Observation
Time (s)

HighData Acoustic Emission 27,999,960 5,000,000 5.59
LowData X-axis Force 700,000 200,000 3.50
LowData Y-axis Force 700,000 200,000 3.50
LowData Noise 700,000 200,000 3.50
LowData Vibration 700,000 200,000 3.50

CurrentData Device Current 30,000 50,000 0.60
CurrentData Device Voltage 30,000 50,000 0.60
CurrentData Head Current 30,000 50,000 0.60
CurrentData Head Voltage 30,000 50,000 0.60
CurrentData Servo Current 30,000 50,000 0.60
CurrentData Servo Voltage 30,000 50,000 0.60

2.2. Data Preprocessing

Data preprocessing is a critical step in preparing the collected sensor data for analysis.
The min–max normalization was applied to scale the features to a fixed range—[0, 1]. This
technique is essential to ensure that all features contribute equally to the machine learning
models, especially those sensitive to the input data scale.

The formula for min–max normalization is as follows:

x′ =
x − xmin

xmax − xmin

where x is the original value, x′ is the normalized value, xmin is the minimum value of the
feature, and xmax is the maximum value of the feature. By applying this normalization,
all features are scaled proportionally, which helps mitigate the bias toward features with
larger ranges and improves the overall performance of the machine learning models.

2.3. Features Generation in the Time Domain

Feature extraction in the time domain is a crucial aspect of signal analysis, particularly
for applications such as tool condition monitoring in milling processes. In this study, we
extracted 11 distinct time-domain features from the signal data for every 11 signals. These
features include the following: mean (µ), RMS (root mean square), standard deviation
(σ), shape factor, SNR (signal-to-noise) ratio, THD (total harmonic distortion), SINAD
(signal-to-noise and distortion) ratio, peak value (xpeak), crest factor, clearance factor, and
impulse factor [20].

These features provide a comprehensive insight into the characteristics of the signal,
facilitating an effective analysis of tool conditions. The feature extraction process involved
computing these mathematical formulas for each signal captured, thereby enabling a
detailed examination of the signal’s properties.

In this study, a total of 11 features were generated for each of the 11 signals, resulting
in 121 features from the time domain.

Below, we detail these features along with their mathematical formulations [20–22]:

1. Mean (µ): The average value of the signal; providing a measure of the signal’s cen-
tral tendency.

µ =
1
N

N

∑
i=1

xi (1)

2. RMS (Root Mean Square): Represents the square root of the mean of the squares of all
values in the signal, indicating its overall energy.

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (2)
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3. Standard Deviation (σ): Measures the amount of variation or dispersion from the
average signal value.

σ =

√√√√ 1
N − 1

N

∑
i=1

(xi − µ)2 (3)

4. Shape Factor: Describes the shape of the signal’s waveform by comparing it with an
ideal shape.

Shape Factor =
RMS

1
N ∑N

i=1 |xi|
(4)

5. SNR (Signal-to-Noise Ratio): Compares the level of the desired signal to the level of
background noise.

SNR = 10 log10

(Psignal

Pnoise

)
(5)

6. THD (Total Harmonic Distortion): Indicates the distortion of the signal by measuring
the harmonics.

THD =

√
∑N

n=2 Pn

P1
(6)

7. SINAD (Signal-to-Noise and Distortion ratio): Represents the ratio of the total power
of the signal to the undesired signal’s power (noise plus distortion).

SINAD = 10 log10

( Psignal

Pnoise + Pdistortion

)
(7)

8. Peak Value (xpeak): The maximum absolute value of the signal, showing its amplitude.

xpeak = max(|xi|) (8)

9. Crest Factor: The ratio of the peak value of the signal to its RMS value; used to assess
signal peaks.

Crest Factor =
xpeak

RMS
(9)

10. Clearance Factor: A measure that evaluates the signal’s peaks in relation to the RMS
value; similar to the crest factor but emphasizes the extreme peaks more.

Clearance Factor =
x3/2

peak√
1
N ∑N

i=1 |xi|3/2
(10)

11. Impulse Factor: The ratio of the peak value to the mean value of the signal; indicates
the impulsiveness of the signal.

Impulse Factor =
xpeak

µ
(11)

2.4. Features Generation in Frequency Domain

In the frequency domain, the following features are generated: mean frequency,
median frequency, band power, occupied bandwidth, power bandwidth, peak amplitude,
and peak Location [23–25].

The extraction of these features from the frequency domain is pivotal for a comprehen-
sive analysis, offering nuanced insights into the tool’s condition and operational efficiency.

For the frequency domain, a total of seven distinctive features were generated in order
to enhance the performed analysis. The definitions and formulas for these features are as
follows [23–26]:
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1. Mean Frequency: The average of all frequency components, weighted by their amplitudes.

Mean Frequency =
∑ f · P( f )

∑ P( f )
(12)

where f represents the frequency components, and P( f ) denotes the power spectral
density at frequency f .

2. Median Frequency: The frequency at which the power spectrum is divided into two
equal halves. ∫ Median Frequency

0
P( f ) d f =

1
2

∫ ∞

0
P( f ) d f (13)

3. Band Power: The sum of spectral power within a specified frequency band.

Band Power =
∫ fhigh

flow

P( f ) d f (14)

where flow and fhigh are the lower and upper bounds of the frequency band.
4. Occupied Bandwidth: The frequency bandwidth contains a specified percentage (e.g.,

90%) of the total power. ∫ fhigh

flow

P( f ) d f = 0.9 ·
∫ ∞

0
P( f ) d f (15)

5. Power Bandwidth: The width of the frequency band within which a significant portion
of the signal power is concentrated.

Power Bandwidth = fhigh − flow (16)

where flow and fhigh are defined such that they encompass a specified percentage of
the total power.

6. Peak Amplitude: The maximum amplitude within the specified frequency band.

Peak Amplitude = max(P( f )) (17)

where the maximum is taken over the specified frequency band.
7. Peak Location: The frequency at which the peak amplitude occurs.

Peak Location = argmax(P( f )) (18)

where argmax returns the frequency at which P( f ) is maximized.

In this study, a total of 7 features were generated for each of the 11 signals, resulting in
77 features from the frequency domain.

2.5. Features Generation in Time–Frequency Domain

For the time–frequency domain, the MeanEnvelopeEnergy feature is used to analyze
tool wear, capturing the mean energy of the upper and lower envelopes for each intrinsic
mode function (IMF) [27–30]. The generation involves computing the mean envelope
energy of the IMFs derived from the input time-domain signals, for which the empirical
mode decomposition (EMD) [31] method was applied. The final result was calculated
by averaging the energy of the upper and lower envelopes for each IMF. By doing this,
the signal’s energy distribution is encapsulated in it. The resulting feature provides a
compact yet informative representation of the signal’s energy characteristics, pivotal for
assessing tool wear in the milling processes. Each of the 11 original signals produced a
10-element vector, and a total of 110 potential features (MeanEnvelopeEnergy).
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Mathematically, the MeanEnvelopeEnergy feature can be defined as follows:

MeanEnvelopeEnergy =
1
N

N

∑
n=1

(
1

Mn

Mn

∑
m=1

√
Un

m(t)2 + Ln
m(t)2

)
(19)

where:

• N is the total number of IMFs considered for each signal.
• Mn represents the number of discrete time points in the n-th IMF.
• Un

m(t) and Ln
m(t) denote the upper and lower envelope values at time t for the m-th

time point in the n-th IMF, respectively.

2.6. Summary of Feature Generation Techniques

We consolidate three distinct approaches to feature generation: time domain, frequency
domain, and time–frequency domain analyses, which are applied to monitoring the milling
process. The cumulative exploration led to the identification of 308 potential features,
offering a comprehensive toolkit for enhancing recognition accuracy.

In traditional machine learning approaches such as support vector machines (SVMs) or
boosting ensemble decision trees, the feature generation process typically involves extract-
ing relevant information from the dataset without considering sequential dependencies.
Each training sample is represented as a single point in a high-dimensional feature space,
with a size of 1 × 308. This method is effective for models that do not take into account the
temporal sequence of the data.

However, when dealing with long short-term memory (LSTM) networks, the scenario
changes significantly. LSTMs are designed to recognize patterns in sequences of data,
making them particularly suitable for time-series analysis. In those applications, the order
and context of the data points are crucial. For LSTMs, the feature generation process must
incorporate sequential information, leading to a transformation in the data representation.

In the context of the presented application, while traditional machine learning models
treat the entire dataset as a single block (frame size equal to the length of the signal, resulting
in a sample size of 1 × 308), LSTM requires the data to be divided into smaller sequences.
This division results in the creation of 100 frames from the original signal, with each frame
being a sequence of data points. The frame size for LSTM is determined by dividing the
length of the signal by 100 and rounding down to the nearest integer (floor function).
This ensures that each sequence captures a portion of the temporal pattern present in the
data. Consequently, for LSTM, the dimensionality of each training sample transforms to
100 × 308, with each sequence representing a step in the temporal pattern.

This fundamental difference in feature generation highlights the versatility of LSTM
in handling time-series data, enabling the model to capture the dynamic changes over
time. This factor is particularly advantageous in applications such as tool state recognition.
The ability of LSTM to process data in sequences allows it to learn from the temporal
dependencies and variations in the signal, providing a more nuanced understanding of the
changes in the tool’s condition over time.

2.7. Support Vector Machines (SVMs)

A support vector machine (SVM) [32] is a supervised learning method that creates a
hyperplane or set of hyperplanes in a high-dimensional space. The algorithm itself has a
wide variety of applications, including classification. In this case, good separation (called
a functional margin) is achieved by finding a hyperplane with the highest distance to
the nearest data points of any given class. A larger margin in this case indicates that the
algorithm can generalize better, improving the classification quality.

SVMs are effective tools for solving problems with high-dimensional feature spaces
and non-linear data structures. They are particularly useful when the number of dimensions
exceeds the number of samples. SVMs are well-suited for complex machine learning
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problems, such as the ones presented in this paper, where traditional algorithms may
struggle to find an accurate solution.

The parameters used for training the SVM are as follows:

• method: onevsone;
• kernel: radial basis function (RBF);
• C (regularization parameter): 100;
• gamma (kernel coefficient): 0.001.

Feature Selection for SVM Using Sequential Feature Selection

Sequential feature selection (SFS) [33] is a method used in machine learning to choose
a subset of important features for building a model. SFS aims to reduce the number of
input features to enhance the model’s performance. This method is especially helpful
when dealing with datasets that have a large number of parameters, some of which may be
unnecessary or duplicative.

Sequential feature selection for SVM operates as follows:

1. Define a random, non-stratified partition for 10-fold cross-validation on n observations,
where n is the number of observations in the dataset.

2. Initialize the selected feature set S as an empty set.
3. For each feature xi not in S, compute the cross-validated criterion value using the

SVM function. This involves training the SVM model on the dataset including xi and
evaluating its performance.

4. Add the feature xi with the smallest criterion value (or the largest if the criterion is
accuracy or another measure where higher values are better) to S.

5. For each feature xi not in S, define a candidate feature set Ci as S ∪ {xi}. Compute the
cross-validated criterion value using the SVM function for Ci.

6. Among the candidate sets Ci, select the set that reduces (or increases) the criterion value
the most when compared to the criterion value for S. Add the feature corresponding
to the selected candidate set to S.

7. Repeat steps 5 and 6 until adding a feature does not decrease (or increase) the criterion
value by more than the termination tolerance value.

This process results in a subset of features that are deemed most relevant for the SVM
model, thereby potentially improving the model’s performance by reducing the overfitting
and improving generalization.

2.8. Boosting Ensemble Decision Trees

In the presented approach, an ensemble classifier that combines the decisions of
100 individual classification trees is constructed. Each tree contributes to the final decision.
Subsequent trees focus on the errors made by their predecessors. This process not only
amplifies the ensemble’s ability to learn from the training data but also enhances its
generalization to new, unseen data [34].

For the boosting ensemble decision trees training phase, the following hyperparame-
ters were used:

• NLearn: 100;
• Method: Bag;
• MinLeaf: 2;
• Prune: off;
• MergeLeaves: off;
• LearnRate: 0.13717.

This setup, particularly the method ‘Bag’, aims to create an ensemble of trees where
each tree is trained on a random subset of the data. This randomization helps in reducing
overfitting and improving the model’s robustness. The learning rate of 0.13717 controls the
contribution of each tree to the final model, ensuring that the ensemble learns gradually
and avoids overfitting.
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The use of Bayesian optimization for hyperparameter tuning led to a more efficient
and accurate boosting ensemble decision trees model. This improvement minimized model
overfitting and maximized its predictive accuracy.

2.9. Long Short-Term Memory (LSTM)

The LSTM model is designed to process varying lengths of input sequences initiated
by a sequence input layer. The architecture includes two LSTM layers: the first has 750 units
with the output mode set to ‘sequence’, enabling it to return sequences for the subsequent
layers, and the second has 500 units with the output mode set to ‘last’, which helps in
reducing the output to the final state only. Between and after these LSTM layers, dropout
layers with a rate of 0.2 are applied to mitigate overfitting by randomly omitting a portion
of the features during training. The model concludes with a fully connected layer that
maps to the number of classes, followed by a softmax layer for classification probabilities
and a final classification layer. The structure is summarized as follows [35]:

layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(750, ’OutputMode’, ’sequence’)
dropoutLayer(0.2)
lstmLayer(500, ’OutputMode’, ’last’)
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

The training utilized the Adam optimizer, with the following hyperparameters set:

• learning rate: 0.001;
• maxEpochs: 1000;
• batchSize: 128;
• L2 Regularization: 0.0001.

The training utilized the Adam optimizer, with settings adjusted to accommodate GPU
execution for enhanced performance. The options included shuffling data every epoch,
displaying training progress plots, and setting a maximum of 1000 epochs.

The model’s performance was evaluated using k-fold cross-validation, with k set to 10.
This approach partitioned the data into 10 sets, using 9 for training and 1 for testing in each
fold. Predictions were made on the test sets, and the results were aggregated to compute
the overall performance metrics, such as accuracy and the confusion matrix.

3. Results
3.1. Numerical Experiments

In this study, numerical experiments were conducted to evaluate the performance
of the three machine learning approaches: support vector machines (SVMs), boosting
ensemble decision trees, and long short-term memory (LSTM) networks. The experiments
were designed to classify the tool condition into three distinct classes: green, yellow,
and red. A total of 75 samples were used, with each class containing 25 samples. All
experiments were performed in Matlab 2024a computational environment on a PC with
Ubuntu operating system. The machine specification is the same as in previous experiments,
and is presented in [5].

To ensure a robust evaluation of the models, k-fold cross-validation was applied,
with k = 10 representing the number of folds. This method involves partitioning the data
into k subsets (folds). Each model is trained on k − 1 folds and tested on the remaining
fold, repeating this process k times, such that each fold is used exactly once as a test set.
The results are then averaged to provide an overall performance metric.

The dataset for each class was balanced, with 25 samples per class, ensuring that each
model had an equal representation of each tool condition during training and testing. This
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balance is crucial to avoid biased results and ensure that the models can generalize well to
new, unseen data.

For each approach, the following steps were taken:

1. Data partitioning using k-fold cross-validation.
2. Training the model on k − 1 folds and testing on the remaining fold.
3. Repeating the process k times to ensure each fold is used as a test set.
4. Averaging the performance metrics to obtain an overall evaluation of the model.

The k-fold cross-validation method provided a comprehensive evaluation of each
model, ensuring that the results were reliable and could be generalized to new data.
This approach also helped in identifying the strengths and weaknesses of each model in
classifying the tool condition based on the given sensor data.

3.2. Results for SVM

The parameters used for training the SVM are as follows:

• Standardize the predictors: Standardizing the predictors ensures that each feature
contributes equally to the model by scaling them to have a mean of zero and a standard
deviation of one.

• RBF kernel: The radial basis function (RBF) kernel is used as the kernel function, which
helps in handling non-linear data by mapping it into a higher-dimensional space.

• FitPosterior: This option is enabled to estimate posterior probabilities for classification,
providing probabilistic outputs for each class.

• onevsone: For each binary learner, one class is positive, another is negative, and the
software ignores the rest. This design exhausts all combinations of class pair assign-
ments, ensuring comprehensive coverage of all class pairs for multi-class classification.

• Hyperparameter optimization: Bayesian optimization (BoxConstraint = 212.13, Ker-
nelScale = 3.5563, coding = onevsone, standardize = true)

The confusion matrix for SVM classification (Figure 4) presents strong performance
in differentiating between the three classes: green, yellow, and red. For the green class,
the model has a perfect classification with 25 true positives and no false positives or false
negatives. This indicates that every instance that was actually green was predicted as green,
and no instances of other classes were incorrectly predicted in this case.

Figure 4. Confusion matrix for SVM. Numbers on the diagonal denote the correctly classified cases.
Numbers off the diagonal denote cases that were not correctly classified. The colors used represent
the proportions of the examples, and further visualize the number of cases for each case, with lighter
values denoting lower counts.
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The yellow class also shows a strong classification performance, with 23 true positives.
However, there are two instances where the yellow class was incorrectly predicted as
red. This represents a small classification error for yellow, showing that the SVM model
occasionally confuses yellow with red.

The red class has 24 true positives, demonstrating that the SVM model is generally
effective in identifying this class as well. There is only a single instance where red was
misclassified as yellow, indicating a very high accuracy in classifying red instances as well.

The SVM model demonstrates excellent performance with a total of 3 misclassifications
out of 75 instances, resulting in a high overall accuracy. The model is particularly precise in
classifying green, with slightly lower precision for yellow and red due to minimal confusion
between these two classes.

The support vector machine (SVM) classifier demonstrated outstanding performance
across various metrics for each class, as summarized in Table 2. For the ‘green’ class,
the SVM achieved perfect scores in all metrics with precision, sensitivity (recall), specificity,
F1 score, and accuracy of 100.00%. This indicates the SVM model’s exemplary capability to
classify the ‘green’ class without any errors.

Table 2. Performance metrics of the SVM model, denoting the key parameters used for model
evaluation for each of the recognized classes.

Class Precision Sensitivity Specificity F1Score Accuracy

Green 100.00% 100.00% 100.00% 100.00% 100.00%
Yellow 95.83% 92.00% 98.00% 93.87% 96.00%

Red 92.30% 96.00% 96.00% 94.11% 96.00%

Overall 96.00%

For the ‘yellow’ class, the classifier also showed high effectiveness with a precision of
95.83%, sensitivity of 92.00%, and specificity of 98.00%. The F1 score for the ‘yellow’ class
was 93.87%, and the accuracy was reported at 96.00%. These results signify a high degree
of reliability in classifying the ‘yellow’ class, with a very small margin of error.

For the ‘red’ class, the SVM achieved a precision of 92.30%, sensitivity of 96.00%,
and specificity of 96.00%. The F1 score was slightly lower at 94.11%, with the accuracy for
the ‘red’ class also at 96.00%. This denotes that the classifier was slightly less precise with
the ‘red’ class compared to the ‘green’ class but still maintained high accuracy.

Overall, the SVM classifier’s performance was robust, with an overall accuracy of
96.00% across all classes, showcasing its capability as a reliable model for classification
tasks in the given context.

3.3. Results for Boosting Ensemble Decision Trees

The parameters used for training boosting ensemble decision trees are as follows:

• Method: AdaBoostM2—boosting method for multi-class classification.
• NumLearningCycles: 96—the number of learning cycles in the ensemble.
• LearnRate: 0.58881—the learning rate for the ensemble.
• MinLeafSize: 5—the minimum number of observations per leaf in the decision tree.
• Hyperparameter optimization: Bayesian optimization.

The confusion matrix depicted in Figure 5 shows the performance of the optimized
boosting ensemble decision trees classification model, applying a boosting approach with
100 trees for the three wear classes used for classification.
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Figure 5. The confusion matrix for optimized boosting ensemble decision trees. Numbers off the
diagonal denote cases that were not correctly classified. The colors represent the proportions of the
examples, further visualizing the number of cases for each category, with lighter values denoting
lower counts.

For the green class, the model exhibits commendable accuracy, with the majority of
instances correctly classified, reflecting a high sensitivity rate of 96%. The precision for
this class stands at 88.88%, indicating a relatively lower, but still substantial, likelihood of
instances being accurately identified as green out of all instances predicted as green.

The yellow class presents a challenge with a sensitivity of 84%, showing some instances
of misclassification. The precision rate for yellow, at 87.50%, indicates that while the model
can identify yellow instances with reasonable accuracy, there is room for improvement in
reducing false positives.

The red class showcases a sensitivity of 88% and a precision of 91.66%, indicating a strong
ability of the model to identify red instances accurately, albeit with a small margin of error.

Table 3 further details the performance metrics of the boosting ensemble decision trees
model. It highlights the model’s strengths in specific areas, such as high precision and
sensitivity for the red class. It identifies areas for improvement, such as the slightly lower
sensitivity for the yellow class.

Table 3. Performance metrics of the optimized boosting ensemble decision trees, denoting the key
parameters used for model evaluation for each of the recognized classes.

Class Precision Sensitivity Specificity F1Score Accuracy

Green 88.88% 96.00% 94.00% 92.30% 94.66%
Yellow 87.50% 84.00% 94.00% 85.71% 90.66%

Red 91.66% 88.00% 96.00% 89.79% 93.33%

Overall 89.33%

Overall, the optimized boosting ensemble decision trees model demonstrates robust
performance with an overall accuracy of 89.33%. The model effectively balances precision
and sensitivity across classes, making it a reliable tool for classification tasks in this context.
Future work may focus on enhancing the model’s sensitivity for the yellow class to improve
its applicability and effectiveness further.
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3.4. Results for LSTM

The parameters used for training LSTM are as follows:

• Optimizer: adam—optimizer for training.
• ExecutionEnvironment: GPU—utilizes GPU for training.
• Shuffle: every-epoch—shuffles the data every epoch.
• MaxEpochs: 1000—sets the maximum number of training epochs to 1000.
• No of lstmLayer: 750

The performance evaluation of the long short-term memory (LSTM) model is illus-
trated through the confusion matrix in Figure 6 and the detailed performance metrics in
Table 4. The LSTM model was similarly assessed across three distinct classes: green, yellow,
and red, representing different states of the tool used in the milling process.

Figure 6. Confusion matrix for LSTM. Numbers off the diagonal denote cases that were not correctly
classified. The colors used represent the proportions of the examples and visualize the number of
cases for each case, with lighter values denoting lower counts.

Table 4. Performance metrics of LSTM denoting the key parameters used for model evaluation for
each of the recognized classes.

Class Precision Sensitivity Specificity F1Score Accuracy

Green 61.90% 52.00% 84.00% 56.52% 73.33%
Yellow 34.48% 40% 62.00% 37.03% 54.66%

Red 44.00% 44.00% 72.00% 44.00% 62.66%

Overall 45.33%

The confusion matrix reveals the model’s performance and challenges in classifying
the tool states. The green class shows a precision of 61.90%, with the model correctly
identifying 52% of green instances but also exhibiting a relatively high misclassification
rate, leading to a specificity of 84%. This indicates a difficulty in distinguishing green states
from others, potentially due to overlapping characteristics with yellow and red states.

For the yellow class, the LSTM model achieves a precision of 34.48% and a sensitivity
of 40%, suggesting a significant challenge in accurately identifying this intermediate tool
state. The model’s specificity of 62% for the yellow class further underscores the difficulty
in classifying instances that may not exhibit clear-cut features of wear or optimal condition.

The red class results indicate a precision and sensitivity of 44%, with a specificity
of 72%. These figures suggest that while the LSTM can recognize severely worn tools at
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a moderate rate, there is still substantial room for improvement in distinguishing these
instances from less worn states.

Table 4 provides a comprehensive breakdown of the LSTM’s performance, quantifying
its accuracy, precision, sensitivity, and F1 scores across all classes. Notably, the overall
accuracy of the LSTM model stands at 45.33%, highlighting the challenges faced by the
model in this multi-class classification task.

3.5. Comparison

The performance comparison of the three models, support vector machine (SVMs),
boosting ensemble decision trees, and long short-term memory (LSTM) neural network,
is summarized in Table 5. The comparison focuses on two main aspects: the number of
critical errors and the average accuracy achieved by each model.

Table 5. Comparative analysis of the performance metrics across three different classifiers. Two main
parameters are shown: accuracy, which measures the overall amount of correctly classified cases, and
the number of critical errors (mistakes between green and red classes) that each classifier performed.

Classifier Critical Errors Training Time Prediction Time Accuracy

SVM 0 2 h 34 m 12 s 0.12 s 96.00%
Boosting

Ensemble DT 1 18 m 29 s 0.05 s 89.33%

LSTM 7 13 m 17 s 0.69 s 45.33 %

The SVM model outperforms the others with the highest average accuracy of 96.00%
and no critical errors. This demonstrates its robustness and reliability for the tool state
recognition task in milling processes. This high performance can be attributed to SVM’s
effectiveness in handling high-dimensional data and its capability of finding the optimal
hyperplane that separates the different tool states.

The boosting ensemble decision trees, applying a boosting approach with 100 trees,
show decent performance with an average accuracy of 89.33%. They encounter only
one critical error, indicating reasonable reliability. The ensemble’s strength lies in its
ability to reduce bias and variance, combining multiple weak learners to improve overall
prediction accuracy.

In contrast, the LSTM model exhibits a significant drop in performance with the lowest
average accuracy of 45.33% and the highest number of critical errors (7). This may be due to
the LSTM’s sensitivity to parameter settings and the complexity of time-series data in tool
state recognition, which poses challenges in capturing temporal dependencies effectively.

The comparative analysis of the LSTM, SVM, and boosting ensemble decision trees
reveals significant insights into the challenges and advantages of each model in the context
of tool state recognition in milling processes. The low effectiveness of the LSTM model
is particularly noteworthy, with its challenges attributed to the limited training data, the
absence of feature selection for sequential data, and the lack of domain-specific pre-trained
models for time series analysis. These factors collectively hinder the LSTM’s ability to learn
and generalize effectively, leading to its diminished performance compared to SVM and
boosting ensemble decision trees.

In contrast, the SVM model’s superior performance underscores the importance of
appropriate feature selection and the advantage of methods well-suited to high-dimensional
data. The boosting ensemble decision trees, with their inherent feature selection capabilities
and ensemble learning approach, also demonstrate commendable performance, though
not matching the SVM’s effectiveness.

This comparison not only highlights the strengths and weaknesses of each model but
also points to broader challenges in applying deep learning models like LSTM to time
series data in industrial applications. The absence of pre-trained networks and the critical
need for extensive training data and effective feature selection mechanisms are evident
challenges that need to be addressed in future research.
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Efforts to develop domain-specific pre-trained models for time series data, advanced
feature selection techniques, and strategies to augment training data could significantly
enhance the applicability and performance of deep learning models in this domain. Such
advancements would not only improve model accuracy and reliability but also expand the
potential of machine learning in industrial and manufacturing settings, leading to more
efficient and automated processes.

The choice of a traditional machine learning or deep learning algorithm critically
depends on the nature of the data, the specific requirements of the application, and the
desired outcome of the analysis. Table 6 provides a detailed comparative analysis of three
widely used algorithms: support vector machines (SVMs), boosting ensemble decision
trees, and long short-term memory (LSTM) networks. Each of these classifiers has distinct
characteristics that make them suitable for different types of machine learning or deep
learning tasks.

Table 6. Comparative analysis of algorithms, denoting requirements for sequential data, key chal-
lenges that each of them faces, and the main advantages.

Classifier Sequential Data
Required Challenges Advantages

SVM No Sensitive to feature scaling,
kernel choice critical

Effective in high
dimensional spaces

Boosting
Ensemble DT No Prone to overfitting; requires

careful tuning
Good performance with

non-linear data

LSTM Yes Requires large dataset,
complex model tuning

Excellent with
sequential data

The suitability of each classifier varies depending on the specific challenges and data
characteristics of the task at hand. SVMs are preferred in high-dimensional environments
where the main goal is to create a clear margin of separation between classes. Boosting
decision trees are often chosen for their flexibility and effectiveness in solving regression and
classification problems involving complex datasets with non-linear relationships. LSTMs
are useful in scenarios where understanding the dynamics of data over time is crucial
for prediction.

4. Discussion

The research presented in this paper evaluates the efficacy of different machine learn-
ing models—SVM, LSTM, and boosting ensemble decision trees—in the context of tool
condition monitoring in the milling processes.

Support vector machines (SVMs) are particularly renowned for their ability to handle
high-dimensional data efficiently. They work by finding a hyperplane that best divides a
dataset into classes, which is particularly useful in complex classification problems where
the decision boundaries are not readily apparent. The major challenges with SVM involve
its sensitivity to the choice of kernel and the scaling of features; the right choice of kernel
and proper feature scaling can significantly influence the model’s performance. Despite
these challenges, SVM’s effectiveness in high-dimensional spaces makes it an excellent
choice for classification tasks where the number of features exceeds the number of samples.

The superiority of SVM in our experiments can be theoretically attributed to its
structural risk minimization principle, which effectively handles the high-dimensional
space of the features extracted from the milling data. The SVM’s ability to construct a
hyperplane in a high-dimensional space provides an optimal separation boundary between
the classes, which is critical given the subtle variations in the tool’s wear condition. On the
other hand, the LSTM model underperformed, which could be due to its reliance on large
datasets to capture complex dependencies in sequence data observed, while in our study it
had limited data size and lacked a pre-trained network for times series data.
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Boosting ensemble decision trees, such as those used in gradient-boosting machines
(GBMs), harness the power of many weak decision trees to create a robust classifier. By
focusing on correcting the errors of previous trees in a sequence, boosting methods can
dramatically improve model accuracy. However, these models are susceptible to overfitting,
especially when the data are noisy or when the trees are too complex. They also require
careful tuning of parameters such as the number of trees and learning rate to balance
bias and variance effectively. Nevertheless, their strength in handling non-linear data
makes them suitable for complex data sets where the relationships between variables
are nonlinear.

Boosting ensemble decision trees showed a balanced performance, leveraging the
strengths of multiple weak learners to improve classification accuracy. The ensemble
approach is particularly effective for non-linear and complex decision boundaries that
characterize tool wear data.

A long short-term memory (LSTM) network, a type of recurrent neural network, is
uniquely capable of analyzing sequential data. This makes this network ideal for appli-
cations such as time-series analysis, natural language processing, and other tasks where
the order of data points is crucial. LSTMs can capture long-term dependencies in data
sequences, a feature that traditional methods may fail to encapsulate. However, LSTMs
come with their own set of challenges, including the need for large amounts of data to train
effectively and the complexity involved in tuning multiple hyperparameters such as the
number of layers and the size of the LSTM units. Despite these challenges, the ability of
LSTMs to process sequences and their robustness to “input shifts” (changes in the input
data distribution over time) make them invaluable for dynamic systems analysis.

The results contribute to the ongoing debate regarding the selection of appropriate
machine learning techniques for predictive maintenance in manufacturing. While SVM
and boosting algorithms are well-established in the literature, their comparative analysis
with deep learning techniques like LSTM in the specific context of milling operations offers
new insights. This study highlights the need for further investigation into hybrid models
that combine the memory capability of LSTM with the robust classification features of SVM
or decision trees, potentially leading to models that better capture the temporal and spatial
characteristics of tool wear.

Furthermore, our findings underscore the importance of developing domain-specific
pre-trained models for time-series analysis in industrial applications. This could signif-
icantly reduce the data requirements and computational costs associated with training
models from scratch.

This study is not without limitations. The relatively small dataset and the specific
focus on milling operations limit the generalizability of the findings. Future research could
explore the application of these models across different types of machining processes and
with more diverse datasets to validate and extend our results. Additionally, integrating
sensor fusion techniques to combine multiple types of data, such as vibration, acoustic, and
force measurements, may enhance the accuracy and robustness of the predictive models.
Finally, exploring feature engineering and selection methods tailored to sequential data can
further optimize LSTM performance.

Improvements Achieved

During this study, the following key improvements were realized:

• Feature selection for SVM: Implementing sequential feature selection (SFS) signifi-
cantly enhanced the performance of the SVM model by reducing the feature space
and improving the model’s ability to generalize from the training data.

• Optimizing boosting ensemble decision trees: Utilizing Bayesian optimization for
hyperparameter tuning led to a more efficient and accurate boosting ensemble decision
trees model. This improvement minimized model overfitting and maximized its
predictive accuracy.
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• Enhanced data preprocessing: Improved data preprocessing techniques, including
standardization and normalization, ensured that the models received high-quality
inputs, which in turn improved their performance.

• Comprehensive evaluation framework: The implementation of k-fold cross-validation
provided a robust framework for evaluating the models, ensuring that the performance
metrics were reliable and representative of the models’ capabilities.

• Integration of domain knowledge: Incorporating domain-specific knowledge in the
feature engineering process helped in selecting the most relevant features, improving
the model’s ability to discern between different tool states.

• Real-time monitoring capabilities: Developing a framework for real-time data acquisi-
tion and processing enabled immediate feedback on tool conditions, which is crucial
for industrial applications.

• Feature engineering: Developing novel feature engineering techniques that transform
raw sensor data into more meaningful representations, enhancing the models’ ability
to learn from the data.

• Cross-validation techniques: Applying advanced cross-validation techniques, includ-
ing a stratified k-fold approach, to ensure that each fold was representative of the
overall dataset, thereby improving the robustness of the evaluation.

• Automated hyperparameter tuning: Implementing automated hyperparameter tuning
methods, such as grid search and random search, ensured that the models were
optimized for performance without manual intervention.

• Balanced dataset: Ensuring that the dataset was balanced across the three classes
(green, yellow, red) prevented biased training and testing, which contributed to more
accurate and generalizable models.

These improvements have collectively contributed to the advancement of machine
learning techniques for tool condition monitoring in milling processes, demonstrating the
potential for more effective and reliable predictive maintenance in industrial settings.

The key improvements achieved in this study underline the importance of meticulous
feature selection, optimized hyperparameter tuning, and robust data preprocessing. These
enhancements not only improved the individual performance of the SVM and boosting
ensemble decision tree models but also set a foundation for future research that could
explore the integration of these methodologies with more complex models like LSTM. The
balanced dataset and comprehensive evaluation framework further ensured the reliability
and applicability of the findings, paving the way for the development of more sophisticated,
domain-specific predictive maintenance solutions.

5. Conclusions

This study assessed the effectiveness of support vector machines (SVM), long short-
term memory (LSTM) networks, and boosting ensemble decision trees in tool condition
monitoring during the milling processes. Each method demonstrated unique strengths and
limitations when applied to the high-dimensional and sequential data typical for industrial
applications. The findings illustrate that SVM provided the highest accuracy, while LSTM
lagged in performance due to its sensitivity to data size and feature selection challenges.

Several implications arise for future research. The potential for hybrid models inte-
grating the temporal learning capabilities of LSTM with the robust classification abilities
of SVM and decision trees should be explored. Such models may better capture both the
temporal dynamics and complex feature interactions of the tool wear data.

The development of domain-specific models tailored for industrial applications could
address the requirement for extensive labeled training data for models such as LSTM.
Investigating techniques for effective transfer learning and unsupervised pre-training in
this domain might reduce this dependency and enable the implementation of advanced
machine learning models in industrial settings.

Moreover, future work should consider expanding the dataset and including diverse
machining operations to validate and generalize the current findings. Extending the



Appl. Sci. 2024, 14, 5913 20 of 21

feature set through advanced signal processing techniques and exploring the integration of
multimodal data sources, such as temperature and material properties, could also provide
deeper insights into the condition monitoring processes.

Lastly, addressing the interpretability of machine learning models in manufacturing
contexts remains a crucial research direction. Developing methods that provide clearer
insights into the decision-making processes of complex models will enhance their practical
applications and trustworthiness in real-world industrial solutions.
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7. Szwajka, K.; Trzepieciński, T. Effect of tool material on tool wear and delamination during machining of particleboard. J. Wood
Sci. 2016, 62, 305–315. [CrossRef]

8. Wei, W.; Li, Y.; Xue, T.; Tao, S.; Mei, C.; Zhou, W.; Wang, J.; Wang, T. The research progress of machining mechanisms in milling
wood-based materials. BioResources 2018, 13, 2139–2149. [CrossRef]

9. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
10. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
11. Ibrahim, I.; Khairuddin, A.S.M.; Abu Talip, M.S.; Arof, H.; Yusof, R. Tree species recognition system based on macroscopic image

analysis. Wood Sci. Technol. 2017, 51, 431–444. [CrossRef]
12. Li, R.; Wei, P.; Liu, X.; Li, C.; Ni, J.; Zhao, W.; Zhao, L.; Hou, K. Cutting tool wear state recognition based on a channel-space

attention mechanism. J. Manuf. Syst. 2023, 69, 135–149. [CrossRef]
13. Li, Z.; Liu, X.; Incecik, A.; Gupta, M.K.; Królczyk, G.M.; Gardoni, P. A novel ensemble deep learning model for cutting tool wear

monitoring using audio sensors. J. Manuf. Process. 2022, 79, 233–249. [CrossRef]
14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
15. Lin, K.K.Y. GitHub Repository for AlexNet Model. 2020. Available online: https://gist.github.com/kevinlin311tw/a0a36e2b4d6

ab9b09201 (accessed on 24 April 2023).
16. Stanford Vision Lab, Stanford University; Princeton University. ImageNet Web Page. 2020. Available online: https://image-net.

org/ (accessed on 24 April 2023).
17. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

http://doi.org/10.1007/s00226-019-01086-z
http://dx.doi.org/10.22630/MGV.2019.28.1.2
http://dx.doi.org/10.3390/s20236978
http://dx.doi.org/10.22630/MGV.2019.28.1.1
http://dx.doi.org/10.3390/s23010448
http://dx.doi.org/10.3390/s23135850
http://www.ncbi.nlm.nih.gov/pubmed/37447700
http://dx.doi.org/10.1007/s10086-016-1555-6
http://dx.doi.org/10.15376/biores.13.1.Wei
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1007/s00226-016-0859-4
http://dx.doi.org/10.1016/j.jmsy.2023.06.010
http://dx.doi.org/10.1016/j.jmapro.2022.04.066
http://dx.doi.org/10.1145/3065386
https://gist.github.com/kevinlin311tw/a0a36e2b4d6ab9b09201
https://gist.github.com/kevinlin311tw/a0a36e2b4d6ab9b09201
https://image-net.org/
https://image-net.org/
http://dx.doi.org/10.1007/s11263-015-0816-y


Appl. Sci. 2024, 14, 5913 21 of 21

18. Demir, F.; Turkoglu, M.; Aslan, M.; Sengur, A. A new pyramidal concatenated CNN approach for environmental sound
classification. Appl. Acoust. 2020, 170, 107520. [CrossRef]

19. Choudhary, A.; Mishra, R.K.; Fatima, S.; Panigrahi, B. Multi-input CNN based vibro-acoustic fusion for accurate fault diagnosis
of induction motor. Eng. Appl. Artif. Intell. 2023, 120, 105872. [CrossRef]
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