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Abstract: In the concurrent optimization of topology and fiber orientation, the design of smooth
fiber helps to maintain the stability of numerical calculation and the compatibility of the manufac-
turing process. However, the improvement of fiber continuity is often accompanied by a significant
decrease in the overall structural stiffness. Aiming at this problem, this paper proposes a topology
optimization method for anisotropic materials with smooth fiber orientation. This method improves
the smoothness of fiber orientation and reduces stiffness loss by introducing a fiber angle constraint
strategy and adaptive filtering technology. The fiber angle constraint strategy integrates the created
angle constraint function into the Method of Moving Asymptotes (MMA) to complete the strong
constraint of the angle. This strategy quantifies the continuity of the fiber and effectively improves
the continuity of the fiber. At the same time, the application of adaptive filtering technology can
adjust a reasonable fiber angle distribution on the basis of smoothing fibers, thereby enhancing the
stiffness of the overall structure. In addition, this paper shows the complete optimization process
and MATLAB code implementation and verifies the effectiveness of the method through a series
of numerical examples, that is, on the basis of improving fiber continuity, the stiffness of the whole
structure is guaranteed, and then the effective balance between the two is realized.

Keywords: topology optimization; concurrent optimization; fiber angle constraint; adaptive filtering;
MATLAB implementation

1. Introduction

Topology optimization [1] has attracted much attention in structural design, especially
in the industrial field to deal with lightweight requirements. Traditional methods are not
enough to meet the requirements, so fiber-reinforced composites [2] have become the focus
of optimization, which means that in addition to topology optimization of the overall
structure, the best orientation of the material must also be considered.

The fiber orientation is generally defined by the fiber angle of the discrete element.
The fiber angle optimization is divided into discrete material optimization (DMO) [3–6]
and continuous fiber angle optimization (CFAO) [7–11]. Unlike DMO, which is not easy
to converge and has limited candidate angles, CFAO is more widely used. It is no longer
limited to a set of candidate angles in a specified direction but takes the continuous rotation
angle of the anisotropic substrate as a design variable. Therefore, CFAO is favored by many
scholars in the concurrent optimization of topology and the fiber angle.

Many scholars have proposed different methods in the study of CFAO topology opti-
mization, aiming at improving fiber continuity. Based on the improved SIMP method [12],
Chen [13] used the volume control and stress control algorithm to optimize the topol-
ogy in two stages to obtain the optimal structural topology of isotropic materials. After
establishing the average load transfer trajectory in the optimal topology, the fiber reinforce-
ment placement path is defined for the main continuous fiber filling area. The two-stage
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topology design makes the structural mechanical performance better, and the streamline
method makes the fiber laying smoother. Duvaut et al. [14] conducted in-depth research
on the optimal fiber orientation and fiber volume ratio under the constraint of the fiber
cost function and proposed a classical compliance minimization solution, but the problem
expression they used is not a traditional topology optimization equation. In the frame-
work of cellular automata, Setoodeh [15] obtained a smooth distribution of fiber angles
by averaging adjacent fiber angles. This method is similar to using a mean filter to adjust
the fiber angle, which often leads to excessive smoothing of the fiber angle. Similarly,
Panesar and Weaver [16] proposed a cooperative design strategy by imposing angle con-
straints between adjacent elements to ensure that bidirectional constraints are satisfied. This
method effectively coordinates the design of fiber orientation so that it can meet the specific
mechanical performance requirements while maintaining structural integrity. Desai [17]
described a three-phase method to optimize the orientation of continuous fibers in isotropic
materials. This method allows the design of composite materials with variable stiffness,
where the fiber volume fraction and the orientation of each node are considered stiffness
design variables [18,19]. Peeters et al. [20] skillfully applied the curvature constraint of the
fiber angle in the optimization process and carefully smoothed the optimization results to
enhance manufacturability.

In the topology optimization of anisotropic materials, filtering or projection techniques
are widely used, which play an important role in the whole optimization process. The
application of these technologies can not only effectively avoid numerical instability but
also improve the manufacturability of the optimization results. Therefore, the appropriate
filtering method injects deep robustness and feasibility into the concurrent optimization
method of structural topology and the smoothing fiber angle.

It is of great significance to use the filtering technology to control the fiber orientation
in the CFAO method, which can avoid the stress concentration caused by the excessive
curvature of the fiber and solve the manufacturing constraints related to the curvature
of the fiber in the subsequent printing. In the topology optimization of anisotropic ma-
terials, Jantos [21] combined a filtering technique applied to the material stiffness tensor,
which is not limited to the actual parameterization of the design variables and can control
the smoothness of the fiber path. Huang [22] combined the characteristics of two design
variables, regarded the density material variable in the element as the weight factor of
fiber orientation, and completed the adjustment of fiber orientation to create a continuous
fiber trajectory direction. Similarly, Schmidt [23] greatly reduced the curvature of the fiber
path by keeping the filter radius of the fiber angle consistent with the mesh resolution and
applied it to the optimization of the three-dimensional structure. Papapetrou et al. [24]
completed the material layout and fiber angle optimization of orthotropic materials through
the density-based method (SOMP) and demonstrated the EQS method, streamline method,
and offset method fiber filling schemes based on density-based topology optimization. The
manufacturability is high, but this post-processing method often leads to lower structural
stiffness. Boddeti [25] discussed the optimal design methods of variable stiffness laminated
continuous fiber-reinforced composites and transformed these designs into actual man-
ufacturing processes. More prospectively, Chandrasekhar [26] introduces a new method
called FRC-TOuNN, which uses neural networks to perform topology optimization of con-
tinuous fiber-reinforced composites. This method combines machine learning techniques
and topology optimization algorithms to improve the efficiency and accuracy of the design
process, especially when dealing with complex fiber paths and load conditions.

However, for the concurrent optimization of topology and the fiber angle, although the
above fiber angle optimization strategy and filtering technology significantly improve fiber
continuity, there are two obvious defects: it is impossible to quantify the degree of fiber
continuity and achieve accurate optimization goals and in the pursuit of fiber smoothness,
too much of the stiffness of the overall structure is sacrificed.

In view of the above problems, this paper proposes a topology optimization method
for anisotropic materials with smooth fiber orientation, which introduces the fiber angle
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constraint strategy and adaptive filtering technology. The fiber angle constraint strategy
can quantify the degree of fiber continuity and effectively improve fiber continuity. At the
same time, the application of adaptive filtering technology can adjust a reasonable fiber
angle distribution on the basis of smoothing fibers, thereby enhancing the stiffness of the
overall structure. Therefore, the combination of the fiber angle constraint strategy and
adaptive filtering technology can accurately improve fiber continuity while ensuring overall
structural stiffness. Specifically, the proposed method aims to meet the following criteria:

1. The fiber angle constraint function is created and integrated into the Method of
Moving Asymptotes (MMA) [25] to accurately improve fiber continuity;

2. The Gaussian function is used to filter the fiber angle adaptively, and the strength
of the filter is controlled by dynamically adjusting the standard deviation of the
Gaussian function so as to realize the reasonable distribution of the fiber angle and
further improve the structural stiffness;

3. The whole optimization process is realized by MATLAB R2021a, and the code structure
is easy to understand and implement (see Appendix A).

The organizational structure of this paper is as follows. Section 2 first introduces
the concurrent optimization framework based on density. On this basis, it expounds the
constraint strategy and adaptive filtering technology of the fiber angle and shows the
complete optimization process and MATLAB code implementation. In Section 3, a large
number of numerical examples are analyzed. Through a series of numerical examples, the
structural stiffness, fiber continuity, and numerical stability are analyzed in depth, and the
effectiveness and practicability of the proposed method are verified.

2. Model Derivation

This section introduces the model derivation of the topology optimization method
for anisotropic materials with smooth fiber orientation. Firstly, taking the single-layer
fiber-reinforced composite as the research object, the mathematical model is established
with the unit density and the unit fiber angle in the design domain as the design variables.
Then, the fiber angle constraint function is created, and the smoothing mechanism of the
constraint function to the fiber angle is introduced. The fiber angle is updated by the
MMA algorithm. In addition, for the problem of structural stiffness reduction caused
by the constraint function, the fiber angle is adaptively filtered to further standardize
the reasonable distribution of the fiber angle, and the stiffness of the overall structure is
improved while smoothing the fiber.

2.1. Density-Based Concurrent Optimization Framework

The topology optimization framework proposed in this paper is an extension of the
Solid Isotropic Material with Penalization (SIMP) method to orthotropic materials and
combined with the CFAO method for concurrent optimization. Four-point element dis-
cretization is performed for a given design domain. For each element, element density
(material distribution) and the fiber angle (element fiber orientation) are considered de-
sign variables. With compliance as the objective function, the volume fraction and fiber
continuity rate are forced as constraints, and the mathematical optimization model is
as follows:

min C(x,θ) = UT·K·U =
N
∑

e=1
xp

e uT
e ·ke

θ ·ue

s.t. K·U = F ,
V(x)

V0
≤ volfrac ,

f (θ) > 0,
xe ∈ [0, 1] ,

θe ∈ [−π

2
,

π

2
]

(1)
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where C represents the compliance, x is the density, θ is the fiber angle, C is the function of
xe and θe, p is the penalty factor, U and K are the global displacement and global stiffness
matrix, respectively, and xe, ke

θ , and ue represent the element density, element stiffness
matrix, and node displacement matrix of element e. F is the force vector, V(x) and V0 are
the material volume and the design domain volume, respectively, volfrac is the predefined
volume fraction, and f (θ) is the fiber angle constraint function.

In anisotropic materials, we calculate the compliance coefficient matrix in the natural
coordinate system by introducing the transformation matrix T as follows:

D = T−1C (T−1)
T

(2)

where T is the coordinate transformation matrix and C is the compliance coefficient in the
main coordinate system. C and T are calculated as follows:

C =


E1

1−v12v21

v12E2
1−v12v21

0
v21E1

1−v12v21

E2
1−v12v21

0
0 0 G12

 (3)

T =

 cos2 θ sin2 θ sin 2θ

sin2 θ cos2 θ − sin 2θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ

 (4)

Among them, fiber-reinforced composites are regarded as orthotropic materials, and there
is v12

E2
= v21

E1
. Therefore, in the plane stress problem, orthotropic materials have four

independent elastic constants, E1, E2, v21, and G12, which represent the longitudinal elastic
modulus, transverse elastic modulus, longitudinal Poisson’s ratio, and shear modulus,
respectively, and θ is the fiber angle.

Then, the element stiffness matrix of all elements is calculated as follows:

kθ =
x

BTDBdxdy (5)

where kθ a is the element stiffness matrix after counterclockwise rotation t, B is the strain–
stress matrix, and D is the flexibility coefficient matrix in the natural coordinate system.

Then, all element stiffness matrices are assembled into a global stiffness matrix K.
According to the equilibrium equation F = KU in Equation (1), the finite element analysis is
carried out to solve the global displacement.

Finally, a sensitivity analysis of design variables is performed. Since ke(θ) contains
only one variable θ, the sensitivities of compliance C to unit density and fiber angle ∂C

∂xe
, ∂C

∂θe
are as follows: {

∂C
∂xe

= −p(xe)
p−1uT

e ke(θ)ue
∂C
∂θe

= −(xe)
puT

e
∂ke(θ)

∂θe
ue

, (6)

where ue is the element displacement matrix and ∂ke(θ)
∂θe

is the sensitivity of the element

stiffness matrix to the fiber angle of the element. ∂ke(θ)
∂θe

is calculated as

∂ke(θ)

∂θe
=

x ∂ke(θe)

∂θe
Bdxdy =

x
BT

(
∂T
∂θe

C(T−1)
T
+ TC

∂(T−1)
T

∂θe

)
Bdxdy, (7)

2.2. Solution Algorithm Considering Fiber Angle Constraint

In updating the element density, we refer to the optimization criterion method (OC)
proposed by Sigmund. Taking the minimum structural compliance as the goal, the volume
fraction is used as the constraint condition to solve the problem, which is convenient and
efficient. In the fiber angle update, considering its nonlinear and multi-constrained objective
function, this paper uses the moving asymptote method (MMA) to solve the problem.
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While using the MMA to solve the fiber angle, the fiber angle constraint function is
introduced. The fiber angle constraint function f (θe) in Equation (1) is defined as follows:

f (θe) =

{
0 FCR ≥ fcr

FCR − fcr FCR < fcr
, (8)

where θe represents the fiber angle of unit e and changes in [0, 1] and the FCR and fcr are
the fiber continuity rate of the current iteration result and the predefined fiber continuity
rate, respectively.

When FCR ≥ fcr, the fiber continuity rate of the current iteration results meets the
requirements, without constraints, and the function value is 0. When FCR < fcr, the
constraint is performed.

Figure 1 shows the schematic diagram of the fiber continuity ratio (FCR) calculation,
and the equation is as follows:

FCR =

nelx*nely
∑

e=1

(
Ne
∑

q=1
cos φe,q

)
nelx*nely

∑
e=1

Ne

, (9)

where φq is the angle of the qth adjacent element around the central element e and φe,q is
the difference between θe and αe,q. Then, use the cosine adjustment function to normalize
φe,q, where Ne is the number of neighborhood units, nelx is the number of unit columns,
and nely is the number of unit rows, as shown in Figure 1.
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Since the design variable θe changes freely in the range of
[
−π

2 , π
2
]
, the value range of

φe,q is [0, π]. Since we quantify the degree of continuity of the fiber by the accumulation
and normalization of the cosine value of φe,q, the cosine value of φe,q has a non-negative
requirement, and it is necessary to adjust φe,q in segments, as shown in Figure 2.

The angle adjustment method shown in Figure 2 is scientific because the degree of
fiber continuity represented by φe,q and π − φe,q is the same, and we only make correspond-
ing adjustments for the difference in the cosine values of the two. Subsequently, φe,q is
calculated according to the segmentation method as follows:

φe,q =

{
θe − αe,q

∣∣θe − αe,q
∣∣ ≤ π

2
π −

(
θe − αe,q

) ∣∣θe − αe,q
∣∣ > π

2
, (10)

where θq is the fiber angle of the qth unit in the neighborhood of θe.
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On this basis, it is also necessary to calculate the gradient value of the constraint func-
tion to the design variable to meet the correct search direction of the constraint condition.
The gradient value d f (θe) of the constraint function f (θe) to all element fiber angles θe is
calculated in Equations (8)–(10) as follows:

d f (θe) =


0 FCR ≥ fcr

Ne
∑

q=1

[
sin
(
θe − αe,q

)
·φe,q

′] FCR < fcr , (11)

where φe,q
′ is the derivative of φe,q to θe, which is calculated as follows:

φe,q
′ =

{
1
∣∣θe − αe,q

∣∣ ≤ π
2

−1
∣∣θe − αe,q

∣∣ > π
2

, (12)

2.3. Adaptive Filtering of the Fiber Angle

In the method of concurrent optimization of topology and fiber angle, many scholars
have not filtered the fiber angle, which leads to poor continuity of the fiber; in addition,
the traditional filtering method uses a distance-weighted filter to adjust the fiber angle.
This filtering scheme will lead to excessive smoothing of the fiber, thereby reducing the
stiffness of the overall structure. Therefore, this section proposes an adaptive filtering
method for the fiber angle. This method uses the characteristics of the Gaussian function to
dynamically adjust the filtering strength according to the real-time optimization effect and
then moderately smooth the fiber angle. Since the introduction of the constraint function in
Section 2.2 improves the continuity of the fiber, but at the same time leads to a decrease in
the overall structural stiffness, the role of adaptive filtering is to ensure the continuity of
the fiber while improving the stiffness of the overall structure.

Firstly, the traditional filtering methods are reviewed as follows:

t̂e =

N
∑

m=1
Ĥmtm

N
∑

m=1
Ĥm

, (13)

where t̂e is the fiber angle of the central unit after filtration; tm is the fiber angle of the
neighborhood of the central unit before filtering; N is the number of neighborhood units;
and Ĥm is the weight factor, which is defined as follows:
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Ĥm = rmin − dist(e, m), {m ∈ N, |dist(e, m) ≤ rmin}, (14)

where dist(e, m) is the distance between unit m and central unit e and rmin is the filter radius.
The adaptive filtering of fiber angle is based on the characteristics of the Gaussian

function. According to the convergence degree of fiber angle, the standard deviation of the
Gaussian function is corrected in real time, and then the filtering strength is adjusted.

The convergence degree of the fiber angle is described by the maximum change value
∆θmax of the design variable. The specific calculation is as follows:

∆θmax = max{θn−1 − θn−2}, (15)

where n represents the number of iterations and θn−1, θn−2 are the fiber angle values of all
elements in this iteration and the previous iteration results, respectively.

Figure 3 is the calculation diagram of θn−1, θn−2. The difference between the fiber
angles of all units in the two iteration results is calculated, and the maximum difference is
selected as ∆θmax, which indicates the convergence degree of fiber angle optimization. It is
also used as a correction factor for the standard deviation σ̂θ of the Gaussian function for
the real-time correction of fiber angle filtering. The modified equation is as follows:

σ̂θ = ∆θmax·σθ , (16)

Here, σ̂θ is the standard deviation of the modified Gaussian function and σθ is the initial
value of the predefined standard deviation.
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After correcting the standard deviation of the Gaussian function, the weight of the
Gaussian kernel function is calculated as follows:

Wθ(rz) =
1

2πσ̂θ
2 e

− rz
2σ̂θ

2 , rz ≤ rmin, (17)

where Wθ is the Gaussian kernel function used for fiber angle filtering and rz is the distance
between all units in the filtering area and the central unit.

The size of the standard deviation σ̂θ can determine the degree of influence of the
surrounding units on the central unit in the filtering area. The larger the standard deviation,
the greater the influence of the surrounding units on the central unit, and the more obvious
the filtering effect. On the contrary, the filtering effect is weaker.

In order to intuitively feel the influence of the standard deviation of different Gaussian
functions on the weights, Figure 4 shows the filter function image and the weight distri-
bution of each unit in the filter area when the filter radius σ̂θ is 0.5, 1, and 5, respectively.
The gray value corresponds to the size of the weight. These 3 × 3 grids are the fiber angle
filters determined by the Gaussian function.
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Finally, the Gaussian kernel function in the filtering area is normalized, and the filtering
of the fiber angle is completed. The specific equation is as follows:

θ̂e = ∑
e

 Wθ(rz)

∑
z∈Ne

Wθ(rz)
·θe

, (18)

where θ̂e, θe are the fiber angles before and after filtration, respectively.
In fiber angle filtering, the advantage of adaptive filtering over traditional filtering is

that it can adjust the filtering parameters in real time according to the current optimization
status and objectives to ensure the continuity and rationality of the fiber angle distribution.
The adjustment of the standard deviation makes the filter more strongly smooth the fiber
angle distribution when needed, while at other times, it can maintain a weak smoothing
effect to avoid performance loss caused by excessive smoothing.

In summary, the adaptive filtering of the fiber angle effectively balances the relation-
ship between the fiber continuity rate and the overall structural stiffness, which ensures
fiber continuity while obtaining a more reasonable fiber angle distribution, thereby improv-
ing the overall structural stiffness. This provides an efficient, flexible, and robust method
for fiber angle optimization, which can optimize structural performance while satisfying
the design constraints.

2.4. Optimization Sequence

In the density-based concurrent optimization framework, combined with the fiber
angle constraint strategy and adaptive filtering technology, a more reasonable fiber an-
gle can be adjusted on the basis of improving fiber continuity, thereby ensuring overall
structural stiffness.

Figure 5 is the specific optimization process of the method. Firstly, the parameters and
variables are initialized, the element stiffness matrix is calculated, and the finite element
analysis is carried out. Then, after the unit density sensitivity filtering, the OC method
is used to update the unit density. At the same time, the fiber angle is adaptively filtered
to calculate the maximum change value of the fiber angle so as to update the standard
deviation of the Gaussian function. After using the Gaussian function to smooth the fiber
angle, the MMA algorithm that fuses the fiber angle constraint function is used to complete
the update of the fiber angle. Finally, the iterative element density and fiber angle are
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output. The convergence condition is that the change value of the design variables is
less than 0.01, and the optimization is completed if the convergence condition is satisfied.
Otherwise, the calculation step of the element stiffness matrix is returned to continue
the iteration.
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Figure 5. Topology optimization flowchart of anisotropic materials with smooth fiber orientation.

3. Numerical Results

In this section, based on the fiber angle constraint strategy and adaptive filtering
technology, the topology optimization results of anisotropic materials with smooth fiber
orientation are optimized by MATLAB (see Appendix A). After completing the boundary
condition setting, through a series of numerical examples, the optimization results are
compared and verified from the three perspectives of fiber continuity, overall structural
stiffness, and numerical stability, and then the effectiveness and stability of the method
are illustrated.

3.1. Parameters and Boundary Conditions

In this paper, the single-layer graphite/epoxy material with 70% fiber content is used
as the optimization object, and the engineering material constants are shown in Table 1.

Table 1. Engineering elastic constants of single-layer graphite/epoxy composites with 70% fiber content.

Material Mode E1/105 MPa E2/105 MPa v12 G12/105 MPa

graphite/epoxy T300/5280 185 10.5 0.28 7.3

This section presents six boundary conditions to be optimized, as shown in Figure 6.
Among them, (a) is a cantilever beam with a length–width ratio of 2:1. The left end of
the structure is fixed, and the lower part of the right end is subjected to a downward
concentrated load. (b) Is a double-load cantilever beam with a length–width ratio of 2:1.
The left end of the structure is fixed, and the upper and lower parts of the right end
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bear a downward concentrated load, respectively. (c) Is a double-hole cantilever beam
with a length–width ratio of 2:1. Two holes are set in the design domain. The left end
of the structure is fixed, and the lower part of the right end is subjected to a downward
concentrated load. (d) Is a bridge girder with a length–width ratio of 4:1. The left and
right sides are the supporting points, and the middle and lower parts bear the downward
concentrated load. (e) Is a double-load bridge beam with a length–width ratio of 2:1. The
left and right sides are the supporting points, and the bottom 1/3 and 2/3 are subjected
to downward concentrated load, respectively. (f) Is an L-shaped beam whose shape is
equivalent to removing a rectangle with a length–width ratio of 1:2 from the upper right of
a rectangle with a length–width ratio of 2:3. The upper end is fixed, and the middle of the
right end is subjected to a downward concentrated load.
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According to the different boundary conditions, the code can be freely adjusted. For
example, in the optimization of the bridge beam, the numerical values of nelx, nely, penal,
rmin, angle, volfrac, sig_x, sig_t, and the fcr are set to 80, 20, 3, 1.5, pi/2, 0.3, 5, 20, and
0.98, respectively.

3.2. Analysis of Structural Stiffness and Fiber Continuity

In this section, according to the boundary conditions set in Section 3.1, three schemes
are used for optimization. Scheme (1) does not consider the fiber angle constraint and uses
the traditional filtering method; scheme (2) considers the fiber angle constraint and uses the
traditional filtering method; and scheme (3) considers the fiber angle constraint and uses the
adaptive filtering method. Figure 7 shows the optimization results and data of each bound-
ary condition under different schemes. The data are the overall structural compliance and
the fiber continuity rate, which are represented by C and FCR, respectively. Among them,
the compliance is the reciprocal of the stiffness, and the smaller the compliance, the greater
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the stiffness. The structural compliance and fiber continuity of all the results in Figure 7
are calculated using the histogram in Figures 8 and 9, respectively, which is convenient
for data comparison and analysis of different optimization schemes. Figures 10 and 11,
respectively, present the topological structure and fiber angle distribution, fiber continuity
trend, and structural compliance trend of the double-load cantilever beam in Figure 7.
Similarly, Figures 12–14 show the topological structure and fiber angle distribution of the
bridge beam in Figure 7, the changing trend of the fiber continuity rate, and the changing
trend of structural compliance.
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As shown in Figure 7, the six examples are analyzed from the data. The structural
compliance of scheme (1) is small, but the fiber continuity rate is low. After considering the
fiber angle constraint, that is, scheme (2), the fiber continuity rate is significantly improved,
which can be maintained at about 98%, but the compliance is greatly increased; on the
basis of considering the fiber angle constraint, the adaptive filter is introduced, that is,
scheme (3). The fiber continuity rate is still maintained at about 98%, or even higher, and
the structural compliance is also greatly reduced compared with scheme (2). This means
that the concurrent optimization method combining the fiber angle constraint strategy and
the adaptive filtering technology is effective. It not only improves the fiber continuity rate
but also ensures the overall structural stiffness to a certain extent.

Figure 8 intuitively shows the comparison of fiber continuity with different optimiza-
tion schemes under different boundary conditions. After the fiber angle constraint, the fiber
continuity rate increased significantly to about 98%. Furthermore, after introducing the
adaptive filtering technology on the basis of the fiber angle constraint, the fiber continuity
rate is still maintained at about 98% or even higher.

Figure 9 intuitively shows the structural compliance comparison of different optimiza-
tion schemes under different boundary conditions. After the fiber angle constraint, the
compliance increases significantly, indicating that while improving fiber continuity, the
overall structure’s resistance to force decreases significantly, and the mechanical properties
deteriorate. After the further introduction of adaptive filtering technology, we observed a
significant decrease in structural compliance, which indicates that the mechanical properties
have been improved to a certain extent. Although the compliance at this time is still slightly
higher than the level in scheme (1), in the process of pursuing fiber continuity, the original
optimal fiber angle distribution must be adjusted. This adjustment will inevitably affect the
mechanical properties of the structure to a certain extent. Our design goal is to ensure that
fiber continuity is improved while minimizing the sacrifice of the overall structural stiffness.
Scheme (3) is based on this goal. By combining the fiber angle constraint strategy and
adaptive filtering technology, the structural stiffness is maintained to the greatest extent
while improving fiber continuity so as to achieve the purpose of optimization.
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Combined with the analysis of Figures 8 and 9, it is concluded that adaptive filtering
can maintain the continuity of fibers. Its more prominent advantage is that compared with
the optimization scheme without adaptive filtering, it optimizes the topology with higher
stiffness, which is the embodiment of both manufacturability and mechanical properties.

Figure 10 shows the optimization results of the boundary conditions of the double-
load cantilever beam with different schemes. It is a diagram enlarged by the results of
(b-1), (b-2), and (b-3) in Figure 7, which is intended to analyze the differences in topology
and fiber angle distribution. From the perspective of fiber angle distribution, the angle in
scheme (1) is discontinuous, especially at the node and support of the bar, and the fiber
angle of the adjacent unit has a sudden change, so the fiber continuity rate is low—only
83.70%. In scheme (2), the angle is continuous, and there is no sudden change in the angle
of the fiber at the node and the support of the bar. However, in the vertical bar at the
rightmost end, the fiber angle shows an inconsistent distribution with the direction of the
bar, resulting in poor mechanical properties, which is also the result of the forced constraint
of the fiber angle. In scheme (3), the fiber angle continuity is higher and it is consistent with
the direction of the bar, and the structural stiffness is higher.

From the topological point of view, the results of the three schemes are roughly the
same. The two inclined rods at the right end of schemes (2) and (3) are more curved, which
is affected by the adjusted fiber angle in concurrent optimization.

From the perspective of structural compliance, the compliance of the three schemes is
177.36, 247.91, and 197.11, respectively. The compliance of scheme (2) is about 33% higher
than that of scheme (1), indicating that the stiffness decreases. The compliance of scheme
(3) is 20% lower than that of scheme (2), and the overall stiffness is greatly increased.

Figure 11 shows a comparison of the trend of fiber continuity under different optimiza-
tion schemes. In the diagram, it can be seen that scheme (1) is not affected by constraints
and gradually converges to 83.70% in concurrent optimization; scheme (2) began to intro-
duce constraints at the fifth iteration, and the fiber continuity rate increased significantly,
began to fluctuate, and finally converged to 98%. Scheme (3) introduces constraints at the
beginning of the 34th iteration, and the fluctuation is small and finally converges at 98%.

Figure 12 shows a comparison of the structural compliance change trend of the double-
load cantilever beam under different optimization schemes. In the diagram, it can be seen
that scheme (1) is not affected by constraints, the compliance eventually converges to 177.36,
and the overall structural stiffness is large; the compliance of scheme (2) fluctuates greatly
and finally converges to 247.91, and the overall structural stiffness is small. The compliance
fluctuation of scheme (3) is very small, converging to 197.11, and the structural stiffness is
greatly improved compared with scheme (2).

Similar to Figure 10, Figure 11 presents the optimization results of the bridge girder
with different schemes, which is the enlarged structure diagram of (d-1), (d-2), and (d-3) in
Figure 7. From the perspective of fiber angle distribution, fiber continuity of scheme (1) is
poor, only 85.82%; the angle of scheme (2) is relatively continuous, and there is no sudden
change in the angle of the fiber at the node and the support of the bar. However, in the
horizontal bar at the top end, the fiber angle shows an inconsistent distribution with the
direction of the bar, resulting in poor mechanical properties, which is also the result of the
forced constraint of the fiber angle. In scheme (3), fiber angle continuity is higher and it is
consistent with the direction of the bar, and the structural stiffness is higher.

From the perspective of topology, the three schemes are roughly the same, and the
structure contour of scheme (3) is smoother because it is affected by the adjusted fiber angle
in concurrent optimization.

From the perspective of structural compliance, the compliance of the three schemes is
19.75, 61.65, and 27.96, respectively. The compliance of scheme (2) is about 214% higher
than that of scheme (1), and the stiffness is lower. The compliance of the results of scheme
(3) is 55% lower than that of scheme (2), and the overall stiffness is greatly increased.

Figure 14 shows the variation trend of the fiber continuity rate of the bridge girder with
different optimization schemes. In the diagram, it can be seen that scheme (1) is not affected
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by constraints and gradually converges to 85.82% in concurrent optimization; scheme
(2) introduced constraints at the sixth iteration, and the fiber continuity rate increased
significantly, began to fluctuate, and finally converged to 98.00%. Scheme (3) introduces
constraints at the beginning of the 34th iteration, and the fluctuation is small. Finally, it
also converges at 98.01%.

Figure 15 shows the changing trend of the structural compliance of bridge girders
with different optimization schemes. In the diagram, it can be seen that scheme (1) is
not affected by constraints, the compliance eventually converges to 19.75, and the overall
structural stiffness is large; the compliance change in scheme (2) fluctuates greatly and
finally converges to 61.65, and the overall structural stiffness is small. The compliance
fluctuation of scheme (3) is very small, converging to 27.96, and the structural stiffness is
greatly improved compared with scheme (2).
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In summary, in the concurrent optimization considering fiber angle constraints, the
results show a smoother fiber distribution. However, this mandatory constraint sacrifices
the mechanical properties of the material to a certain extent, resulting in a decrease in the
overall stiffness of the structure. In order to solve this problem, we introduce adaptive
filtering technology on the basis of fiber angle constraints. Through the application of
this technology, not only is the continuity of the fiber significantly improved but also the
overall stiffness of the structure is effectively maintained, and the balance between the
optimization goal and the mechanical properties is achieved.

3.3. Numerical Stability

Both Figures 16 and 17 show the concurrent optimization results of the cantilever
beam and the double-load bridge beam at six grid resolutions. Under the two boundary
conditions, the six topologies are roughly the same, but with the refinement of the mesh,
the obtained material distribution is more accurate and the structural contour is smoother.
The fiber orientation of all the results is basically consistent with the direction of the rod
and maintains a high continuity and a relatively smooth distribution at the node of the rod.
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Figure 16. Concurrent optimization results of a cantilever beam under different grid divisions. The
fcr was set to 0.98.

From the data in Figures 16 and 17, the fiber continuity rate of the final optimization
results remained at a high level, and the fiber continuity rate remained at about 98% or even
higher. The structural compliance decreases with the refinement of the grid and gradually
tends to be stable. In the cantilever beam case, when the grid is divided into 36 × 18,
the compliance is 83.11, which is larger. When divided into denser grids, that is, 60 × 30,
84 × 42, 120 × 60, 180 × 90, and 240 × 120, the compliance is smaller, 74.30, 72.86, 73.75,
74.48, and 75.03, respectively. In the case of the double-load cantilever beam, when the grid
is divided into 36 × 18 and 60 × 30 units, the structural compliance is 103.38 and 66.20,
respectively which is larger; when it is divided into denser grids, that is, 84 × 42, 120 × 60,
180 × 90, and 240 × 120, the compliance is 45.84, 38.25, 36.15, and 36.06, respectively.

From this point of view, the compliance decreases with the refinement of the mesh
and gradually tends to be stable. The fiber continuity rate of all of the optimization results
maintains a high level, which means the mesh independence of the method is high.
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Figure 17. Concurrent optimization results of double-load bridge beams under different mesh
divisions. The fcr was set to 0.98.

Figure 18 shows the concurrent optimization results of the cantilever beam, double-
hole cantilever beam, and L-shaped beam under different volume constraints. In the
optimization, the volume fraction is predefined as 0.3, 0.4, and 0.5, respectively, and the
amount of constrained material is optimized concurrently. In the diagram, it can be seen that
with the increase in volume fraction, the material stability in the design domain increases,
and a reasonable optimization result is formed, the structural compliance decreases steadily,
and the fiber continuity rate maintains a high level.

The comprehensive analysis shows that the topology optimization method of anisotropic
materials with the smooth fiber orientation proposed in this paper performs well in nu-
merical stability. On the one hand, the grid independence of the concurrent optimization
method is high, that is, under different grid division conditions, the distribution of the ma-
terial layout and fiber angle maintains good consistency. With the refinement of the mesh,
the structural compliance gradually decreases and tends to be stable. On the other hand,
under the constraints of different volume fractions, the method significantly improves the
continuity of the fiber angle and can achieve a reasonable material distribution, thereby
ensuring the stiffness of the overall structure. These results not only prove the numerical
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stability of the optimization method but also show its practicability and compliance in
complex structural design.
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The fcr was set to 0.98.

4. Conclusions

This paper provides a topology optimization method for anisotropic materials with
smooth fiber orientation, which combines a fiber angle constraint strategy and adaptive
filtering technology to complete concurrent optimization of topology and the fiber angle.
On the one hand, the fiber angle constraint function is created and integrated into the
moving asymptote algorithm. This method quantifies the continuity of the fiber angle
and greatly enhances the continuity of the fiber angle but sacrifices the stiffness of the
overall structure. On the other hand, the adaptive filtering technology is introduced to
smooth the fiber angle through the Gaussian function, and the standard deviation of the
Gaussian function is adjusted according to the maximum change value of the fiber angle so
as to guide the subsequent iterative optimization and realize the rationalization of the fiber
distribution and the improvement of the structural stiffness.
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Numerical examples show that the fiber angle constraint strategy significantly im-
proves the continuity of the fiber but also sacrifices the overall structural stiffness. However,
by introducing adaptive filtering technology, not only is the continuity of the fiber signifi-
cantly improved but also the structural stiffness is guaranteed, and the effective balance
between the two is achieved.

However, the concurrent optimization of topology and the fiber angle also faces
serious initial dependence problems. The appropriate initial value of the fiber angle is very
important so as to get rid of the risk of falling into the local optimum. In addition, the
MATLAB program provided in the Appendix is written based on the logic of 99 lines of code,
which has high readability, but the running speed is slow. Therefore, vectorization operation
or different optimization algorithms can be used in subsequent research to improve the
running speed. These studies are necessary to further improve the optimization in future
work and provide a more efficient and reliable solution for the topology optimization
design and manufacturing of composite materials.
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Appendix A

function fiber_top(nelx,nely,penal,rmin,angle,volfrac,sig_x,sig_t,fcr)
x(1:nely,1:nelx)=volfrac;
t(1:nely,1:nelx)=angle;
loop=[0,0];
change = [0.2,0.1];
m=1; n=nely*nelx; move=0.1;
low=zeros(nely,nelx); low=reshape(low,n,1);
upp=ones(nely,nelx); upp=pi.*upp; upp=reshape(upp,n,1);
xold1=zeros(n,1); xold2=zeros(n,1);
while max(change)>0.01 && loop(1)<200

loop(1)=loop(1)+1;
[k]=ke(nelx,nely,t);
[dk]=dke(nelx,nely,t);
[U]=FE(nelx,nely,x,penal,k);
c=0.;
for ely=1:nely

for elx=1:nelx
n1=(nely+1)*(nelx-elx)+ely;
n2=(nely+1)*(nelx-elx+1)+ely;
Ue=U([2*n1-1;2*n1;2*n2-1;2*n2;2*n2+1;2*n2+2;2*n1+1;2*n1+2],1);
c=c+x(ely,elx)ˆpenal*Ue'*k(ely,elx).KE*Ue;
dc_x(ely,elx)=-penal*x(ely,elx)ˆ(penal-1)*Ue'*k(ely,elx).KE*Ue;
dc_t(ely,elx)=-x(ely,elx)ˆpenal*Ue'*dk(ely,elx).dKE*Ue;
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end
end
[dc_x,g]=GSfilter_x(nelx,nely,x,rmin,dc_x,sig_x);
[xnew]=oc_x(nelx,nely,x,volfrac,dc_x);
change(1)=max(abs(xnew(:)-x(:)));
x=xnew;
if change(2)>0.01

[t]=GSfilter_t(nelx,nely,rmin,t,change,sig_t);
[FCR,df1]=fiber_constraint(nelx,nely,t,rmin);
[t,change,xold1,xold2,low,upp,loop,move]=mma. . .

(nelx,nely,change,loop,df1,t,fcr,FCR,. . .
dc_t,c,move,angle,m,n,xold1,xold2,low,upp);

end
disp(['It.:' sprintf( '%4i',loop). . .

' Obj.:' sprintf('%10.4f',c) . . .
' Vol.:' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) . . .
' ch.:' sprintf('%6.3f',change). . .
' grey.:' sprintf('%6.3f',g). . .
' FCR.:' sprintf('%6.3f',FCR)])

colormap(gray);imagesc(-x);axis equal;axis tight;axis off;pause(1e-6);
hold on
a1 =-reshape(t,nely,nelx);
xMax =2*max(x(:));
quiver(-cos(a1).*x/xMax,-sin(a1).*x/xMax,0,'y.','LineWidth',1);
quiver(cos(a1).*x/xMax,sin(a1).*x/xMax,0,'y.','LineWidth',1);
end
end
function [k]=ke(nelx,nely,t)
a=1/2;b=1/2;
E1=1.85; E2=0.105;
v12=0.0159; v21=0.28; G12=0.073;
C=[E1/(1-v12*v21),(v21*E2)/(1-v12*v21),0;. . .

(v21*E2)/(1-v12*v21),E2/(1-v12*v21),0;. . .
0,0,G12];

k(nely,nelx)=struct('KE',[]);
for elx=1:nelx

for ely=1:nely
T=[cos(t(ely,elx)).ˆ2, sin(t(ely,elx)).ˆ2,. . .

2*cos(t(ely,elx))*sin(t(ely,elx));. . .
sin(t(ely,elx)).ˆ2, cos(t(ely,elx)).ˆ2,. . .
-2*cos(t(ely,elx))*sin(t(ely,elx));. . .
-cos(t(ely,elx))*sin(t(ely,elx)),. . .
cos(t(ely,elx))*sin(t(ely,elx)),. . .
cos(t(ely,elx)).ˆ2-sin(t(ely,elx)).ˆ2];

D=T\C/(T.');
KE = elementMatVec2D(a, b, D);
k(ely,elx).KE=KE;

end
end
end
function [KE,Be] = elementMatVec2D(a, b, D)
GaussNodes = [-1/sqrt(3); 1/sqrt(3)]; GaussWeigh = [1 1];
L = [1 0 0 0; 0 0 0 1; 0 1 1 0]; KE = zeros(8,8);
for i = 1:length(GaussNodes)

for j = 1:length(GaussNodes)



Appl. Sci. 2024, 14, 5947 23 of 27

GN_x = GaussNodes(i); GN_y = GaussNodes(j);
dN_x = 1/4*[-(1-GN_x) (1-GN_x) (1+GN_x) -(1+GN_x)];
dN_y = 1/4*[-(1-GN_y) -(1+GN_y) (1+GN_y) (1-GN_y)];
J = [dN_x; dN_y]*[ a -a -a a; b b -b -b]';
G = [inv(J) zeros(size(J)); zeros(size(J)) inv(J)];
dN(1,1:2:8) = dN_x; dN(2,1:2:8) = dN_y;
dN(3,2:2:8) = dN_x; dN(4,2:2:8) = dN_y;
Be = L*G*dN;
KE = KE + GaussWeigh(i)*GaussWeigh(j)*det(J)*Be'*D*Be;'

end
end
end
function [dk]=dke(nelx,nely,t)
dk(nely,nelx)=struct('dKE',[]);
syms tt;
a=0.5; b=0.5;
E1=1.85; E2=0.105;
v12=0.0159; v21=0.28; G12=0.073;
C=[E1/(1-v12*v21),(v21*E2)/(1-v12*v21),0;. . .

(v21*E2)/(1-v12*v21),E2/(1-v12*v21),0;. . .
0,0,G12];

T=[cos(tt).ˆ2,sin(tt).ˆ2,2*cos(tt)*sin(tt);. . .
sin(tt).ˆ2,cos(tt).ˆ2,-2*cos(tt)*sin(tt);. . .
-cos(tt)*sin(tt),cos(tt)*sin(tt),cos(tt).ˆ2-sin(tt).ˆ2];

dT_ni=diff(inv(T),tt);
dT_ni_zhuan=diff(inv(T.'),tt);
D=dT_ni*C/(T.')+ T\C*dT_ni_zhuan;
mf = matlabFunction(D);
for elx=1:nelx

for ely=1:nely
cc=mf(t(ely,elx));
dKE = dk_elementMatVec2D(a, b, cc);
dk(ely,elx).dKE=dKE;

end
end
end
function dKE= dk_elementMatVec2D(a, b, cc)
GaussNodes = [-1/sqrt(3); 1/sqrt(3)]; GaussWeigh = [1 1];
L = [1 0 0 0; 0 0 0 1; 0 1 1 0]; dKE = zeros(8,8);
for i = 1:length(GaussNodes)

for j = 1:length(GaussNodes)
GN_x = GaussNodes(i); GN_y = GaussNodes(j);
dN_x = 1/4*[-(1-GN_x) (1-GN_x) (1+GN_x) -(1+GN_x)];
dN_y = 1/4*[-(1-GN_y) -(1+GN_y) (1+GN_y) (1-GN_y)];
J = [dN_x; dN_y]*[ -a a a -a; -b -b b b]';
G = [inv(J) zeros(size(J)); zeros(size(J)) inv(J)];
dN(1,1:2:8) = dN_x; dN(2,1:2:8) = dN_y;
dN(3,2:2:8) = dN_x; dN(4,2:2:8) = dN_y;
Be = L*G*dN;
dKE = dKE + GaussWeigh(i)*GaussWeigh(j)*det(J)*Be'*cc*Be;

end
end
end
function [U]=FE(nelx,nely,x,penal,k)
K=sparse(2*(nelx+1)*(nely+1),2*(nelx+1)*(nely+1));
F=sparse(2*(nely+1)*(nelx+1),1);
U=sparse(2*(nely+1)*(nelx+1),1);
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for elx=1:nelx
for ely=1:nely

n1=(nely+1)*(nelx-elx)+ely;
n2=(nely+1)*(nelx-elx+1)+ely;
edof=[2*n1-1;2*n1;2*n2-1;2*n2;2*n2+1;2*n2+2;2*n1+1;2*n1+2];
K(edof,edof)=K(edof,edof)+x(ely,elx)ˆpenal*(k(ely,elx).KE);

end
end
ip=(nely+1)*(nelx+2);
F(ip,1)=-1;
fixeddofs =[2*nely+1,2*nely+2,2*(nely+1)*(nelx+1)-1,2*(nely+1)*(nelx+1)];
alldofs =[1:2*(nely+1)*(nelx+1)];
freedofs =setdiff(alldofs,fixeddofs);
U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:);
U(fixeddofs,:)=0;
end
function [dcn,g]=GSfilter_x(nelx,nely,x,rmin,dc_x,sig_x)
q(1:nely,1:nelx)=0;
sum_q=0.;
dcn=zeros(nely,nelx);
for ely=1:nely

for elx=1:nelx
if x(ely,elx)>0.001 && x(ely,elx)<1

q(ely,elx)=1;
end
sum_q=sum_q+q(ely,elx);

end
end
g=sum_q/(nelx*nely);
sig_x=g*sig_x;
for i=1:nelx

for j=1:nely
sum=0.0;
w=zeros(nely,nelx);
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
fac=sqrt((i-k)ˆ2+(j-l)ˆ2);
w(l,k)=exp(-facˆ2/(2*sig_xˆ2))/(2*pi*sig_xˆ2);
sum=sum+w(l,k);

end
end
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
w(l,k)=w(l,k)/sum;
dcn(j,i)=dcn(j,i)+w(l,k)*dc_x(l,k)*x(l,k);

end
end

end
end
end
function [xnew]=oc_x(nelx,nely,x,volfrac,dc)
l1=0;
l2=100,000;
move=0.2;
while (l2-l1>1e-4)

lmid=0.5*(l2+l1);
xnew =max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
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if sum(sum(xnew))-volfrac*nelx*nely>0
l1=lmid;

else
l2=lmid;

end
end
end
function [tnew]=GSfilter_t(nelx,nely,rmin,t,change,sig_t)
sig_t=change(2)*sig_t;
tnew=zeros(nely,nelx);
for i=1:nelx

for j=1:nely
sum=0.0;
w=zeros(nely,nelx);
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
fac=sqrt((i-k)ˆ2+(j-l)ˆ2);
w(l,k)=exp(-facˆ2/(2*sig_tˆ2))/(2*pi*sig_tˆ2);
sum=sum+w(l,k);

end
end
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
w(l,k)=w(l,k)/sum;
tnew(j,i)=tnew(j,i)+w(l,k)*t(l,k);

end
end
for ely=1:nely

for elx=1:nelx
if elx==1||ely==1||elx==nelx||ely==nely

tnew(ely,elx)=t(ely,elx);
end

end
end

end
end
end
function [FCR,df1]=fiber_constraint(nelx,nely,t,rmin)
F1=0.;df1=zeros(nely,nelx);f1=0;
for i=1:nelx

for j=1:nely
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)

for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
F1=F1+1;
f1=f1+0.99*cos(t(j,i)-t(l,k));
df1(j,i)=df1(j,i)+0.99*sin(t(j,i)-t(l,k));

end
end
F1=F1-1;f1=f1-1;

end
end
FCR=f1/F1;
end
function [t,change,xold1,xold2,low,upp,loop,move]=mma. . .

(nelx,nely,change,loop,df,t,fcr,FCR,dc_t,c,move,. . .
angle,m,n,xold1,xold2,low,upp)

loop(2)=loop(2)+1;
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if fcr-FCR>0
dfdx=df;

else
dfdx=zeros(nely,nelx);

end
dfdx=dfdx(:);
xval=t(:);
fval=max(0,10000*fcr-FCR*10000);
df0dx=dc_t(:);
f0val=c;
move=0.95*move;
xmax=min(angle+pi/2,xval+move);
xmin=max(angle-pi/2,xval-move);
a0=1;a1=0;c1=1000;d1=0;
[xmma,~,~,~,~,~,~,~,~,low,upp] = mmasub. . .

(m,n,loop,xval,xmin,xmax,xold1,xold2, . . .
f0val,df0dx,0,fval,dfdx,0,low,upp,a0,a1,c1,d1);

tnew=reshape(xmma,nely,nelx);
xold2=xold1;
xold1=t(:);
change(2)=max(abs(t(:)-tnew(:)));
t=tnew;

end
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