Integrating Interpolation and Extrapolation: A Hybrid Predictive Framework for Supervised Learning
Abstract
:1. Introduction
1.1. Interpolation and Extrapolation
1.2. Contributions and Organization
- It can handle both interior and exterior data points without prior knowledge or assumptions;
- It flexibly selects the optimal prediction strategy by considering the centrality coefficient obtained from the optimization model;
- It enhances the precision of predictions by harnessing the collective power of both interpolation and extrapolation abilities.
2. Problem Statement and Model Setup
2.1. Optimization Model M0
2.1.1. Pre-Processing Procedures for Categorical Features
2.1.2. The Linearization of Absolute Terms
- Model M0:
2.2. Predictive Frameworks
2.2.1. Model M1: kNN
- Model M1:
2.2.2. Model M2: Linear Regression
- Model M2:
2.2.3. Model M3: The Hybrid Prediction Model
- Model M3:
2.2.4. The Evaluation Metric
3. Numerical Experiments
3.1. Dataset Description
3.2. Data Pre-Processing
3.2.1. Encoding Method for Categorical Features
3.2.2. Normalization for Numerical Features
3.3. Computational Procedures
Algorithm 1: Computational procedures of the experiment |
Input: The whole dataset (3026 PSC inspection records). Output: MSEs of three prediction models M1, M2, and M3.
|
3.4. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balestriero, R.; Pesenti, J.; LeCun, Y. Learning in high dimension always amounts to extrapolation. arXiv 2021, arXiv:2110.09485. [Google Scholar]
- Sarfraz, M.; Ishaq, M.; Hussain, M.Z. Shape designing of engineering images using rational spline interpolation. Adv. Mater. Sci. Eng. 2015, 2015, 260587. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Hennessy, C.A.; Strebulaev, I.A. Beyond random assignment: Credible inference and extrapolation in dynamic economies. J. Financ. 2020, 75, 825–866. [Google Scholar] [CrossRef]
- Talvitie, J.; Renfors, M.; Lohan, E.S. Distance-based interpolation and extrapolation methods for RSS-based localization with indoor wireless signals. IEEE Trans. Veh. Technol. 2015, 64, 1340–1353. [Google Scholar] [CrossRef]
- Steffensen, J.F. Interpolation, 2nd ed.; Chelsea Publishing Company: New York, NY, USA, 1951. [Google Scholar]
- Minda, A.A.; Barbinita, C.I.; Gillich, G.R. A review of interpolation methods used for frequency estimation. Rom. J. Acoust. Vib. 2020, 17, 21–26. [Google Scholar]
- Press, W.H. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Blu, T.; Thévenaz, P.; Unser, M. Linear interpolation revitalized. IEEE Trans. Image Process. 2004, 13, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Tal-Ezer, H. High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 1991, 12, 648–667. [Google Scholar] [CrossRef]
- Challu, C.; Olivares, K.G.; Oreshkin, B.N.; Garza Ramirez, F.; Mergenthaler Canseco, M.; Dubrawski, A. Nhits: Neural hierarchical interpolation for time series forecasting. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023. [Google Scholar]
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote Sens. 2020, 12, 1687. [Google Scholar] [CrossRef]
- Scott Armstrong, J.; Collopy, F. Causal forces: Structuring knowledge for time--series extrapolation. J. Forecast. 1993, 12, 103–115. [Google Scholar] [CrossRef]
- Webb, T.; Dulberg, Z.; Frankland, S.; Petrov, A.; O’Reilly, R.; Cohen, J. Learning representations that support extrapolation. In Proceedings of the 37th International Conference on Machine Learning, PMLR, Vienna, Austria, 13–18 July 2020. [Google Scholar]
- Zhu, M.; Zhang, H.; Jiao, A.; Karniadakis, G.E.; Lu, L. Reliable extrapolation of deep neural operators informed by physics or sparse observations. Comput. Methods Appl. Mech. Eng. 2023, 412, 116064. [Google Scholar] [CrossRef]
- Brezinski, C.; Zaglia, M.R. Extrapolation Methods: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Liu, Y.; Xue, Y.; Taniguchi, M. Robust linear interpolation and extrapolation of stationary time series in Lp. J. Time Ser. Anal. 2020, 41, 229–248. [Google Scholar] [CrossRef]
- McCartney, M.; Haeringer, M.; Polifke, W. Comparison of machine learning algorithms in the interpolation and extrapolation of flame describing functions. J. Eng. Gas Turbines Power 2020, 142, 061009. [Google Scholar] [CrossRef]
- Rosenfeld, E.; Ravikumar, P.; Risteski, A. An online learning approach to interpolation and extrapolation in domain generalization. In Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain, 28–30 March 2022. [Google Scholar]
- Tokyo MoU. Information Sheet of the New Inspection Regime (NIR). Available online: http://www.tokyo-mou.org/doc/NIR-information%20sheet-r.pdf (accessed on 31 January 2024).
- Tian, S.; Zhu, X. Data analytics in transport: Does Simpson’s paradox exist in rule of ship selection for port state control. Electron. Res. Arch. 2023, 31, 251–272. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R.; Qu, X. Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation. Transp. Res. Part B Methodol. 2019, 128, 129–157. [Google Scholar] [CrossRef]
- Dinis, D.; Teixeira, A.P.; Soares, C.G. Probabilistic approach for characterising the static risk of ships using Bayesian networks. Reliab. Eng. Syst. Saf. 2020, 203, 107073. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S. Ship detention prediction using anomaly detection in port state control: Model and explanation. Electron. Res. Arch. 2022, 30, 3679–3691. [Google Scholar] [CrossRef]
- Rao, A.R.; Wang, H.; Gupta, C. Predictive analysis for optimizing port operations. arXiv 2024, arXiv:2401.14498. [Google Scholar]
Parameters | |
A dataset with known samples, , , where is the dimension of input feature vector . | |
A new data point. | |
Decision variables | |
The weighted vector for the new data point , where represents the weight of data point in relation to the new data point. |
Num | Categorical Features | Distinct Categories | Encoding Method |
---|---|---|---|
1 | Ship type | Bulk carrier | (0.5,0,0,0,0,0) |
Container ship | (0,0.5,0,0,0,0) | ||
General cargo | (0,0,0.5,0,0,0) | ||
Passenger ship | (0,0,0,0.5,0,0) | ||
Chemical/oil tanker | (0,0,0,0,0.5,0) | ||
Other types | (0,0,0,0,0,0.5) | ||
2 | Ship flag performance | White | (0.5,0,0,0) |
Grey | (0,0.5,0,0) | ||
Black | (0,0,0.5,0) | ||
Other types | (0,0,0,0.5) | ||
3 | Ship RO performance | High | (0.5,0,0) |
Medium | (0,0.5,0) | ||
Low | (0,0,0.5) | ||
4 | Ship company performance | High | (0.5,0,0,0) |
Medium | (0,0.5,0,0) | ||
Low | (0,0,0.5,0) | ||
Other types | (0,0,0,0.5) |
Num | Numerical Features | Value Range |
---|---|---|
1 | Ship age | {0, 1, …, 48} |
2 | Deficiencies within the previous 36 months | {0, 1, …, 55} |
3 | Detentions within the previous 36 months | {0, 1, …, 18} |
Batch | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 1 | 6 | 1 | 2 | 5 | 6 | 8 | 10 | 5 | |
Batch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
3 | 1 | 10 | 8 | 5 | 9 | 10 | 8 | 9 | 5 | |
Batch | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
5 | 5 | 6 | 7 | 7 | 7 | 7 | 3 | 4 | 5 |
Batch | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
0.4 | 0.1 | 1 | 2.5 | 3.3 | 2 | 0.1 | 1.5 | 0.8 | 0.1 | |
Batch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
4.7 | 5.7 | 2.7 | 2 | 3 | 1.2 | 3.3 | 0.5 | 1.3 | 1.7 | |
Batch | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
2.1 | 1.9 | 2.1 | 3.2 | 2.7 | 1 | 0.3 | 0.1 | 0.8 | 0.3 |
Batch | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
M1 (kNN) | 4.75 | 3.60 | 2.13 | 19.10 | 18.71 | 15.08 | 3.12 | 42.87 | 20.31 | 8.16 |
M2 (LR) | 4.69 | 12.00 | 30.97 | 16.91 | 19.49 | 9.29 | 3.62 | 38.89 | 34.20 | 50.52 |
M3 (hybrid) | 4.42 | 11.89 | 29.77 | 19.92 | 18.50 | 10.44 | 3.82 | 40.88 | 22.52 | 49.73 |
Batch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
M1 (kNN) | 17.38 | 20.90 | 11.34 | 8.53 | 12.84 | 8.20 | 10.61 | 13.17 | 9.84 | 5.95 |
M2 (LR) | 30.68 | 28.03 | 10.71 | 32.78 | 11.65 | 8.12 | 11.84 | 19.58 | 20.88 | 9.29 |
M3 (hybrid) | 17.14 | 22.81 | 10.36 | 14.61 | 12.55 | 7.23 | 10.19 | 19.40 | 20.63 | 5.63 |
Batch | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
M1 (kNN) | 10.37 | 31.92 | 7.83 | 5.23 | 19.05 | 13.40 | 6.47 | 14.82 | 14.73 | 21.60 |
M2 (LR) | 22.30 | 27.94 | 5.98 | 89.45 | 21.63 | 15.81 | 25.48 | 10.55 | 74.54 | 20.06 |
M3 (hybrid) | 19.65 | 28.94 | 7.71 | 60.83 | 18.64 | 18.98 | 24.89 | 11.66 | 74.59 | 20.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Zhu, X.; Tian, X.; Yi, W.; Wang, S. Integrating Interpolation and Extrapolation: A Hybrid Predictive Framework for Supervised Learning. Appl. Sci. 2024, 14, 6414. https://doi.org/10.3390/app14156414
Jiang B, Zhu X, Tian X, Yi W, Wang S. Integrating Interpolation and Extrapolation: A Hybrid Predictive Framework for Supervised Learning. Applied Sciences. 2024; 14(15):6414. https://doi.org/10.3390/app14156414
Chicago/Turabian StyleJiang, Bo, Xinyi Zhu, Xuecheng Tian, Wen Yi, and Shuaian Wang. 2024. "Integrating Interpolation and Extrapolation: A Hybrid Predictive Framework for Supervised Learning" Applied Sciences 14, no. 15: 6414. https://doi.org/10.3390/app14156414
APA StyleJiang, B., Zhu, X., Tian, X., Yi, W., & Wang, S. (2024). Integrating Interpolation and Extrapolation: A Hybrid Predictive Framework for Supervised Learning. Applied Sciences, 14(15), 6414. https://doi.org/10.3390/app14156414