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Abstract: The mathematical analysis of viscous magnetohydrodynamics (MHD) models is of great
interest in recent years. In this paper, a finite element Galerkin method is employed for the estimation
of an unknown time-dependent convection coefficient and source in a 1D magnetohydrodynamics
flow system. In this inverse problem, two integral observations are posed and used to transform
the inverse problem to a non-classical direct problem with a non-local parabolic operator. Then, the
non-classical strongly coupled parabolic system is studied in various settings. The equivalence of the
inverse problem (IP) and the direct one are proven. The Galerkin procedure is analyzed to proove the
existence and uniqueness of the solution. The finite element method (FEM) has been developed for
the solution of the variational problem. Test examples are discussed.

Keywords: non-local parabolic operator; magnetohydrodynamics flow system; inverse problem;
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1. Introduction

Viscous MHD duct flows present significant challenges and are of great interest in both
physics and engineering due to their substantial theoretical and practical importance. They
have widespread applications in various fields such as astrophysics, geology, biology, in the
design of cooling systems using liquid metals for nuclear fission or fusion reactors, power
generation, MHD generators, and electromagnetic pumps. Therefore, it is not surprising
that numerous theoretical and experimental studies have been conducted on these issues
over the past decades.

Solving the equations governing MHD flows is quite challenging due to the coupling
between fluid mechanics and electrodynamics equations. Consequently, analytical solutions
are only available for specific cases. Therefore, in general, MHD flow problems must be
solved numerically using various numerical techniques [1–5].

Biological effect of magnetic field is discovered during the last decades [6]. From a
physical point of view, one evident phenomenon is the magnetic alignment observed in
biological systems [7]. Application of MHD problems and their numerical modelling in
biological systems are discussed in [8,9].

Hydrodynamic model simulations are very important in forecasting the environmental
fate and potential environmental consequences of chemical contaminants, see e.g., [10].
The authors created a hydrodynamic model to predict and assess the risk of chemical
contaminants in Xiamen Bay. The book by [11] is devoted to the mathematical theory of
climate and atmospheric pollution and application. In particular, ref. [12] numerically
studied a general hydrodynamical model of air circulation, including magnetic fields.
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The laser-induced wave propagation and reflection phenomenon in a functionally
graded porous medium subjected to an electro-magnetic field was investigated in [13],
utilizying FEM. In [14] the authors used FEM to develope and numericaly solve new non-
linear coupled finite-strain electro-magneto-thermo-hyperelasticity molels. The governing
equations were derived in line with a nonlinear version of the Helmholtz free energy.

While steady MHD duct flows have been extensively studied, there are less papers
focusing on unsteady, two-dimensional, incompressible, viscous MHD flow in channels.

Studies on time-dependent MHD flow systems, focusing on flow control and MHD
stability, have addressed various issues. These control and stability problems for MHD
flows are all model-based approaches, where the model parameters or initial conditions
are assumed to be well-defined. However, when these model parameters (i.e., empirical
parameters and initial conditions) are not precisely known or are uncertain, it typically
leads to biased simulation results and inconsistencies between the output of the established
control system and the actual physical system.

Therefore, it is crucial to identify these unknown or uncertain parameters in the
direct system model to ensure that the mathematical model accurately represents the real
physical system under consideration. These challenges are commonly known as parameter
estimation problems or inverse problems in the field of data assimilation.

In this paper, we address a reconstruction problem for a simplified MHD Hartmann
flow characterized by incompressible and Newtonian (constant viscosity) properties in
a 1D space. The mathematical model for the 1D MHD Hartmann flow can be effectively
constructed under certain suitable assumptions, tightly coupling the flow velocity and
electromagnetic fields [2–5].

Control and stability issues for MHD flows have been investigated over the past few
decades, see, e.g., [1–5]. Identifying various unknown or uncertain parameters in the differ-
ential problem is crucial for ensuring that the mathematical model accurately represents the
physical phenomena under study. This lack of information must be addressed by solving
inverse problems.

In the paper by [3], an adjoint-based optimization method is used to estimate the
unknown coefficients and states in a one-dimensional magnetohydrodynamics flow. This
approach involves gradient-like search methods, which are time-consuming. In the article
by [15], the coefficient and source inverse problem is transformed into a non-classical
forward problem. The loaded equation method was utilized in [16], and the finite difference
solution of the transformed problem was implemented.

In the present work, we consider the estimation of the convection coefficient and source
in 1D MHD flow system upon two space integral observations. The problem of finding time
right-hand sides and time-dependent coefficients for parabolic and hyperbolic equations
are widely studied; see, e.g., [17–28]. We also work in the same way as the authors of [15]
with the transformed non-classical forward problems. We define a variational formulation
for these problems; then, the continuous and discrete Galerkin procedures are studied.
Numerical test examples are performed to clarify the theoretical results.

The rest of the paper is organized as follows. In the next section, the forward (direct)
and inverse problems are described. In Section 3, we construct the equivalents to the inverse
problems for non-classical forward ones and their variational forms. The continuous
Galerkin approximations for the non-classical problems are studied in Section 4. A finite
element realization of the Galerkin procedures is discussed in Section 5. The computational
results are analyzed in Section 7 and then the paper is finalized by the conclusions.

2. The Direct and Inverse Problems

For the description of the dynamic model, we followed [2–5]. We considered a sim-
plified MHD Hartman flow with incompressible and Newtonian (constant viscosity) char-
acteristics in 1D space as well as a case in which the fluid flowed between two parallel
solid plates and where the velocity was perpendicular to the magnetic vector. Moreover,
the pressure in the channel was supposed to be constant and the unit vectors of velocity,
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the mathematical model describing this 1D MHD flow system, could be derived from the
viscous incompressible MHD equations [2–5]. It reads as follows:

∂u
∂t
− ν

∂2u
∂x2 = β(t)

∂B
∂x
− f (t), (1)

∂B
∂t
− νm

∂2B
∂x2 = β(t)

∂u
∂x

. (2)

Here, the spatial variable x and time variable t belong to the set (x, t) ∈ QT = Ω× (O, T),
where Ω = (0, 1). In this context, u(x, t) denotes the flow velocity, B(x, t) is the magnetic
field, f (t) is the pressure difference per unit length of the channel, and the function β(t) is
a given function of the induction of the extended magnetic fields, which can be considered
as the control input for the MHD flow. Additionally, ν and νm are two positive kinetic
viscosity coefficients.

In [3], it is assumed that the boundary conditions on the magnetic on the solid surfaces
are zero velocity for the viscous fluid and zero boundary conditions for the magnetic
field, corresponding to the continuity of the magnetic field strength. Thus, the boundary
conditions for system (1) and (2) are given as follows:

u(0, t) = ul(t), u(1, t) = ur(t), (3)

B(0, t) = Bl(t), B(1, t) = Br(t). (4)

Furthermore, the initial conditions for the dynamic system (1), (2) are provided by

u(x, 0) = u0(x), B(x, 0) = B0(x). (5)

In the form (1)–(5), we pose the direct (forward) problem, in which the right-hand sides,
coefficients, boundary conditions, and initial conditions are given.

Consider the inverse problem in which the coefficient β(t) and the source f (t) are
unknowns, along with the over-specified total energy condition.∫ 1

0
u(x, t)dx = E(t), (6)

and total magnetic energy ∫ 1

0
B(x, t)dx = F(t). (7)

Here, E(t) and F(t) are the given functions.
Least squares is often used to define the closeness (objective functional). The resulting

methods are referred to as the least squares output error criteria procedures; see, e.g., [3].
Although these procedures have many advantages, they also have drawbacks. For example,
they are computationally intensive because iterative procedures (such as gradient-like
search) are used. In addition, each step in the iteration reduces to solving a forward
problem which involves the numerical solution of partial differential equations. Thus, there
is a clear need to minimize the number of steps in the iteration, as well as to reduce the
range of the global search. One way this can be achieved is to obtain an independent initial
estimate of the structure of the control parameters. In the present work, our goal is to
construct an efficient numerical procedure. We transform the identification problem for
recovering time-dependent functions β(t), f (t) into a non-classical forward problem.

3. Reduction of the Inverse Problem to a Non-Classical Forward Problem

The following requirements for the input data of the problem are assumed in the rest
of the paper.
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H1. Functions E(t) and F(t) belong to class C1[0, T];

H2. The boundary conditions (3), (4) satisfy

ur(t) ̸= ul(t), Br(t) ̸= Bl(t), for each t ∈ [0, T].

3.1. Reducing the Inverse Problem to a Direct One

If we differentiate F(t) with respect to t and use the Equation (2), we obtain

∫ 1

0

(
νm

∂2B
∂x2 + β(t)

∂u
∂x

)
dx = F′(t), F′(t) =

dF
dt

.

Then, taking into account the boundary conditions (4), we derive

β(t) =
F′(t)− νm

(
Bx(1, t)− Bx(0, t)

)
gu(t)

, gu(t) = ur(t)− ul(t). (8)

where Bx =
∂B
∂x

. Next, in the same manner, differentiating E(t) with respect to t and using
the Equation (1) and boundary conditions (3), we find

f (t) = ν
(
ux(1, t)− ux(0, t)

)
+ β(t)gB(t)− E′(t), gB(t) = Br(t)− Bl(t). (9)

Further, we define

U(x, t) = u(x, t)− û(t), û(x, t) = (1− x)ul(t) + xur(t), (10)

b(x, t) = B(x, t)− B̂(x, t), B̂(x, t) = (1− x)Bl(t) + xBr(t). (11)

Using the transformation (10), (11), the problem (1)–(5) can be written in the non-
classical form

∂U
∂t
− ν

∂2U
∂x2 = β(t)

∂b
∂x
− ∂û

∂t
(x, t)− β(t)gB(t)− f (t), (12)

∂b
∂t
− νm

∂2b
∂x2 = β(t)

∂U
∂x
− ∂B̂

∂t
(x, t)− β(t)gu(t), (13)

U(0, t) = 0, U(1, t) = 0, (14)

b(0, t) = 0, b(1, t) = 0, (15)

U(x, 0) = u0(x)− û(x, 0) = U0(x), (16)

b(x, 0) = B0(x)− B̂(x, 0) = b0(x). (17)

Now, in view of (8)–(11), β(t) and f (t) are already provided by

β(t) =
F′(t)− νm(bx(1, t)− bx(0, t))

gu(t)
, (18)

f (t) = ν
(
Ux(1, t)−Ux(0, t)

)
+ β(t)gB(t)− E′(t). (19)

The following theorem is a result of the above constructions.

Theorem 1. Let u0(x), B0(x) ∈ C1(Ω) and hypotheses H1 and H2 hold. Then, the IP (1)–(7) is
equivalent to the forward problem (8)–(19).

Proof. The proof directly follows from the constructions in Section 3.1.
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3.2. Variational Formulation

Let us introduce the functions

v(x, t) =
∂U
∂x

(x, t), w(x, t) =
∂b
∂x

(x, t). (20)

In order to construct a weak formulation for (v, φ) :=
∫ 1

0 vφdx, where φ is a function
of H1(Ω), we form the inner product of (12) with φx and integrate by parts with respect to
x, using the boundary conditions (14). We perform the same procedure for the pair (b, φ).
As a result, we obtain(

∂v
∂t

, φ

)
+ ν

(
∂v
∂x

, φx

)
= β(t)(w, φx) + β(t)(φ(1)− φ(0))gB(t)

− f (t)(φ(1)− φ(0))−
(

∂û
∂t

, φx

)
,(

∂w
∂t

, φ

)
+ νm

(
∂w
∂x

, φx

)
= β(t)(v, φx) + β(t)(φ(1)− φ(0))gu(t)

−
(

∂B̂
∂t

, φx

)
,

(v(x, 0), φ) =

(
dU0

dx
, φ

)
, (w(x, 0), φ) =

(
db0

dx
, φ

)
.

(21)

According to (18)–(20), we obtain

β(t) =
F′(t)− νm(w(1, t)− w(0, t))

gu(t)
, (22)

f (t) = ν
(
v(1, t)− v(0, t)

)
+ β(t)gB(t)− E′(t). (23)

Theorem 2. Let the assumptions of Theorem 1 hold. Then, if {v(x, t), w(x, t)} is a variational
solution of (21)–(23), then the pair {U(x, t), b(x, t)} is a solution to the problem (12)–(19) and
vice versa.

Proof. From the assumptions of the theorem, it follows that v = ∂U
∂x ∈ H1(Ω), w = ∂b

∂x ∈
H1(Ω); which is the solution to the variational problem (21) and (22).

Conversely, the sufficient smoothness of the variational solution of (21) and (22) assures
the solution of the forward problem (12)–(19).

Therefore, if one can obtain an approximate solution of the variational problem
(21)–(23), one also has an approximate solution to the original problem (12)–(19). Thus, in
the next section, we concentrate on the Galerkin and finite element numerical solution of
the variational problem.

4. Continuous Galerkin Approximation

In this section, we use the well-known inequalities, see, e.g., [29,30]: the ε inequality

ab ≤ εa2 +
b2

4ε
, ε > 0

and trace estimates

ψ2(0) ≤ ε

∥∥∥∥dψ

dx

∥∥∥∥2
+ C1ε−1∥ψ∥2, 0 < ε < ε0,

ψ2(1) ≤ ε

∥∥∥∥dψ

dx

∥∥∥∥2
+ C2ε−1∥ψ∥2,
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where

ψ = ψ(x), x ∈ [0, 1], ∥ψ∥2 =

1∫
0

|ψ(x)|2dx.

Let {φi(x)}i=1 be a set of linearly independent functions that are defined and continu-
ously differentiable over 0 ≤ x ≤ 1.

Let ΦN = span{φ1, . . . , φN} and

SN = C1([0, T]; ΦN)

= {P(x, t) : P(x, t) =
N

∑
i=1

pi(t)φi(x) with pk(t) ∈ C1[0, T], k = 1, . . . , N}.

To approximate V(x, t) by functions V(x, t) = ∑N
i=1 vi(t)φi(x) ∈ SN and W(x, t) =

∑N
i=1 wi(t)φi(x) ∈ SN , respectively, we formulate the continuous Galerkin approxima-

tion of the problem (21)–(23) as follows:(
∂V
∂t

, Φ
)
+ ν

(
∂V
∂x

,
∂Φ
∂x

)
= β̃(t)

(
∂W
∂x

, Φ
)
+ β̃(t)(Φ(1, t)−Φ(0, t))gB(t)

− f̃ (t)(Φ(1, t)−Φ(0, t))−
(

∂û
∂t

, Φx

)
, (24)(

∂W
∂t

, Φ
)
+ νm

(
∂W
∂x

,
∂Φ
∂x

)
= β̃(t)

(
∂V
∂x

, Φ
)
+ β̃(t)(Φ(1, t)−Φ(0, t))gu(t)

−
(

∂B̂
∂t

, Φx

)
, (25)

where

β̃(t) =
F′(t)− νm(W(1, t)−W(0, t))

gu(t)
, f̃ (t) = ν(V(1, t)−V(0, t)) + β̃(t)gB(t)− E′(t)

and

(U, Φ) =

(
dU0

dx
, Φ
)

, (V, Φ) =

(
db0

dx
, Φ
)

, t = 0, ∀Φ ∈ SN . (26)

Theorem 3. Under the conditions H1 and H2, the variational problem (24)–(26) has a unique
solution.

Proof. First, we show the uniqueness.
Assume that the pairs (V(x, t), W(x, t)) and (V∗(x, t), W∗(x, t)) are two finite element

solutions of the problem (24)–(26)
Let

Y(x, t),= V(x, t)−V∗(x, t), Z(x, t) = W(x, t)−W∗(x, t), (x, t) ∈ QT .

Obviously, Y(x, t) ∈ SN , Z(x, t) ∈ SN . Subtract the equation for V∗(x, t) from the
equation for V(x, t) and subtract the equation for W∗(x, t) from the equation for W(x, t).
From a direct calculation, it can be seen that(

∂Y
∂t

, Φ
)
+ ν

(
∂Y
∂x

,
∂Φ
∂x

)
=△β̃

(
∂W
∂x

, Φ
)
+ β̃∗(t)

(
∂Z
∂x

, Φ
)

+△β̃(Φ(1, t)−Φ(0, t))−△ f̃ (Φ(1, t)−Φ(0, t))
(27)
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(
∂Z
∂t

, Φ
)
+ νm

(
∂Z
∂x

,
∂Φ
∂x

)
=△β̃

(
∂W
∂x

, Φ
)
+ β̃∗(t)

(
∂Y
∂x

, Φ
)

+△β̃(Φ(1, t)−Φ(0, t)),
(28)

where

△β̃ = β̃(t)− β̃∗(t) =
−νm

gu(t)
(Z(1, t)− Z(0, t)),

△ f̃ = f̃ (t)− f̃ ∗(t) = ν(Y(1, t)−Y(0, t)) + νm
gB(t)
gu(t)

(Z(1, t)− Z(0, t)),

and
(Y, Φ) = 0, (Z, Φ) = 0.

We take ϕ = Y as a test function in (27) and ϕ = Z as a test function in (28). We have(
dY
dt

, Y
)
=

1
2

d
dt
∥Y∥2,

(
∂Z
∂t

, Z
)
=

1
2

d
dt
∥Z∥2.

In view of the trace inequalities, we find:

∥△β̃∥2 ≤ ε1

∥∥∥∥∂Z
∂x

∥∥∥∥2
+

C
ε1
∥Z∥2,

∥△ f̃ ∥2 ≤ ε2

(∥∥∥∥∂Y
∂x

∥∥∥∥2
+

∥∥∥∥∂Z
∂x

∥∥∥∥2
)
+

C
ε3
(∥Y∥2 + ∥Z∥2).

Next, using Schwarz’s inequality and and the trace inequalities, we obtain

△β̃

(
∂W
∂x

, Y
)
≤ |△β̃|

∣∣∣∣∫ 1

0

∂W
∂x

Ydx
∣∣∣∣

≤ (△β̃)2 +
C2

4

∫ 1

0

(
∂W
∂x

)2
Y2dx ≤ (△β̃)2 +

C2

4
∥Y∥2,

β̃∗(t)
(

∂Z
∂x

, Y
)
≤ (C + νm(W∗(1, t)−W∗(0, t))∥Z∥∥Y∥

≤

C + νm

(
ε5

∥∥∥∥∂W∗

∂z

∥∥∥∥2
+

C
ε5
∥W∗∥2

)1/2
∥Z∥∥Y∥

≤ C
(
∥Z2∥+ ∥Y∥2

)
,

|△β̃||Y(1, t)−Y(0, t)| ≤ ε3∥△β̃∥2 +
C

4ε3
∥Y(1, t)−Y(0, t)∥2

≤ ε3∥△β̃∥2 +
C

4ε3

(
ε4

∥∥∥∥∂Y
∂x

∥∥∥∥2
+

C
4ε4
∥Y∥2

)
,

where constant C depends on the upper and lower bounds of |U0(x)|, |b0(x)|, and coeffi-
cients ν, νm. Similar estimates are obtained for other terms on the right-hand side of the
last equalities (27) and (28).

It is clear that

ν

(
∂Y
∂x

,
∂Y
∂x

)
+ νm

(
∂Z
∂x

,
∂Z
∂x

)
≥ min(ν, νm)

(∥∥∥∥∂Y
∂x

∥∥∥∥2
+

∥∥∥∥∂Y
∂x

∥∥∥∥2
)

.
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Finally, by rearranging all of the above inequalities and making an appropriate choice
of the free constants ε1, ε2, and ε3, we obtain

1
2

d
dt
(∥Y∥2 + ∥Z∥2) +

1
2

min(ν, νm)

(∥∥∥∥∂Y
∂x

∥∥∥∥2
+

∥∥∥∥∂Z
∂x

∥∥∥∥2
)
≤ C(∥Y∥2 + ∥Z∥2).

Since

(Y(x, 0), Y(x, 0)) = ∥Y(x, 0)∥2 = 0, (Z(x, 0), Z(x, 0)) = ∥Z(x, 0)∥2 = 0,

the Gronwall’s inequality yields Y(x, t) = Z(x, t) = 0, (x, t) ∈ QT .
The existence of the solution

V(x, t) =
N

∑
i=1

vi(t)φi(x), W(x, t) =
N

∑
i=1

wi(t)φi(x),

is equivalent to the existence of the following ordinary differential equation systems (ODEs):

N

∑
i=1

(φi, φj)
dvi
dt
− ν

N

∑
i=1

(φx,i, φx,j)vi = β̂(t)
N

∑
i=1

wi(t)(φi, φx,j)−
(

∂û
∂t

, φx,j

)
+β̂(t)(φN(1)− φN(0))gB(t)

− f̂ (t)(φN(1)− φN(0)), j = 1, 2, . . . , N,

N

∑
i=1

(φi, φj)
dwi
dt
− νm

N

∑
i=1

(φx,i, φx,j)wi = β̂(t)
N

∑
i=1

vi(t)(φi, φx,j)−
(

∂B̃
∂t

, φx,j

)
+β̂(t)(φN(1)− φN(0))gu(t), j = 1, 2, . . . , N,

where φx,j = (φj(x))x and

β̂(t) =
F′(t)− νm(wN(t)− w1(t))

gu(t)
, f̂ (t) = ν(vN(t)− v1(t)) + β̂(t)gB(t)− F′(t),

with initial condition

vi(0) =
(

du0

dx
, φi

)
, wi(0) =

(
dB0

dx
, φi

)
, i = 1, 2, . . . , N.

Under hypotheses H1 and H2, this ODE posses a global solution; see, e.g., [31].

5. Numerical Method

In this section, we discuss numerical solution of the inverse problem (1)–(5), (8), (9),
using FEM, see e.g., [32,33]. As the algorithm involves solving the direct problem in
multiple directions, we start with its numerical discretization.

5.1. FEM Solution of the Direct Problem

Consider uniform partition of the space interval by grid nodes xi+1 = ih, i = 0, 1 . . . , N,
h = 1/N.

We apply Galerkin FEM [32,33] in space for the problem (1)–(5) to find functions uh

and Bh from Vh
0 = {vh ∈ C([0, 1]), vh(0) = vh(1) = 0}, satisfying the variational form of

the problem (1)–(5) for all φ ∈ Vh
0 . We seek the solution in the form

uh(x, t) =
N

∑
i=1

Vi(t)φi(x), Bh(x, t) =
N

∑
i=1

Wi(t)φi(x).
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Thus, we obtain

N

∑
i=1

dVi
dt
(

φi, φj
)
− ν

N

∑
i=1

Vi
(

φx,i, φx,j
)
= β(t)

N

∑
i=1

Wi
(

φi, φx,j
)
− ( f (t), φj),

N

∑
i=1

dWi
dt
(

φi, φj
)
− νm

N

∑
i=1

Wi
(

φx,j, φx,j
)
= β(t)

N

∑
i=1

Vi
(

φi, φx,j
)
, j = 1, . . . , M− 1.

(29)

Consider linear basis functions

φi(x) =


x− xi−1

h
, xi−1 ≤ x ≤ xi,

xi+1 − x
h

, xi ≤ x ≤ xi+1,

0, otherwise.

Therefore, from (29), for j = 1, . . . , M− 1, we obtain

1
6

V′i−1 +
2
3

V′i +
1
6

V′i+1 − ν
Vi+1 − 2Vi + Vi−1

h2 = β(t)
Vi+1 −Vi−1

2h
− fi(t),

1
6

W ′i−1 +
2
3

W ′i +
1
6

W ′i+1 − νm
Wi+1 − 2Wi + Wi−1

h2 = β(t)
Wi+1 −Wi−1

2h
.

(30)

Applying mass lumping and incorporating the initial and boundary conditions, we
derive the semidiscretization of the direct problem (1)–(5)

V′i − ν
Vi+1 − 2Vi + Vi−1

h2 = β(t)
Vi+1 −Vi−1

2h
− fi(t), i = 1, 2, . . . , N − 1,

W ′i − νm
Wi+1 − 2Wi + Wi−1

h2 = β(t)
Wi+1 −Wi−1

2h
, i = 1, 2, . . . , N − 1,

V0 = ul(t), VN = ur(t),

W0 = Bl(t), WN = Br(t),

Vi(0) = u0(xi), Wi(0) = B0(xi), i = 0, 1, . . . , N.

(31)

Then, we define the uniform temporal mesh with grid nodes tn = nτ, n = 0, 1, . . . , M,
τ = T/M and denote vn

i (x) = v(xi, tn). Applying implicit time stepping, we obtain the
full disretiazation of the direct problem

Vn+1
i −Vn

i
τ

− ν
Vn+1

i+1 − 2Vn+1
i + Vn+1

i−1
h2 = β(tn+1)

Vn+1
i+1 −Vn+1

i−1
2h

− f n+1
i , i = 1, 2, . . . , N − 1,

Wn+1
i −Wn

i
τ

− νm
Wn+1

i+1 − 2Wn+1
i + Wn+1

i−1
h2 = β(tn+1)

Wn+1
i+1 −Wn+1

i−1
2h

, i = 1, 2, . . . , N − 1,

Vn+1
0 = ul(tn+1), Vn+1

N = ur(tn+1),

Wn+1
0 = Bl(tn+1), Wn+1

N = Br(tn+1),

Vi(0) = u0(xi), Wi(0) = B0(xi), i = 0, 1, . . . , N.

(32)

5.2. Numerical Solution of the Inverse Problem

In order to solve the inverse problem (1)–(5), (6), (7) numerically, we need to construct
approximations of (8) and (9).

βn+1 =
F′(tn+1)− νm

(
(Bh)n+1

x,N − (Bh)n+1
x,0

)
,

gu(tn+1)
(33)

where

vn
x,N =

3vn
N − 4vn

N−1 + vn
N−2

2h
, vn

x,0 =
−3vn

1 + 4vn
2 − vn

3
2h

.
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Similarly, for the approximation of (9), we have

f n+1 = ν
(
(uh)n+1

x,N − (uh)n+1
x,0

)
+ βn+1gB(tn+1)− E′(tn+1), (34)

The numerical approach for recovering functions β and f and the solution (u, B) is
based on the iteration procedure. Starting with the initial guess for β, f , we consequently
solve the direct problem (32), update the functions β, f in (33), (34); then, we solve (32)
again and so on. This process continues until reaching the desired accuracy ϵ

H(k) = max
{
∥(uh)k+1− (uh)k∥, ∥(Bh)k+1− (Bh)k∥

}
≤ ϵ, where ∥v∥ = max

0≤n≤M
max

0≤i≤N
|vn

i |

and k is the iteration number.
The numerical recovering procedure is summarized in the Algorithm 1.

Algorithm 1 : Solving the inverse problem

Require: ν, νm, ul(t), ur(t), Bl(t), Br(t), u0(x), B0(x), E(t), F(t), ϵ, N, M
Ensure: βn, f n, (uh)n

i , (Bh)n
i , i = 0, 1, . . . , N, n = 1, 2, . . . , M;

k← 0,H(0)← ϵ + 1;

whileH(k) > ϵ do

βn+1 =


F′(tn+1),
gu(tn+1)

, k = 0, n = 1, 2, . . . , M− 1,

F′(tn+1)− νm

(
(Bh)n+1

x,N − (Bh)n+1
x,0

)
,

gu(tn+1)
, k > 0 n = 1, 2, . . . , M− 1,

f n+1 =

{
βn+1gB(tn+1)− E′(tn+1), k = 0, n = 1, 2, . . . , M− 1,
ν
(
(uh)n+1

x,N − (uh)n+1
x,0
)
+ βn+1gB(tn+1)− E′(tn+1), k > 0, n = 1, 2, . . . , M− 1;

Find (uh)n+1
i , (Bh)n+1

i , i = 0, 1, . . . , N, n = 0, 1, . . . , M− 1, solving (32);

H(k)← max
{∥∥(uh)k+1 − (uh)k

∥∥,
∥∥(Bh)k+1 − (Bh)k

∥∥};

k← k + 1.
end while

6. Numerical Tests

In this section, we illustrate the performance of the proposed Algorithm 1 for numeri-
cally solving the inverse problem (1)–(7). Let ν = 2, νm = 1, T = 1 and

ul(t) = 0, ur(t) = et, Bl(t) = et/2, Br(t) = 0, u0(x) = sin
πx
2

, B0(x) = cos
πx
2

.

We consider two test problems:

TP1: β(t) = t3 − 2t + 1, f (t) = t2 + t− 1;

TP2: β(t) =
{

t + 1.5, t < 0.5,
2.5− t, t >= 0.5,

f (t) =
{

4t− 1, t < 0.5,
3− t, t >= 0.5.

For all computations, the error tolerance for the iteration process is ϵ = 10−6.
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Example 1 (Discrete measurements). Let us denote the numerical solution of the direct prob-
lem (1)–(5) by ũ and B̃, computed by (32), for known functions β(t), f (t), corresponding to the
TP1 and TP2. The measurements are generated from the values of the solutions ũ and B̃. Namely,

E(tn) =
h
2

ũn+1
1 + h

N−1

∑
i=1

ũn+1
i +

h
2

ũn+1
N , F(tn) =

h
2

B̃n+1
1 + h

N−1

∑
i=1

B̃n+1
i +

h
2

B̃n+1
N ,

E′(tn) =
E(tn+1)− E(tn)

τ
, F′(tn) =

F(tn+1)− F(tn)

τ
, n = 1, 2, . . . , M− 1.

We estimate the error (E ) of the numerical solution of the inverse problem (uh) and (Bh) in
the maximal discrete norm

Eu = EN
u = ∥ũ− (uh)∥, EB = EN

B = ∥B̃− Bh∥,

and the corresponding spatial order of convergence (CR)

CRu = log2
EN/2

u

EN
u

, CRb = log2
EN/2

B
EN

B
.

First, we illustrate the recovering process of functions β and f . In Figures 1 and 2, we
plot the exact and restored function, β and f , respectively at different iterations k for TP1. The
results for TP2 are depicted in Figures 3 and 4. The computations are performed on the mesh with
N = 40 spatial grid nodes and time step τ = h2. For both examples, the convergence is achieved in
52–53 iterations. The method is not restricted by the size of the convergence range of the initial data.

In Table 1, we provide the errors and order of convergence of the numerical solution of the
inverse problem for different numbers of space grid nodes N and fixed τ = h2. We observe that the
spatial order of convergence both for TP1 and TP2 is secondary.
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Figure 1. Exact (solid line) and recovered functions β (dashed line) at different iterations k, TP1, N = 40,
τ = h2, Example 1.
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Figure 2. Exact (solid line) and recovered function f (dashed line) at different iterations k, TP1, N = 40,
τ = h2, Example 1.
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Figure 3. Exact (solid line) and recovered functions β (dashed line) at different iterations k, TP2, N = 40,
τ = h2, Example 1.
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Figure 4. Exact (solid line) and recovered function f (dashed line) at different iterations k, TP2, N = 40,
τ = h2, Example 1.

Table 1. Errors and convergence rate of the numerical solutions uh and Bh of the inverse problem,
Example 1.

TP1 TP2

N Eu CRu EB CRB Eu CRU Eb CRb

20 4.7178× 10−3 3.4785× 10−3 1.3368× 10−2 8.2245× 10−3

40 1.2236× 10−3 1.9470 8.9581× 10−4 1.9572 3.5848× 10−3 1.8988 2.2157× 10−3 1.8921
80 3.1005× 10−4 1.9805 2.2663× 10−4 1.9829 9.2213× 10−4 1.9589 5.7206 × 10−4 1.9535

160 7.7300× 10−5 2.0040 5.6944× 10−5 1.9927 2.3260× 10−4 1.9871 1.4507 × 10−4 1.9794
320 1.9307× 10−5 2.0013 1.4242× 10−5 1.9994 5.7585× 10−5 2.0141 3.6478× 10−5 1.9916

In Figure 5, we show the convergence of the iteration processes for TP1 and TP2.
The iteration process is efficient at recovering smooth and non-smooth and discontinuous
functions.
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Figure 5. H(k) at each iteration, TP 1 (left), TP2 (right), N = 40, τ = h2, Example 1.
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Example 2 (Noisy data). Now, we deal with perturbed measurements, generated as follows

Eσ(tn) = E(tn) + 2σ1E(tn)(ρ1(tn)− 0.5), Fσ(tn) = F(tn) + 2σ2E(tn)(ρ2(tn)− 0.5),

where E(tn), F(tn) are obtained as in Example 1, σ1, σ2 are noise levels and ρ1(tn), ρ2(tn) are a
random vectors uniformly distributed at an interval of [0, 1]. Then, we smooth the data using a
polynomial curve fitting of 7 degrees.

All of the computations are performed for N = 320 and τ = h. In Figure 6, we plot the exact
and recovered functions determined by Algorithm 1, using functions β and f for TP1, σ1 = 0.003,
σ2 = 0.002. In this case, EU = 4.3647× 10−3, Eb = 1.6098× 10−3 and the accuracy ϵ is obtained
at k = 54 iterations. In Figure 7, we illustrate the recovery in the case of bigger noise. The errors of
the numerical solutions are EU = 1.4443× 10−2, Eb = 2.4217× 10−2 and k = 54. In Figure 8,
we depict exact recovered functions of β and f for TP2, σ1 = 0.01, σ2 = 0.03. In this case, k = 53
and EU = 2.6049× 10−2, Eb = 2.9370× 10−2. Note that the number of iterations required to
reach the error tolerance ϵ is only slightly increased compared with the noise-free data test. This
can also be seen in Figure 9, where the convergence of the iteration processes for both TP1and TP2
is shown.
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Figure 6. Exact (solid line) and recovered (dashed line) functions β (left) and f (right), TP1, σ1 = 0.003,
σ2 = 0.002, Example 2.
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Figure 7. Exact (solid line) and recovered (dashed line) functions β (left) and f (right), TP1, σ1 = 0.01,
σ2 = 0.03, Example 2.

Evolution graphics of the numerical solution U and b, restored by the inverse problem
and the corresponding absolute errors, are shown in Figure 10 for TP2, σ1 = 0.01, σ2 = 0.03.

In the case of noisy measurements, the fitting of functions β and f , for TP1 and TP2,
are sufficiently accurate, such that to obtain optimal precision of the numerical solutions U
and b.
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Figure 8. Exact (solid line) and recovered (dashed line) functions β (left) and f (right), TP2, σ1 = 0.01,
σ2 = 0.03, Example 2.
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Figure 9. H(k) at each iteration, TP 1 (left), TP2 (right), σ1 = 0.01, σ2 = 0.03, Example 2.

Figure 10. Numerical solutions uh and Bh in the whole computational domain, restored by the inverse
problem and the corresponding absolute errors, TP2, σ1 = 0.01, σ2 = 0.03, Example 2.
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7. Conclusions

In this article, we study the inverse problem of recovering a time-dependent convec-
tion coefficient and a time-dependent source in a 1D MHD flow model on the basis of
two integral observations of the solutions.

• We transform the inverse problem to a non-classical system of parabolic equations,
which involve the boundary values of the solution in the differential operators.

• We show the equivalence of the obtained forward problem with the inverse problem.
• Applying the Galerkin approximation, we prove the well-posedness of the non-

classical forward problem.
• An iteration algorithm, based on the FEM method, is developed for numerical solution

of the inverse problems.
• The iteration process is convergent for a moderate number of iterations.
• The reconstruction of the source and convection coefficients is successful in the case

when they are smooth functions, as well as for non-smooth and discontinuous functions.
• For noise-free data, the order of convergence of the numerical solution of the inverse

problem is first in time and second in space.
• For the noisy measurements, the adjustment of the convection coefficient and source

is accurate enough to obtain optimal precision of the numerical solutions U and b.
• The method is not limited with respect to the size of the convergence range of the

initial data.
• The proposed numerical approach can also be applied in the case when the integral

measurements are in the spatial subinterval.
• Galerkin approximation method, developed in this work, can be expanded to the case

of the second and third kind of boundary conditions [34].
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