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Abstract: Due to the emergence of various new applications, such as short videos and online games,
higher requirements of their computing and storage capacity are demanded of mobile networks. The
traditional cloud computing paradigm has the shortcomings of large latency and high bandwidth
demand of the core network. Therefore, how to mine the hotspot distribution of these applications
and reasonably configure 5G edge nodes to reduce latency and core network bandwidth are facing
great challenges. To address these issues, we designed a placement method for the 5G edge nodes
based on mobile hotspots. In this method, we first cluster all locations from the user trajectories to
obtain the cluster areas. Further, we extract the features, such as the number of users and duration
time in all cluster areas, and extract the hotspots from all cluster areas based on the features of
each cluster. Then, we introduce the base station’s high load utilization rate and the core network’s
bandwidth reduction rate as the optimization parameters to construct the mathematical model
of multi-objective optimization. Finally, we formalize the model into a 0–1 integer programming
problem and design a greedy algorithm to solve this model. We also complete a series of experiments
to evaluate our proposed methods using the GeoLife dataset. The experimental results show that the
high load utilization rate can be increased up to 7.69%, and the bandwidth reduction rate of the core
network can be improved up to 6.34%.

Keywords: 5G network; edge server; cluster method; mobile hotspot; greedy algorithm; placement of
base station

1. Introduction

In the 5G network of various mobile terminals and Internet of Things devices, many
new applications (such as unmanned driving, augmented reality and virtual reality technol-
ogy, large-scale online games, etc.) have led to the explosive growth of data communication
and computing tasks in mobile networks [1]. Most of these new applications are computa-
tionally intensive and delay-sensitive applications, which have higher requirements for
service delay and reliability. However, the existing mobile cloud computing paradigm,
which offloads computing tasks generated by mobile devices to the cloud center for pro-
cessing, makes it difficult to meet the real-time requirements of mobile users. The main
reason is that this model not only consumes a lot of core network bandwidth but also has a
negative impact on the overall performance of the core network.

In order to solve the problems outlined above regarding the 5G network, the European
Telecommunications Standards Institute proposed the concept of mobile edge comput-
ing [2]. The basic idea of mobile edge computing is to sink computing ability and storage
capacity to the edge servers of the mobile access network near the users (such as 5G base
stations), with the goal of the deep integration of traditional communication networks and
Internet services [3,4]. Therefore, mobile edge computing can not only greatly reduce the
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computing delay [5] but also significantly save the core network bandwidth of the existing
cloud computing architecture and improve the economic benefits of Telcos.

Generally, each edge node is located near the base station, and users access the edge
node only through the base station. Logically, the base station and the edge node are
unified. Although 5G edge nodes can be connected to multiple base stations through the
core network, we only consider edge nodes that are physically close to the base station.
Because other edge nodes need to connect to this base station through the core network, in
our research scenario, the coverage of the 5G base station is equal to the coverage of the
edge node on the base station.

Unlike previous mobile networks, the 5G network uses high-frequency and ultra-
high-frequency (UHF). The two bands of 5G defined by 3GPP are FR1 and FR2. Our work
focuses on the FR2 band. The frequency range of FR2 is 24 GHz to 52 GHz. The existing
literature shows that the higher the frequency is, the smaller the coverage area is. In the case
of the same power as 4G base stations, 5G base stations using FR2 have smaller coverage
under the same geographical location, so more stations are needed to cover the same area.
At the same time, 5G base stations are equipped with edge servers supporting computing
and storage. So, the cost of 5G base stations is higher.

Obviously, a scientific and reasonable 5G base station deployment scheme can mini-
mize investment costs and maximize service benefits for telecom operators while meeting
user requirements. Therefore, considering the cost problem, the placement method of 5G
base stations can no longer adopt the full coverage mode like 4G base stations but adopt the
placement method in key areas with large populations and many computing requirements
(such as stadiums, railway stations, and resident areas, etc.).

By reasonably configuring 5G base stations (called edge nodes in this article) in key
areas, it can not only maximize the utilization rate of 5G base stations but also reduce the
load of the core network and improve the overall benefit of Telcos. This is also the purpose
of our research in this paper.

Therefore, how to find these key areas has become our basic work. Since the key areas
are generally the hotspot areas where users stay, we need to first dig out the user’s stay
areas by analyzing the characteristics of mobile users, such as the stay areas and dataflow
of users, and so on. Then, we determine the deployment location of 5G base stations
according to the user’s characteristics.

1.1. Related Works

Early base station placement of 3G and 4G only considers the coverage [6–8]; it is easy
to cause communication congestion in hotspot areas. Therefore, in the 5G network era, how
to make scientific placement and give reasonable locations of base stations has attracted
widespread attention.

Zheng et al. [9] proposed a machine learning framework based on user behavior
to solve the placement problem of 5G small base stations and designed a hypergraph
construction algorithm to solve it. Liu et al. [10] proposed an indoor small base station
placement strategy for commercial buildings based on power management to extend the
use time of mobile devices.

Considering both indoor and outdoor users, Qutqut et al. [11] proposed a dynamic
placement strategy to minimize data delivery costs and the utilization of the micro base
station. Lyu et al. [12] proposed an optimal placement algorithm for UAV base stations
based on a rotational placement strategy, which used a minimum number of stations to
cover the user terminals. Galkin et al. [13] first proposed a terminal classification method
based on the k-means algorithm and then deployed UAV base stations and ground base
stations according to the classification results. Bor-Yaliniz et al. [14] used a probabilistic
line-of-sight model to study the placement of a single UAV to support the traffic diversion
of ground base stations. To improve communication quality and coverage in UAV-enabled
systems, Carvajal-Rodriguez et al. [15] presented a systematic study on 3D placement in
UAV-enabled communication systems and introduced the threat analysis of this placement.
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Kalantari et al. [16] proposed a delay-tolerant and delay-sensitive 3D placement algorithm
for UAV base stations and studied the association relationship between users and base
stations. Mozaffari et al. [17] studied the optimization problem of joint placement of
micro base stations and UAV base stations to minimize the average delay of the network.
Obviously, the above research focuses on communication coverage.

With the rapid evolution of the 5G network, application services through mobile
intelligent terminals have become a hotspot in mobile computing. In this scenario, an
efficient and reasonable 5G edge node deployment scheme can effectively reduce the
computing cost and communication delay of mobile terminals and significantly improve
investment efficiency and resource utilization of Telcos.

Considering user requests and resource constraints, Zhai et al. [18] proposed an edge
node deployment method based on the Dueling-DQN algorithm to improve the service
requests and service responses. In order to reduce the overall cost of deploying edge
networks, Santoyo-González et al. [19] proposed an edge node placement framework
(EdgeON). This framework implemented an optimization strategy for the edge node
placement problem in the delay tolerance network.

In order to balance the workload of the edge server and the communication delay
between the client and the edge server, Ye et al. [20] proposed an edge server deploy-
ment method based on the genetic algorithm. This method transformed the edge server
deployment problem into a two-objective optimization problem under three constraints.

In recent years, location services in autonomous driving and public security based on
5G edge computing have become a new research hotspot. Albanese et al. [21] proposed a
5G base station placement scheme to address the deployment problem of 5G edge nodes
of telecom operators with low investment and high positioning accuracy. This scheme
selected the locations of the 5G base station from the candidate sites by a given throughput-
positioning ratio (TPR) so as to maximize both throughput and positioning accuracy. Li
et al. [22] proposed a placement algorithm of edge servers based on the access point
suitability assessment in a 5G network. This algorithm used the Analytic Hierarchy Process
(AHP) and entropy weight method to evaluate the suitability of each access point based on
its features and determine whether the access point is suitable for placing an edge server.

Through the cluster analysis of the locations of a large number of users, the distribution
characteristics and behavioral characteristics of users can be obtained. These characteristics
can improve the location selection of the base station deployment.

Yang et al. [23] put forward a spatiotemporal activity model, including the users’
spatiotemporal characteristics and users’ activity features. Fatima et al. [24] analyzed
the check-in data of social networks with geographic locations to extract the movement
characteristics and similarity characteristics of users and combined these characteristics into
the supervised learning algorithm to predict future locations. Noulas et al. [25] extracted
the spatio-temporal check-in data of users and used the linear regression method to predict
the next location of users.

Eric et al. [26] combined the user mobile characteristics with the user application char-
acteristics to predict the usage pattern of mobile applications. Shafiq et al. [27] constructed
a fine-grained model of geographical space and application data in cellular networks
and studied the correlation degree between applications and geographic locations. Xu
et al. [28] studied how, when, and where users used various applications to obtain the
spatial-temporal distribution of requests from different applications.

1.2. Our Contributions

For rapidly deploying the 5G edge networks, the first addressed problem is how to
select the placement location of 5G edge nodes. Because 5G network architecture is more
complex, there are more factors to be considered when 5G edge nodes are configured.
How to deploy 5G edge nodes reasonably with low cost and high service quality is an
NP-hard problem.
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Considering the relationship between the 5G edge node and user hotspot, this paper
proposes a placement method for 5G base stations. Our major contributions include:

(1) We first extract the user trajectory data from the given area and cluster all locations
from these trajectories to get the cluster areas.

(2) We calculate the characteristics, such as the number of users and duration time in each
cluster area, and extract the hotspots from all cluster areas based on the threshold of
the number of users and the threshold of the time slices.

(3) We define two parameters, the high load utilization rate of the base station and the
bandwidth reduction rate of the core network, and take the weighted sum of two
parameters as the optimization objective to build a mathematical model and design a
greedy algorithm to solve this model.

The remainder of this paper is organized as follows. Section 2 gives our placement
framework of the 5G edge nodes. Section 3 describes the extraction algorithm of cluster
areas based on DBSCAN, the hotspot extraction algorithm based on the sliding time
window, and the location selection algorithm of the 5G base station based on the hotspot
and benefit constraints. In Section 4, we conduct a series of experiments to evaluate our
proposed methods. Section 5 provides the conclusions.

2. Our Placement Framework of the 5G Edge Nodes

Unlike previous 4G base stations, 5G base stations are not only access points for mobile
users but also computing nodes and storage nodes for mobile users. When we configure or
deploy 5G base stations, we not only consider the coverage of hot spots, but also consider
the utilization of 5G base stations so as to achieve greater economic benefits at the same
deployment cost.

Because the 5G base stations’ integrated edge servers have computing and storage
capabilities, many factors such as coverage, user distribution, and user characteristics of the
deployed area should be considered comprehensively to design the placement framework
of 5G edge nodes. Figure 1 gives the placement framework of 5G edge nodes based on
mobile hotspots and user requirements.
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Figure 1. The placement framework of the 5G edge nodes is based on mobile hotspots.

In this framework, the DBSCAN algorithm is introduced to cluster the original loca-
tions of users so as to form some clustering areas suitable for 5G features by selecting the
Eps and MinPts parameters. Based on the sliding time window, the hotspot extraction algo-
rithm extracts some hotspot areas from cluster areas according to the user characteristics
and time characteristics of each cluster area. The multi-objective optimization algorithm
selects some locations from the hotspot areas to place 5G edge nodes according to the
benefits of Telcos and user requirements.
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3. Our Proposed Method

At present, we mainly use density-based clustering algorithms to analyze the user
distribution in a certain target area. However, the density-based clustering algorithm does
not consider the timestamp of each location, so the clustering result may not be a real
hotspot. For example, the users who quickly pass an area without stopping (such as the
subway station entrances) can also be treated as the clustering objects in this algorithm.

In order to obtain more accurate user hotspots, it is necessary to take into account the
timestamp contained in the user’s location. Therefore, we must further analyze the time
characteristics of the clustering results so as to eliminate the redundant locations obtained
by the users in the non-stay state.

Based on the above ideas, we propose a three-stage method to extract the user distri-
bution features in the deployed area. Firstly, the density-based clustering algorithm (such
as DBSCAN) is used to obtain the cluster area. Then, the user characteristics (such as the
number of users) and the time characteristics (such as the duration time) of all cluster areas
are computed based on the sliding time window. Finally, the hotspot areas are extracted to
support the placement of the 5G base station based on the user characteristics and the time
characteristics of cluster areas.

To better understand our method, the following are some definitions of terms.

Definition 1. Set of candidate locations for base station deployment.

It refers to a set of candidate placement locations for deploying base stations.

S {P1(x1, y1), P2(x2, y2), · · · , Pi(xi, yi), · · · , Pn(xn, yn)}.

where Pi(xi, yi) is the latitude and longitude of the ith candidate’s location. |S| is the size
of the set S, that is, the number of candidate locations.

Definition 2. User trajectory.

It refers to the set of a series of locations when the user moves in the geographi-
cal spaces according to the time sequence. A location is usually composed of latitude,
longitude, altitude, and timestamp. We defined the trajectory Tri of the ith user as
Tri =

{(
Pi

1, Ti
1
)
,
(

Pi
2, Ti

2
)
, · · · ,

(
Pi

j , Ti
j

)
, · · · ,

(
Pi

n, Ti
n
)
}. Here, Pi

j represents the location of
the ith user at Tj, and |T| represents the location number of the trajectory.

Based on the above definition, we further use D =
{

Tr1, Tr2, . . . , Tr|D|
}

to record all
user trajectories. Where |D| represents the number of user trajectories in the trajectory set.
Pi

j refers to the jth locations in Tri, and Ti
j is the timestamp of the jth location in Tri.

Definition 3. User cluster areas.

It refers to the clustered area where the user locations are concentrated within a small
distance, that is, the area with a large density of locations. We use C =

{
C1, C2, . . . , Ck, . . . C|C|

}
to record all user cluster areas. Where |C| represents the number of user cluster areas.

Each location in cluster areas is identified using three parameters: the coordinate
of this location, the timestamp of this location, and the user number corresponding to
this location. For example, the jth location of the ith cluster area is represented by (Cloca

ij ,

Ctime
ij , Cuser

ij ).

Definition 4. User hotspot areas.

It refers to the group cluster areas that meet certain conditions (such as duration time
and user number). For example, supermarket, hospital, and stadium, etc. Different hotspot
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areas usually correspond to different user interest scenarios, so the hotspot area is also
called the interest area.

Obviously, for improving the high performance/price at deploying the 5G edge nodes,
we first should choice the hotspot areas, especially hotspot areas with long duration time
to place 5G base stations.

3.1. The Extraction Algorithm of User Cluster Areas

Compared with other clustering algorithms, the DBSCAN algorithm can quickly
cluster and effectively process noise points, and it does not predefine the number of
clusters. Therefore, we use the DBSCAN algorithm to extract the cluster areas of users in
the first stage. In the DBSCAN algorithm, the following parameters are involved, which
have a decisive effect on the clustering result.

(1) ε-neighborhood: Given a point p, all the points whose distance from p is within Eps
are called the ε-neighborhood.

(2) MinPts: This is the threshold of the number of points in the ε-neighborhood. That is,
the minimum number of points in the ε-neighborhood when p becomes the core point.

(3) Core point: If the ε-neighborhood of a location point contains at least MinPts location
points, then the point is called the core point.

(4) Boundary point: If the location p is not a core point but falls in the neighborhood of a
core point, then p is called a boundary point.

(5) Noise point: If the point p is neither a core point nor a boundary point, then point p is
called a noise point.

When using the BDSCAN algorithm to cluster data sets, the distance parameter Eps
and density threshold MinPts need to be determined first. The selection of two parameters
directly determines the quality of the clustering results. Current experiments show that
when MinPts is constant if the Eps is too large, most points will converge into the same
cluster; If the Eps is too small, it will split one cluster into multiple clusters. When Eps is
constant, if the MinPts are too large, more points will be marked as noise points; if the
MinPts are too small, more points will be clustered into core points. Because the above two
parameters are closely related to the sample locations in the dataset, we need to optimize
two parameters by many experiments in Section 4.

Algorithm 1 gives the user cluster area extraction algorithm based on BDSCAN. The
input of this algorithm is the trajectory data set D of all users, Eps, and MinPts. The output
is the set C of user cluster areas obtained by clustering.

In Algorithm 1, the location, timestamp, and user number of all user trajectories
are combined into a new set NTS. At the same time, the location coordinates of all user
trajectories are formed into a new set of NLS, which is used as the input of the DBSCAN
clustering algorithm in Python.

Then, this algorithm calls the DBSCAN instance for clustering and gets the clustering
result for all locations, named the clustering label.

Each bit in the cluster label corresponds one-to-one to each location in the NLS. If the
label value is−1, the location point is a discrete point. If the label value is an integer greater
than 0, it means that the location points have been successfully clustered. All locations with
the same label value belong to the same cluster area.

Finally, according to the label value of the cluster result, the location with the same
label value, the time stamp, and the user number corresponding with this location are
stored in set C.
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Algorithm 1. The extraction algorithm of the user cluster areas based on BDSCAN

Input: D =
{

Tr1, Tr2, . . . , Tr|D|
}

, Eps, MinPts

Output: C =
{

C1, C2, · · · , C|C|
}

1: Initialize k to 0
2: For each Tri ∈ D Do
3: For each

(
Pi

j , Ti
j

)
∈ Tri Do

4: Put Pi
j , Ti

j and i into a new set of NTS

5: PutPi
j into a new location set of NLS

6: Executive DBSCAN clustering,
ClusterLabels← DBSCAN(Eps, MinPts).fit_predict(NLS)

7: Calculate the length of the ClusterLabels, CL←|ClusterLabels|
8: Exact the cluster number from ClusterLabels, CN←| set(ClusterLabels)| − 1
9: For each i ≤ CL Do
10: For each j ≤ CN Do
11: If ClusterLabels[j]==i Then
12: For each Trs ∈ D Do
13: Put Ps

j ∈ NTS into Cloca
ik # Lcations

14: Put Ts
j ∈ NTS into Ctime

ik # Timestamps
15: Put s ∈ Ps

j into Cuser
ik # User’s number

16: Put Cloca
ik , Ctime

ik , Cuser
ik intoCi

17: k = k + 1
18: Put Ci into C
19: Return C

3.2. The Hotspot Extraction Algorithm Based on the Sliding Time Window

The characteristic of the BDSCAN algorithm is to cluster all the locations in one target
area without considering the time factor. Therefore, when a small number of users (such as
10 users) are clustered over a long period of time in a certain area, the area will be clustered
into a clustering area. However, the fact is that this clustering area may not be a real cluster
area for users.

For example, if an area has a small number of user locations per hour (such as about
10), but the cumulative locations will reach 240 in 24 h and 1680 in a week, so, when the
DSCAN algorithm is used to cluster this area, it may be clustered into a clustering area. But
when the 1680 locations may be owned by 10 users, it is clear that this clustering area is not
a real cluster area, and therefore cannot be called a hotspot.

In the real world, a user hotspot is always associated with time. For example, the
student canteen is a hotspot only in the morning, noon, and evening; the student classroom
is generally a hotspot during non-mealtimes; a hospital is a hotspot area from 7 a.m. to
10 p.m.; and a dormitory is a hotspot area from 7 p.m. to 11 p.m.

Therefore, we need to determine whether each cluster area based on DBSCAN is a
hotspot area according to duration time and number of users in each cluster area.

For example, if a student canteen is a hotspot in a day from 7:30 to 8:30, 11:30 to 12:30,
and 18:00 to 19:00, then the duration time of this hotspot area is 3 h.

In order to extract the user number and duration time of each cluster, we designed
a feature extraction algorithm of cluster area based on the sliding time window. This
algorithm is shown in Algorithm 2.

Firstly, this algorithm defines a time window, denoted by Td, and sets a threshold (Pt)
of the number of users in the cluster area. The threshold is defined as the minimum number
of users in a given area at a given time. A cluster area can be identified as a hotspot only
when the user number in a cluster area exceeds Pt in a period of time. Based on historical
data, this threshold needs to be less than the parameter MinPts in DBSCAN.
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In practice, if a cluster area only accidentally meets the user number threshold in a
hotspot for a short time, it is not an actual hotspot. To avoid fake hotspots in cluster areas,
we also need to set a time slice threshold, called as St.

Threshold St is as follows: a cluster area is considered a hotspot area only when the
number of users in at least St consecutive time slices is greater than Pt.

Algorithm 2 shows the process of extracting user features and time features of each
cluster based on a sliding time window. The idea of this algorithm is as follows:

For each cluster area Ci, the calculation time interval is set into [Ts, Te], where Ts is the
start time and Te is the end time.

Starting from Ts, the number of users corresponding to the current cluster within [Ts,
Ts + Td] is counted, and save the result to UserNum.

If UserNum ≥ Pt, the consecutive time slices number (called SliceNum) is added by 1,
and the total number of users in this cluster area is added by UserNum.

Further, if SliceNum is equal to St, the duration time of the ith cluster area is recorded
as CFT

i ←CFT
i + SliceNum * Td. If SliceNum is greater than St, CFT

i ←CFT
i + Td.

Then, the time window is slid forward using Td, and then the above processes are
repeated until (Ts + Td) > Te.

Algorithm 2. The feature extraction algorithm of cluster areas based on the sliding time window

Input: C =
{

C1, C3, · · · , Ci , · · · , C|C|
}

, Pt, St, Td

Output: CF =
{

CF1, CF2, · · · , CFi , · · · , CF|CF|
}

1: Initialize UserNum, SliceNum, CFU
i , CFT

i
2: For each cluster Ci Do
3: Calculate the maximum value of all timestamps, Te←Max(Ctime

i

)
4: Calculate the minimum value of all timestamps, Ts←Min(Ctime

i

)
5: For each cluster Ci Do
6: StartTime← Ts # Set the start time of scanning
7: EndTime← Ts + Td # Set the end time of scanning
8: While StartTime < Te Do
9: For each Ctime

i ∈ Ci Do
10: If StartTim ≤ Ctime

i < EndTime Then
11: UserNum← UserNum + 1
12: If UserNum ≥ Pt Then
13: SliceNum← SliceNum + 1
14: StartTime← EndTime
15: EndTime← StartTime + Td
16: If SliceNum ≥ St Then
17: CFT

i ← CFT
i + SliceNum * Td

18: SliceNum← 0
19: CFU

i ← CFU
i + UserNum

20: Put CFU
i ,CFT

i into CFi
21: Return CF

Based on the above processes, we can get the user distribution characteristics (CFU
i , CFT

i )
of the ith cluster area.

Here, CFU
i is the sum of the number of users in all time slices, and each user is recorded

only once in each time slice.
If CFT

i meets the two conditions: UserNum ≥ Pt and SliceNum ≥ St, the cluster area
is called the hotspot area. If CFT

i is equal to zero, it means that the area is only a cluster
area, not a hotspot area, and will not be considered as an alternative location when the base
stations are configured.

Table 1 shows the feature extraction process for a cluster area Ci. Here, we assume that
Pt = 5, St = 3, Td = 10 min, and the initial number of users is 0.
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Table 1. The feature extraction processes for one cluster area.

Time Slices 1 2 3 4 5 6 7 8 9 10

Pt 5 6 7 2 5 6 8 7 2 7
St 1 2 3 0 1 2 3 4 0 1

CFT
i 0 0 30 30 30 30 60 70 70 70

CFU
i 5 11 18 20 25 31 39 46 48 55

As we can see from this table, there are 5 users in time slice 1, which meets the Pt
requirement. We mark SliceNum as 1, and the number of users is accumulated to USerNum,
that is, CFU

i = CFU
i + UserNum = 5.

Sliding the time window forward, we can see there are 6 users in time slice 2, which is
greater than Pt, so SliceNum is marked as 2, and the number of users is also accumulated to
UserNum, that is, CFU

i = CFU
i + UserNum = 11.

Sliding the time window forward again, there are 7 users in time slice 3, which is
greater than Pt. In this case, SliceNum reaches 3 and meets St. The duration time is calculated
as follows: CFT

i = CFT
i + Td × 10 = 30 min.

Continue to slide time window, there are 2 users in time slice 4, it is less than the Pt
threshold, therefore, the duration time SliceNum is unchanged.

Repeat the above process until all time slices are processed.
Finally, two characteristics of the cluster area are obtained: CFU

i = 55, CFT
i = 70 min.

3.3. The Location Selection Algorithm of 5G Edge Nodes Based on Hotspots and Benefit Constraint

In practical applications, the primary factor that Telcos consider in building 5G base
stations is investment and return. Since the 5G base stations adopt the edge computing
technology, its main function is not only to provide traditional voice communication, but
also to provide data storage and computing services.

Since the placement of the 5G base stations (or edge nodes) involves a variety of
factors (such as personnel density, geographical conditions, economic constraints, etc.), this
placement work is considered to be complex system engineering.

Based on the above analysis, we propose the following placement target of 5G base stations:

(1) Maximize the high load utilization rate of the base station in the target area.
(2) Maximize the bandwidth reduction rate of the core network in the target area.

Definition 5. High load utilization rate of base stations.

It refers to the proportion of the time that the base station is in a high load state in one
day. We can describe this definition using the ratio of the time in hotspots to the service
time in one day. That is, U(i) = CFT

i /T.
Here, CFT

i is the hotspot duration time of the ith base station, and T is the total service
time of the ith base station in a day.

In order to convert the high load utilization rate of the base station to a value between
0 and 1, the high load utilization rate of each base station needs to be normalized. Here, we
assume that all base stations have the same service time T in a day. The normalized U(i) in
the ith base station is represented as follows:

U′(i) =
U(i)

U(1) + U(2) + · · ·+ U(M)
=

CFT
i

∑M
i=1 CFT

i
=

CFT
i

Uall
(1)

Here, M is the number of base stations, and Uall = ∑M
i=1 CFT

i .

Definition 6. Bandwidth reduction rate of the core network.
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It refers to the ratio of the data generated by all users in new base station to the data
generated by all users in all candidate base station in a day. The reason of this define is that
the data traffic generated in this hotspot area with new base station will be processed at the
edge server, and without occupying the bandwidth of the core network.

We use B(i) to represent the bandwidth reduction rate of the core network after the
base station i is placed. That is,

B(i) =
di ∗ CFU

i

∑M
i=1

(
di ∗ CFU

i

) =
CFU

i
Ball

(2)

Here, we assume that the data traffic of Ci is di in a day, M is the number of candidate
base stations, Ball = ∑M

i=1

(
di ∗ CFU

i

)
.

According to the above description, if we need to deploy N base stations after extract-
ing M(N ≤M) hotspots in one target area, the base station placement problem can now
be described as a mathematical problem: select N locations from M candidate hotspots
to deploy base stations to maximize the base station high load utilization rate and core
network bandwidth reduction rate of the communication system in the entire target area.
That is, the problem can be formalized as the 0–1 linear programming problem.

Firstly, we define a decision variable Si to indicate whether a base station needs to be
placed in the candidate hotspot area i. When Si = 1, a base station is placed in the candidate
hotspot area i. When Si = 0, it means that the candidate hotspot area i does not place a
base station.

Then, according to decision variables Si, Si ∗U′(i) and Si ∗ B(i) can be calculated.
Finally, by introducing weighting factors: α and β, the problem of selecting the

deployment location of 5G base stations can be formalized into Formula (3).

Maximize
si ,1≤i≤M

(
α∑M

i=1
Si ∗ CFT

i
Uall

+ β∑M
i=1

Si ∗ di ∗ CFU
i

Ball

)
(3)

subject to:

C1 :
M

∑
i=1

Si ≤ N

C2 : α + β = 1, α, β ∈ (0, 1)

C3 : Si ∈ {0, 1}, 1 ≤ i ≤ M

In the above formula, the objective function is to maximize the investment return
of Telcos by deploying base stations in hotspots with high demand of computing and
data storage.

Constraint C1: ensure that the number of base stations deployed is less than or equal
to the number that can be built by Telcos.

Constraint C2: α is the weight of the high load utilization rate, β is the weight of the
core network bandwidth reduction rate, the value of both ranges from 0 to 1, and the sum
of α and β is 1. If the Tecom operator expects the base station to be in a state of efficient
computation for a long time, α should be set to a relatively large value. If the operator
wants the base station to be able to handle more data traffic and reduce the load on the core
network, the β should be set to a relatively large value.

Constraint C3: it specifies the value of the decision variable.
As we can see from Formula (3), this problem is actually a 0–1 integer linear pro-

gramming problem, which is also an NP-hard problem. Although it is possible to find the
optimal solution by exhaustion, this method is obviously not desirable when M is large
enough. Therefore, we design a heuristic greedy algorithm to solve this formula.

This heuristic greedy algorithm is shown in Algorithm 3.
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Algorithm 3. The heuristic greedy algorithm of location selection of 5G base station

Input: CF = {CF1, CF2, · · · , CFM}, α, β, N, DF = {d1, d2, · · · , dM}
Output: S = {P1, P2, · · · , Pi, · · · , PN}

1: Initialize RS← ø, SS← ø
2: For 1 ≤ i ≤M Do

3: Uall ←
M
∑

i=1
CFT

i

4: Ball ←
M
∑

i=1
di ∗ CFU

i

5: For 1 ≤ i ≤M Do
6: Calculate the revenue after each base station is placed,

Ri ← α ∗
M
∑

i=1

Si ∗ CFT
i

Uall
+ β ∗

M
∑

i=1

Si ∗ di ∗ CFU
i

Ball
7: Put Ri into RS, RS←RS+{ Ri}
8: For 1 ≤ i ≤ N Do
9: Select the largest element from RS, R’ = Max(RS)
10: Remove element R’ from RS, RS←RS + {R’}
11: Put R’ int SS
12: For 1 ≤ i ≤ N Do
13: Calculate the center position Pi of the cluster corresponding to each R’ from SS
14: Put Pi into S
15: Return S

4. Our Experiments

To test the research work in this paper, we conducted experiments using a location
data set collected by Microsoft Research Asia (MSRA) in the GeoLife project [29,30]. The
GeoLife dataset includes partial trajectory data of 182 users during 2007–2012, most of
which were generated in Beijing. The dataset consists of 17,621 tracks covering 1,292,951 km
and 50,176 h.

In GeoLife dataset, the time of the trajectories recorded by 182 users is difference, a
portion of users have carried a GPS logger for years, while some of the others only have
a trajectory dataset of a few weeks. Each user’s trajectories are stored in multiple files
according record period. Each location in trajectory is composed of latitude, longitude,
altitude, timestamp, etc.

Obviously, for the deployment of 5G base stations, we only need to focus on the
distribution of users in a single day in one object area. However, because the location
distribution of each user on working days and non-working days is very different, the
clustering results will generate a bias when only one day’s user locations are clustered.

In addition, the GeoLife dataset does not include adequate locations belonging to the
same day, so we need reconstruct the experimental dataset to evaluate our research. Our
method is: the weekly or monthly location data in the GeoLife dataset are converted into
the same day’s experimental data of different users. Using this data reconstruction method,
the number of users and locations in our experiment has been greatly increased.

For example, we can sample 202,693 locations of 20 original users in the GeoLife
dataset from a week (such as 23 October 2008, 00:00:00 to 30 October 2008, 23:59:59). These
locations can be construced into our experimental dataset including 20 × 7 = 140 users in
one day.

4.1. The Experiment of Clustering Parameters Based on DBSCAN

By analyzing the coordinates of the previous 202,693 locations, we can find that the
geographical coordinates of these locations are distributed in the range of latitude 39.8~40.3
and longitude 115.9~117.3.

According to the geographical distance of the earth, the distance between [39.80, 115.9]
and [40.3, 117.3] is about 131.5 km. According to the Euclidean distance used in DBSCAN,



Appl. Sci. 2024, 14, 5943 12 of 18

the distance between [39.80, 115.9] and [40.30, 117.3] is about 1.47. Obviously, the ratio of
geographical distance to Euclidean distance is approximately 90 km.

Therefore, we can approximately correlate DBSCAN’s parameter Eps with the geo-
graphic distance. That is, when Eps = 0.005, the corresponding geographical distance is
approximately 450 m, and when Eps = 0.003, the corresponding geographical distance is
approximately 270 m.

(1) The influence of MinPts on clustering results

According to the previous description, the coverage of 5G base stations is smaller than
that of 4G base stations in the same geographical location, usually within 200~500 m. So,
we select three different Eps (e.g., 0.003, 0.004, and 0.005) to experiment with the influence
of MinPts on clustering results. The experimental results are shown in Figure 2.
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Through the above experiment, we can find that the clustering results fluctuate up
and down when MinPts is in [50, 400], and the clustering results are in a descending state
when MinPts is in [400, 1600]. When MinPts = 1200, the clustering results are similar in
Eps = 0.003, 0.004 and 0.005.

(2) The influence of Eps on clustering results

In order to further verify the influence of Eps on clustering results, we conducted
clustering experiments on Eps ranged from 0.001 to 0.006 under MinPts is equal to 200, 400
and 600, and the experimental results are shown in Figure 3.
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Through this experiment, we can find that when MinPts is between [600 and 700],
the clustering results of different Eps fluctuate slightly up and down and in a relatively
stable state. When Eps = 0.0055 (about 500 m), the clustering results are similar in
MinPts = 200, 400 and 600. When Eps = 0.005 (about 450 m), the clustering results are
similar in MinPts = 800, 1200.

4.2. The Feature Extraction Experiment of Clustering Results

Our experiment environment is a Personal Computer, Windows 10, Intel (R) Core
(TM) i7-6700CPU@3.40GHz processor, 16 GB RAM, and Python programming language.

(1) Test the runtime of the clustering algorithm based on DBSCAN

When Eps = 0.002, 0.004 and MinPts = 800, we separately tested the clustering time of
DBSCAN, The test results are shown in Figure 4. In this test, we select the data of 20 users
from 1 to 9 days in the GeoLife dataset, the number of locations ranging from 13,060, 37,517,
86,130, 126,173, 149,941, 175,440, 202,693, 228,854, 259,522 to 316,436.
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We can observe from Figure 4 that the clustering time increases exponentially when
Eps = 0.004. Therefore, we only selected Eps = 0.002 and extracted about 200,000 locations
to test our methods in the following experiments.

(2) The influence of Pt on the hotspot extraction

When Eps = 0.002 and MinPts = 400, we cluster 202,693 locations using the DBSCAN
algorithm. The clustering result includes 31 cluster areas and 1 discrete area.

We test the number of hotspots extracted at different Pt with Td = 0.5 h, 1 h, and 2 h,
respectively. The test results are shown in Figure 5a when St = 2, and Figure 5b when St = 3.

In Figure 5, we can observe that: only 1 hotspot area is extracted from the 31 clustering
areas when St = 2 and Pt ≥ 8; 8~10 hotspots are extracted from the 31 clusters when St = 2
and Pt = 2; only 1 hotspot area is extracted from the 31 clustering areas when St = 3 and
Pt ≥ 6; 5~8 hotspots are extracted from the 31 clusters when St = 3 and Pt = 2.
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It is obvious that the bigger the St is, the less the hotspots that can be extracted, the
bigger the Pt is, the smaller the hotspots that can be extracted. So, we can control the
number of hotspots by settings St and Pt.

(3) The influence of Td on the hotspot extraction

We cluster our experimental dataset with Eps = 0.002 and MinPts = 400 and test the
number of hotspots at different Td. Figures 6a and 6b show the experimental results when
St = 2 and St = 3, respectively. From this experiment, we can determine that Td is also a key
factor in extracting the hotspots.
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When Pt = 2 and Pt = 3, the maximum number of hotspots are extracted at Td = 6 in
Figure 6a and Td = 2 in Figure 6b because the duration time of hotspots can be computed
using St*Td. This experiment preliminarily verified the rule that hotspots should continue
6–12 h.

4.3. The Location Selection Experiment of Base Station Placement

Our experiments test the high load utilization rate of the base station and the band-
width reduction rate of a core network using different methods. Some baseline meth-
ods [19,20] for comparison include:

(1) Top-U. This method [20] takes the hotspots with the Top N number of users as
candidate locations of base stations. In this strategy, more users mean more data
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traffic in the base station. So, the bandwidth savings on the core network are the
greatest when these candidate locations are plcaed the 5G edge nodes.

(2) Top-T. In this method [20], the hotspots with the Top N duration time are used as
candidate locations of base stations. The longer the duration of the hotspot, the more
it means that this hotspot will be in a state of high demand for a long time, so the
higher the utilization rate of edge nodes deployed in 5G base stations can be obtained.

(3) Random. This method randomly selects N hotspots in the candidate hotspots to
deploy the 5G base stations.

We cluster our experimental dataset with Eps = 0.002 and MinPts = 400 and extract
some hotspots from these clusters using St = 2, Pt = 1, and Td = 2. Based on these hotspots,
we test the high load utilization rate and the bandwidth reduction rate under four strategies.

Figure 7a shows the effect of the number of 5G edge nodes deployed on the high load
utilization rate of base stations. As we can see from this figure when the number of edge
nodes deployed is the same, Top-T has the highest utilization rate of base stations in high
load, followed by our method (here, α = β = 0.5), Top-U ranks third, and random method
has the lowest. When α = 1, our method is equivalent to Top-T. Further tests show that
when the number of deployed edge nodes is the same, compared with Top-U, the high load
utilization rate of our method can be increased by up to 7.69%.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 18 
 

  
(a) Test of high load utilization rate (b) Test of bandwidth reduction rate 

Figure 7. Experiments of high load utilization rate and bandwidth reduction rate. 

In addition, through further analysis of two experiments, we can see that with the 
increase of the number of edge nodes, the high load utilization rate and bandwidth reduc-
tion rate both increase rapidly at the beginning, but when the number of of 5G edge nodes 
deployed reaches about 80% of the number of candidate base stations, the growth rates of 
bandwidth reduction rate has been decreased. Obviously, the benefits of deploying the 
same number of 5G edge nodes at this time are decreasing.  

Figure 8a shows the clustering results of our reconstructed experimental data based 
on DBSCAN with Eps = 0.002 and MinPts = 400. Figure 8b shows the center coordinates of 
hotspot areas extracted from the clustering results. These coordinates will eventually be 
used as candidate locations for deploying 5G edge nodes. 

  
(a) The cluster results based on DBSCAN (b) The candidate locations based on hotspots 

Figure 8. The cluster results of our dataset and the candidate locations of 5G edge nodes. 

In Figure 8a, the dark blue lines are the trajectory formed by the user’s locations, and 
the colored dots are the clustering centers. In Figure 8b, the green lines are the user’s tra-
jectory, and the blue dots are the center coordinates of hotspot areas extracted from clus-
ters. 

5. Conclusions 
For rapidly deploying the 5G network, we designed a placement method of the 5G 

edge nodes based on hotspots of mobile users. In this method, we first extracted the user 

Figure 7. Experiments of high load utilization rate and bandwidth reduction rate.

Figure 7b shows the effect of the number of edge nodes deployed on the bandwidth
reduction rate of the core network. As we can see from Figure 7 when the same number
of edge nodes are deployed, the core network bandwidth reduction rate of Top-U is the
highest; our method is the second highest (here, the weight parameter is set to α = β = 0.5),
Top-T is the third, and random method is the lowest. When β = 1, our method is equivalent
to Top-U. Compared with the Top-T, the bandwidth reduction rate of the core network in
our method can be improved up to 6.34%.

In addition, through further analysis of two experiments, we can see that with the
increase of the number of edge nodes, the high load utilization rate and bandwidth reduc-
tion rate both increase rapidly at the beginning, but when the number of of 5G edge nodes
deployed reaches about 80% of the number of candidate base stations, the growth rates
of bandwidth reduction rate has been decreased. Obviously, the benefits of deploying the
same number of 5G edge nodes at this time are decreasing.

Figure 8a shows the clustering results of our reconstructed experimental data based
on DBSCAN with Eps = 0.002 and MinPts = 400. Figure 8b shows the center coordinates of
hotspot areas extracted from the clustering results. These coordinates will eventually be
used as candidate locations for deploying 5G edge nodes.
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Figure 8. The cluster results of our dataset and the candidate locations of 5G edge nodes.

In Figure 8a, the dark blue lines are the trajectory formed by the user’s locations,
and the colored dots are the clustering centers. In Figure 8b, the green lines are the
user’s trajectory, and the blue dots are the center coordinates of hotspot areas extracted
from clusters.

5. Conclusions

For rapidly deploying the 5G network, we designed a placement method of the 5G
edge nodes based on hotspots of mobile users. In this method, we first extracted the user
trajectory data from the object area and clustered all locations from the user trajectory to get
the cluster areas. Further, we calculated the characteristics, such as the number of users and
duration time in each cluster. Then, we extracted the hotspots from all clusters based on
two thresholds. Then, we defined two parameters, U(i) and B(i), and took the weighted sum
of the two parameters as the optimization objective to extract the candidate position of 5G
edge nodes. We also conducted a series of experiments to evaluate our proposed methods
using the GeoLife dataset. The test results show that when the number of deployed edge
nodes is the same, compared with Top-U, the high load utilization rate of our method can
be increased up to 7.69%; compared with the Top-T, the bandwidth reduction rate of our
method can be improved up to 6.34%. Our work can be used to guide the placement of
5G edge nodes of Telcos and improve the overall efficiency of 5G base station deployment.
Further researches will include the analysis of the network applications used by users,
identifying the features of each application (such as computing and storage requirements),
and the study of the configuration of suitable storage and computing resources for the edge
nodes to meet the application requirements of the hotspot areas.
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