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Abstract: Optimizing heat generation capacity is crucial for geothermal system design and evaluation.
Computer simulation is a valuable approach for determining the influence of various parameter
combinations on a geothermal system’s ability to produce heat. However, computer simulation
evaluations are often computationally demanding since all potential parameter combinations must
be examined, posing significant hurdles for heat generation performance evaluation and optimiza-
tion. This research proposes an adaptive Kriging-based heat generation performance optimization
method. Firstly, a two-horizontal-well geothermal system with rectangular multi-parallel fractures
is constructed. The heat production performance optimization problem is then established, and
the temperature and enthalpy of the outlet water are calculated using computer simulation and
Kriging. A parameterized lower confidence bounding sampling scheme (PLCB) is developed to
adaptively update Kriging in order to strike a compromise between optimization accuracy and
computation burden. The outcomes of the optimization are compared to those of the Kriging-based
optimization approach and other common infill options to demonstrate the efficiency of the proposed
method. The outlet temperature curve obtained with PLCB-AKO-1 rose for a longer time and the
heat generation power curve reached a stable output without a downward trend. According to the
Friedman and Wilcoxon signed ranks tests, the PLCB-1-AKO technique is statistically superior to
alternative strategies.

Keywords: heat production performance; Kriging; hot dry rock; geothermal system; numerical simu-
lation

1. Introduction

Geothermal energy is one of the most economically sustainable, low-carbon, and
renewable energy alternatives to traditional fossil fuels owing to its stability, concentrated
quality, and purit [1,2]. Geothermal reservoirs, especially hot dry rock (HDR), are of
particular interest to researchers due to their great potential for power generation [3].
Developing geothermal energy from HDR is made possible by reforming the reservoir to
create a permeable fracture system and then pumping the working fluid into the fracture to
extract heat from high-temperature HDR [4].

Due to the large capital expenditure required to develop an effective system, the
geothermal system should be meticulously planned in advance to maximize its profitability.
Figure 1 depicts a basic configuration of a geothermal facility. When designing a geothermal
system, optimal heat extraction performance and low development costs are desired. As a
result, the prediction and optimization of heat production performance is a key technology
that affects the development cost and operational life of a specific geothermal system [5].
Conducting computer simulations to evaluate various parameter combinations to improve
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performance is a common practice [6]. The effects of fluid flow rate, temperature, lateral
well spacing fracture number, fracture breadth, and production time on a horizontally
fractured geothermal reservoir have been studied in the literature [7].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 2 of 17 
 

nology that affects the development cost and operational life of a specific geothermal sys-
tem [5]. Conducting computer simulations to evaluate various parameter combinations to 
improve performance is a common practice [6]. The effects of fluid flow rate, temperature, 
lateral well spacing fracture number, fracture breadth, and production time on a horizon-
tally fractured geothermal reservoir have been studied in the literature [7]. 

 
Figure 1. Type geothermal plant layout of HDR. 

The previous studies help us to comprehend the importance of choosing the appro-
priate parameters. The heat production performance of a certain geothermal system is 
significantly influenced by the thermal reservoir characteristics, fracture conditions, and 
injection parameters of the circulation fluid. Particularly, the circulation fluid flow and, 
consequently, the effectiveness of thermal extraction are significantly influenced by the 
characteristics of the thermal reservoir, such as reservoir volume, permeability, and frac-
ture characteristics, such as length, opening, roughness, and tortuosity [8]. In other words, 
a variety of factors impact heat production performance, and the underlying effect mech-
anism is complex, making its prediction extremely difficult [9]. Furthermore, the impact 
of various factors on geothermal performance has not been well examined. One solution 
to this problem is to investigate all potential parameter combinations and then select the 
optimal combination. However, because all potential combinations must be analyzed, it 
is frequently computationally demanding [10]. 

Using approximations instead of computationally expensive experiments/simula-
tions is an effective solution to this computationally intensive problem [11]. By revealing 
the connections between the variables and objective functions, approximations can pro-
vide insights into the optimization problem [12]. Due to their ability to handle black-box 
and computationally demanding functions, approximation models could be used in prac-
tically all sorts of optimization problems [13]. When establishing an approximation model, 
samples are anticipated to be scattered over the whole design space in order to extract as 
much information as possible about the real experiments or simulations to be substituted. 
Additionally, the sampling technique has a significant impact on the approximation accu-
racy [14]. In general, a larger sample size allows approximations to explore the design/op-
timization area more thoroughly [15]. Large sample sizes of experiments/simulations, 
however, are impractical to implement, especially when computational costs are an over-
burden [16]. To enhance approximation approaches even further, the adaptive sampling 
methodology was created [17]. Researchers have lately switched from standard (or static) 
to adaptive techniques, known as dynamic or adaptive approximations, for approxima-
tion-based analysis and optimization [18]. 

Multiple fracturing technology and horizontal wells have significantly advanced 
during the last few years, improving gas and oil output [19]. The employment of multiple 

Figure 1. Type geothermal plant layout of HDR.

The previous studies help us to comprehend the importance of choosing the appro-
priate parameters. The heat production performance of a certain geothermal system is
significantly influenced by the thermal reservoir characteristics, fracture conditions, and
injection parameters of the circulation fluid. Particularly, the circulation fluid flow and,
consequently, the effectiveness of thermal extraction are significantly influenced by the
characteristics of the thermal reservoir, such as reservoir volume, permeability, and fracture
characteristics, such as length, opening, roughness, and tortuosity [8]. In other words, a
variety of factors impact heat production performance, and the underlying effect mecha-
nism is complex, making its prediction extremely difficult [9]. Furthermore, the impact
of various factors on geothermal performance has not been well examined. One solution
to this problem is to investigate all potential parameter combinations and then select the
optimal combination. However, because all potential combinations must be analyzed, it is
frequently computationally demanding [10].

Using approximations instead of computationally expensive experiments/simulations
is an effective solution to this computationally intensive problem [11]. By revealing the
connections between the variables and objective functions, approximations can provide
insights into the optimization problem [12]. Due to their ability to handle black-box and
computationally demanding functions, approximation models could be used in practically
all sorts of optimization problems [13]. When establishing an approximation model, sam-
ples are anticipated to be scattered over the whole design space in order to extract as much
information as possible about the real experiments or simulations to be substituted. Addi-
tionally, the sampling technique has a significant impact on the approximation accuracy [14].
In general, a larger sample size allows approximations to explore the design/optimization
area more thoroughly [15]. Large sample sizes of experiments/simulations, however, are
impractical to implement, especially when computational costs are an overburden [16]. To
enhance approximation approaches even further, the adaptive sampling methodology was
created [17]. Researchers have lately switched from standard (or static) to adaptive tech-
niques, known as dynamic or adaptive approximations, for approximation-based analysis
and optimization [18].

Multiple fracturing technology and horizontal wells have significantly advanced
during the last few years, improving gas and oil output [19]. The employment of multiple
fracturing technology and horizontal wells have also attracted wide attention recently.
Yu et al. developed a 3D thermal-hydrological-mechanical model with contacting cracks
and assessed the efficacy of its heat extraction [20]. To examine the impact of numerous
hydraulic fractures on geothermal energy extraction performance, geothermal systems with
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multiple fractured horizontal wells were analyzed [21]. Research shows that horizontal
wells are preferable to vertical wells for connecting injection and production wells [19].
Additionally, a geothermal system with a horizontal well and several fractures might
guarantee a constant in-situ stress and temperature field in the fractures at the same depth,
preventing major flow short circuit between the fractures [22]. In addition to boosting
heat extraction, it may also significantly reduce produced seismicity compared to a single
fracture because of the decreased individual energy release from each fracture [6].

The adaptive Kriging approximation and numerical simulations are integrated in this
study to optimize heat production performance for a geothermal system with two hori-
zontal wells and rectangular multi-parallel fractures. In the beginning, a numerical model
for a two-horizontal-well geothermal system with rectangular multi-parallel fractures is
developed. The heat production performance optimization issue is then constructed using
the heat generating power calculation. A substantial processing burden and a “black box”
problem come from the computer simulation investigation. In order to offer production-
specific enthalpy and outlet temperature responses, Kriging approximation is employed
and adaptively updated to take the role of the computer simulation. We use a parameter-
ized lower confidence bounding scheme (PLCB), a sequential sampling technique that was
recommended in our earlier work, to update the Kriging approximation with dynamically
identified sample sites in order to strike a compromise between optimization accuracy and
efficiency. As a result, the approximation update is led by both the optimization accuracy
and the approximation’s expected uncertainty. The optimization outcome is compared to
that of the Kriging-based optimization approach. Furthermore, the effectiveness of the
PLCB system is proved through comparisons with other commonly used infill schemes.

2. Method
2.1. Heat Production Performance Optimization Problem Formulation

As a high temperature geothermal resource, HDR is primarily used for power pro-
duction. The capacity of heat generation power must be addressed when developing a
geothermal system. As a result, heat generating capacity is taken as an assessment indi-
cator to evaluate heat production performance. The following equation is widely used to
compute heat generating power according to the First Law of Thermodynamics:

We = 0.45q(hpro − hinj)(1 − To/Tpro), q = ρνA (1)

where We stands for the heat generation power, MW; q represents the circulation mass
flow rate, kg/s; hpro and hinj stand for the enthalpy of the producing water and injection
specific enthalpy, J/kg, respectively; T0 is the injection temperature, while Tpro is the outlet
temperature; and 0.45 is the thermal energy conversion coefficient. The mass flow rate q
could be calculated according to q = ρνA, where ρ stands for the density of the circulating
working fluid, kg/m3; ν represents the injection velocity of circulating working fluid, m/s;
while A denotes the injection pipe’s cross sectional area, m2.

Therefore, the calculation formula of total power generation Q within a certain time is
as follows:

Q =
∫ t

0
0.45q(hpro − hinj)(1 − To/Tpro)dt (2)

The total power generation Q is employed to reflect the heat production performance,
which would be optimized to obtain the best performance. The production specific enthalpy
hpro and outlet temperature Tpro are obtained through the computer simulations described
in Section 2.3, which is a black-box issue. A Kriging model is employed to replace the
production specific enthalpy hpro and outlet temperature Tpro in the optimization problem
to benefit the whole optimization procedure with easy implementation and much less
computational burden. In this work, the fracture space W, mass flow rate of injected
circulating working fluid q, and well space L are taken as the design parameters to gain the
maximum heat generation power. The well spacing L can be decomposed into L1 and L2 in
the vertical and horizontal directions.
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Therefore, the optimization problem could be formulated as follows:

max Q
s.t. 6 ≤ q ≤ 12, kg/s, 40 ≤ W ≤ 120, m

600 ≤ L ≤ 1000, m, Tpro ≥ 393.15 K
(3)

The optimization objective function is to maximize the total power generation Q. The
fracture space W, mass flow rate of injected circulating working fluid q, and well space
L are the variables, which are employed in the numerical simulation model to obtain the
production specific enthalpy. There is a cut-off outlet temperature constraint (presented as
Tpro ≥ 393.15 K) considering the system lifetime; that is, an outlet temperature less than
393.15 K is considered to have no development and utilization value.

2.2. Adaptive Kriging-Based Heat Production Performance Optimization

To solve the total power generation maximization problem proposed in the preceding
section, an adaptive Kriging-based heat production performance optimization is proposed
in this section.

The design parameters for the heat production performance optimization problem are
specifically fracture space, injection flow rate, and well space. The performance of heat
production is taken into account while calculating the heat producing power. Figure 2
illustrates how the suggested adaptive Kriging-based heat generation performance op-
timization is carried out. Computer simulations based on the numerical model for a
geothermal system with rectangular multi-parallel fractures conducted in Section 2.3 are
employed to obtain the production specific enthalpy hpro and outlet temperature Tpro at
the sample points. The heat generation power in Equation (2) is then calculated based
on the simulated response of production specific enthalpy hpro and outlet temperature
Tpro. A relationship is established between the heat generation performance and the input
parameters (fracture space, injection flow, and well spacing) through the use of Kriging
modeling. Additionally, a sequential sampling technique is used to update the Kriging
model. The PLCB sampling method proposed in our previous work [15], which aims to
adaptively balance the exploration/exploitation procedure, is employed to locate new
samples to adaptively update the Kriging approximation.
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2.3. Numerical Simulation for a Two-Horizontal-Well Geothermal System

The numerical simulation technique for a two-horizontal-well geothermal system
with rectangular multi-parallel fractures is detailed in this section. In this research, the
computational fluid dynamics software, ANSYS Fluent 16, is used as the simulation solution.
It is widely used for simulating and analyzing fluid flow and heat transfer through porous
media, multiphase flow, and phase transition in various engineering applications [23]. The
convergence condition of the numerical simulation in this work is that the residual value of
energy is set to 10−6 and the other variables’ residual values are set to 10−3.

2.3.1. Numerical Model Description

The fractured zone and the impermeable rock mass zone are represented by a numeri-
cal model with rectangular multi-parallel cracks. Figure 3 depicts the conceptual model. As
Figure 3b,c demonstrate, L1, L2, W and D represent the fracture length, the fracture height,
the fracture aperture, and the fracture space, respectively. Taking the boundary impact into
account, there is a reserve distance of 25 m between the inlet and outflow and the edge.
Because the well diameter is just 0.3 m, which is significantly less than the dimension of
the rock mass, the flow heat transfer within the well is considered insignificant. Therefore,
fracture interfaces with the injection well are considered as inlets, while interfaces with
the producing well are treated as the outlets. Thus, the model is periodic along the z axis.
Figure 3c demonstrates one period, in which Z = 0 is the fracture’s central axis.
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2.3.2. Governing Equations

The continuity equation is described as follows:

∂

∂t
(γρ f ) +∇ · (ρ f K · U) = 0 (4)

where t denotes the time (s); γ is the porosity, which equals 1 when the fractures are
completely open; ρ f represents the fluid density (kg/m3); K is the second-order area
porosity tensor; U stands for the velocity vector; ∇ is the gradient operator.

Ignoring the convective acceleration and diffusion terms of the momentum equation,
the momentum equation can be simplified to Darcy’s law.

−∇P − µ

k
U + ρ f g = 0 (5)

where µ is the dynamic viscosity of the fluid (Pa·s); P is the pressure of the fluid (Pa); g is
the gravitational acceleration (m/s2).

The local energy governing equation is described as follows.

∂(ρ f γC f T)
∂t

− ∂P
∂t

+∇ · (ρ f K · U(C f T)) = ∇ · (λeK · ∇T) +∇(K · U · τ) (6)

where C f is the specific heat capacity of the fluid, J/(kg·K); T is fluid Temperature (K); λe is
the effective thermal conductivity of the crack, W/(m·K); τ is fluid shear stress, Pa.
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2.3.3. Boundary and Hypotheses

(1) The model in Figure 3 has a repetitive characteristic of periodism in the z axis
direction, the left and right walls are configured to be the periodic wall, while the interface
between the fluid zone and the rock mass zone is set to the coupled wall.

(2) The matrix rock area is simplified to be homogeneous and isotropic impermeable
blocks, namely the matrix permeability ≤9.87 × 10−16 m2. Chemical interactions between
water and the rock matrix are also not taken into account.

(3) The rock’s thermal diffusion coefficient is low so that the thermal conduction
between the reservoir model in Figure 3 and the surrounding rock is ignored. Therefore,
except for the above boundary, there is no heat flow over the other surfaces.

(4) Ignore the influence of temperature and pressure condition variety on the thermal
property of the system. Thus, thermal conductivity coefficient, specific heat capacity and
density of rock and water are constant during the whole mining stage.

(5) With a temperature gradient of 6 K/100 m (y axis), the initial average temperature
of the rock mass is 473.15 K, but it may also range from 461.15 K to 485.15 K. There is no
water loss during water circulation since the intake has been designated as a mass-flow
inlet with an injection temperature of 60 ◦C. The outlet is used as a pressure-outlet.

2.3.4. Parameters Selection

Based on geothermal exploration findings and prior study experiences [24–26], a
fundamental scenario of the Gonghe Basin in Qinghai was chosen as the research back-
ground to guide the selection of parameters. Table 1 contains the exact numerical model
parameters for this instance. The model size is 400 m × 400 m × 400 m. The fracture
aperture is settled as 0.002 m according to the literature and experience in hydrothermal
geothermal systems [27]. The thermo-physical properties of matrix rock vary generally
between 2–3.5 W/(mK), and 2.5 W/(mK) was employed. A geothermal examination of
the Gonghe Basin in Qinghai found that the temperature can exceed 473.15 K at 3000 m
below the surface and that the geothermal gradient is approximately 6–7 K/100 m [28]. As
a result, the starting average temperature of the rock mass is set at 473.15 K and dispersed
with a 6 K/100 m temperature gradient. According to Zeng’s research, the water density in
a broken reservoir ranges from 857 kg/m3 to 992 kg/m3 [29], and in this work, the average
value of 925 kg/m3 is used. The fracture fluid is regarded as a porous medium, and the
modified Cubic Law [30] is used to estimate the permeability of the rough fracture while
taking the influence of fracture roughness on heat transfer into account:

k =
W2

12 f
(7)

f = 1 + 17
( a

2W

)1.5
(8)

where k stands for the fracture permeability after reservoir stimulation such as hydraulic
fracturing; W represents the fracture aperture; f denotes the Lomize roughness coefficient,
which is calculated according to Equation (8); a stands for the asperity height, and is set to
be 0.0005 m according to Wang’s research [31].

Table 1. Parameters of the reservoir rock matrix in the numerical model.

Parameter Value

Rock thermal conductivity 2.5 W/(m·K)
Rock specific heat 1000 J/(kg·K)

Rock density 2650 kg/m3

Fracture permeability 1.9 × 10−7 m2

Fracture height 400 m
Fracture length 400 m

Fracture aperture 0.002 m
Asperity height 0.0005 m

Injection temperature 333.15 K
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By this method, the fracture permeability after reservoir reformation is calculated as
1.9 × 10−7 m2, which was employed in the computer simulation.

It is also taken into account how temperature affects the mechanical and physical prop-
erties of water. The calculations below illustrate that the water’s density, heat conductivity,
heat capacity, and dynamic viscosity are all variables [6].

ρ f = 838.5 + 1.4T − 3 × 10−3T2 + 3.7 × 10−7T3 (9)
µ f = 1.4 − 0.02T + 1.4 × 10−4T2 − 4.6 × 10−7T3 + 8.9 × 10−10T4

−9.1 × 10−13T5 + 3.8 × 10−16T6 T ∈ [273.15, 413.15]
µ f = 0.004 − 2.1 × 10−5T + 3.9 × 10−8T2 − 2.4 × 10−11T3

T ∈ [413.15, 533.15]

(10)

C f = 12010 − 80T + 0.3T2 − 5.4 × 10−4T3 + 3.6 × 10−7T4 (11)

λ f = −0.9 + 8.9 × 10−3T − 1.6 × 10−5T2 + 7.9 × 10−9T3 (12)

2.3.5. Domain Discretization

Figure 4 shows how the fracture, entry, and exit areas mesh. The region surrounding
the well is split by an O-shape in the xy plane. The model is meshed into 10 layers with
a minimum grid size of 0.1 m and a growth ratio of 1.1 inside a 1.6 m region close to the
well. The grid size is raised by a factor of 1.2 in the region 1.6 m out from the well, with a
minimum mesh size of 0.25 m. The fracture region is separated into 5 equal layers along
the z-axis since the fracture aperture is only 2 mm wide. Each layer is equally 0.4 mm and
permeability of each layer is 1.9 × 10−7 m2. The model is partitioned into 10 boundary
layers with a minimum grid size of 0.5 mm and a growth ratio of 1.1 in the rock mass
region of 8 mm close to the fracture zone. Meshing occurs in the rock mass beyond the
8 mm fracture zone at a growth ratio of 1.3 and a minimum size of 13 mm.
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2.4. PLCB-Based Sequential Sampling Methods

The lower bounding function, which is a linear mix of approximation uncertainty and
the anticipated value, is minimized in Cox and John’s method to global optimization. The
Lower Confidence Bounding (LCB) formulation is demonstrated as follows:

lcb = ŷ(x)− bσ̂(x) (13)

where ŷ(x) is the predicted optimal value, σ̂(x) is the predicted uncertainty. The explo-
ration/exploitation balance is regulated by a user-controlled variable b. Cox and John
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suggested b = 2. By incorporating a parameter ai for the expected value, we proposed a
cooling technique to address the challenge of selecting a well-working b. The original LCB
function is therefore slightly updated to become as follows:

lcb = ai ŷ(x)− biσ̂(x) (14)

In the above equation, ai and bi fluctuate during the whole optimization process and
sampling procedure. The newly developed cooling method is regularly carried out by
oscillating and monotone-decreasing control functions. When a larger value is assigned
to bi/ai, the predicting uncertainty σ̂(x) has bigger weight, and the LCB minimization in
Equation (11) focuses on the global search (exploration). Conversely, a smaller value of
bi/ai assigns a bigger weight to local search (exploitation). Bigger bi/ai is suggested at an
earlier stage, and then, smaller bi/ai is expected. As the sampling process proceeds, the
value of bi/ai varies periodically to balance exploration and exploitation intelligently. The
parameters ai and bi are formulated as follows:

ai = 1
bi = (1 + cos( iπ

n ))/ sin( iπ
n )

(15)

In the above equation, i stands for the iteration number (also known as the sequence
sampling number), n controls the varying cycle and could be defined via users’ preference.

An alternative method is to set the parameter a = 1, and then vary the parameter b
according to the three control formulations as provided in the following:

bi =
b0

ln(1 + i)
(16)

bi =
b0

i
(17)

bi = b0 exp(−0.8(i − 1)
1
2 ) (18)

where i stands for the iteration number, and b0 represents the initial value of parameter b.
Compared to Equation (12), formulations in Equations (13)–(15) are monotone-decreasing
while Equation (12) is also an oscillating function.

3. Results and Discussion
3.1. Model Verification

Through a comparison of the dimensionless temperature, or TD, between the works in
this study and research in the literature [32], the suggested numerical simulation model is
validated in this part. TD is defined as TD = (Tpro − Tinj)/(T0 −Tinj). Figure 5 demonstrates
TD of a 1D numerical model [32], 2D numerical model [33], and numerical model in this
work. The evolution tendency of TD in various stimulation models is essentially the same,
as illustrated in Figure 5. The early stage’s temperature is steady or increasing throughout
the first year. However, the progress of TD has steadily stagnated as mining time has
increased. During the course of 20 years, TD of the 2D numerical model decreases by about
42%, TD of the 1D numerical model decreases by about 43.3%, and TD of the numerical
model in this work has a 45.6% drop. The comparison result shown in Figure 5 verify the
rationality and effectiveness of the numerical model proposed in this paper.

3.2. Simulation Running

The numerical simulation method described in Section 2.3 is executed to obtain the
outlet temperature of the circulation fluid. Figure 6 demonstrates the fluid field’s simulated
temperature distribution in the x-y plane (z = 0) after 20 years in a situation where the
fracture space W is 100 m, injection flow q is 8 kg/s, and well spacing L is 990 m. Because
circular zones of low temperature form and spread evenly around the entrance, it may
be assumed that the outflow temperature is not altered in the early stages (Figure 6a–c).
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The isotherm starts to bulge toward the outlet at 0.88 years (as shown in Figure 6d), which
implies that the heat exchange between the flowing fluid and the high-temperature rock
mass has altered the temperature in the vicinity of the outlet regions. Thus, the outlet
temperature, Tpro, starts to drop (see Figure 7), and as the heat extraction time increases, the
low temperature zones eventually expand to the complete areas (as shown in Figure 6e–i).
Additionally, it shows that because the starting temperature of the rock mass is distributed
in a gradient, the temperature at the lower left side of the entire fluid region is always
higher than the top right side.
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Figure 7 depicts the development of the outlet temperature and heat-generating
power of the optimum scheme through different approaches, in which the scheme (with
w = 100 m, L = 990 m and q = 12 kg/s) is used as a reference group. It is obvious that the
outlet temperature rose for a very brief period of time and then dropped to 393.15 K at
15.78 a in the reference scheme, while the optimum scheme of PLCB-AKO-1 dropped to
393.15 K at 27.16 a. Therefore, in the heat generation power curve, the optimum scheme
of PLCB-AKO reached a stable output of 5.2 MW without a downward trend, while the
heat-generation power curve drops at about 8 a and 14.5 a in the other two schemes.

3.3. Comparison with Kriging-Based Optimization

For comparison, the Kriging-based optimization approach is used to tackle the heat
generation performance optimization problem (which is called KBO for short in this paper).
Both the PLCB-based adaptive Kriging optimization method (PLCB-AKO for short) and
KBO employ the fast LHD to generate the initial sample points.

When using the KBO technique, sample sizes of 30, 40, and 50 are set, and the starting
sample size for Kriging in the suggested PLCB-AKO approach is set at 20. LHD is used to
select sample points for Kriging modeling in KBO. To assess the precision of the Kriging
approximation at the last iteration, three metrics are calculated: (1) relative root mean
square error (RRMSE), (2) relative maximum absolute error (RMAE) and (3) relative average
absolute error (RAAE). An estimate is more accurate if RRMSE and RAAE are smaller. On
the other side, a big RMAE indicates that there is a localized sector of the design space
where there is poor approximation. RMAE is therefore anticipated to be as minimal as is
feasible. The three error measurements mentioned above are stated as follows:

RRMSE =
1

STD

√
1
N

N
∑

i=1
(yi − ŷi)

2, RMAE =
1

STD
max|yi − ŷi|

RAAE =
1

N × STD

N
∑

i=1
(yi − ŷi)

2, STD =

√
1

N − 1

N
∑

i=1
(yi − y)2 , i = 1, . . . , N

(19)

in which N is the total number of validation points; y and yi stand for the observed mean
values and the actual responses, respectively, while ŷi indicates the predicted value.

Table 2 shows the prediction accuracy of the Kriging approximation using various
sample sizes in the KBO technique. It is obvious from Table 2 that the prediction accuracy
of the Kriging approximation rises as the sample size grows.
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Table 2. Prediction accuracy of Kriging in KBO approach.

Sample Size
vs.

Diff. Criteria
30 40 50

RRMSE 0.2175 0.1169 0.0682
RMAE 0.8012 0.4652 0.2013
RAAE 0.1435 0.0398 0.0732

Table 3 presents the PLCB-AKO approach’s prediction accuracy during the most recent
iteration, during which nine new samples were added using PLCB. It is proved that the
proposed PLCB-AKO strategy used far fewer sample points, which results in far fewer
computer simulations being run and a significant reduction in computing load.

Table 3. Prediction accuracy comparison of Kriging in PLCB-AKO and KBO.

Sample Size Diff. Error Criteria Kriging in KBO Kriging in PLCB-AKO

50
RRMSE 0.0682 -
RMAE 0.2013 -
RAAE 0.0398 -

29(20+9)
RRMSE - 0.0298
RMAE - 0.1632
RAAE - 0.0354

3.4. Survey of Different Infill Strategies

Different sequential sample infill strategies are compared in order to determine the
most effective infill strategies for the suggested strategy. The original LCB [15] and the
often used Expected improvement (EI) and extensions of EI (weighted EI, WEI), which
have received a lot of attention over the last 10 years [34], are explored and compared
with the suggested PLCB. The original LCB, EI, and weighted EI computations as well
as the PLCB regulating functions as expressed in Equations (15)–(18) are also carried out
in the Matlab environment. For each strategy, the same initial samples are located using
the LHD method. PLCB, LCB, EI, and weighted EI are used to implement the sequential
sampling technique. For simplicity, EI infill strategy within the proposed adaptive Kriging
optimization is abbreviated to EI-AKO. Similar phrases include LCB-AKO for original LCB
and WEI-AKO for weighted EI in adaptive Kriging optimization. Each technique was used
30 times separately to remove chance. Table 4 shows the mean and variance of normalized
optimization outcomes obtained using various methods, where PLCB-1, PLCB-2, PLCB-3,
and PLCB-4, respectively, stand for the controlling formulations in Equations (12)–(15).
Figure 8 shows a box plot of the experimental data. The proposed PLCB-1-AKO approach
clearly achieved the minimal mean of optimization.

Table 4. Mean and variance via different approaches.

EI-AKO WEI-AKO PLCB-1-AKO PLCB-2-AKO PLCB-3-AKO PLCB-4-AKO

Mean 0.6296 0.6399 0.4975 0.6144 0.6037 0.5852
Variance 0.0366 0.0359 0.0238 0.0326 0.0339 0.0304

Figure 9 depicts the lifetime power generation of different schemes when the cut-off
temperature of current generation is 393.15 K. As the result of the adaptive Kriging-based
method will not be exactly the same during each run, the average of total power gener-
ation obtained via EI-AKO, PLCB-AKO, WEI-AKO are demonstrated in Figure 9, which
indicates little difference in total power generation, namely, 4.13 × 109 MJ, 4.23 × 109 MJ,
4.29 × 109 MJ, respectively.
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The six aforementioned solutions are contrasted with one another in order to discover
the optimal sample infill technique. The six sample infill procedures were subjected to the
Friedman test [35,36], a well-known and often-employed non-parametric statistical test
suited for multiple comparisons. Table 5 lists the results of the Friedman test’s individual
rankings and p-value calculations. Table 5 obviously demonstrates that the PLCB-1-AKO
technique has a higher optimization statistical outcome among the evaluated options. The
PLCB-1-AKO approach that has been suggested is suitable for the problem of optimizing
heat generation performance.
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Table 5. Results obtained through the Friedman test for different approaches.

Different Approaches Rank p-Value

EI-AKO 23.08

0.00053

WEI-AKO 21.92
PLCB-1-AKO 10.38
PLCB-2-AKO 19.13
PLCB-3-AKO 18.98
PLCB-4-AKO 17.5

The Wilcoxon signed ranks tests [35,37], a non-parametric statistical test for pairwise
comparisons, were adopted in this work to further investigate which of the five infill
strategies is statistically different with respect to the suggested adaptive Kriging-based heat
production performance optimization approach. The Wilcoxon signed ranks test findings
for a pairwise comparison of the six alternative techniques are presented in Table 6 as a
summary. The p-values in Table 6 show that, at the 0.05 level of significance, the suggested
PLCB-1-AKO technique is statistically superior to alternative strategies.

Table 6. Results obtained through the Wilcoxon signed ranks for different approaches.

PLCB-1-AKO v.s. R+ R− p-Value

EI-AKO 387 78 2.76 × 10−5

WEI-AKO 453.5 11.5 5.44 × 10−6

PLCB-2-AKO 424.5 40.5 7.53 × 10−6

PLCB-3-AKO 452.5 12.5 5.99 × 10−6

PLCB-4-AKO 428 37 5.75 × 10−5

4. Conclusions

In this research, a heat production performance optimization issue is addressed by
combining an adaptive Kriging approximation with numerical simulations. An adaptive
Kriging-based heat production performance optimization is developed for a two-horizontal-
well geothermal system with rectangular multi-parallel fractures. The heat production
performance optimization problem is formulated with Kriging approximation of heat
generation power calculation. A PLCB-based adaptive strategy is introduced to update
the Kriging approximation to balance the optimization accuracy and efficiency with newly
located sampling points. The comparison with the Kriging-based optimization method
shows that the suggested PLCB-based optimization method uses far fewer computer
simulations and reduces the computational load significantly. The outlet temperature curve
obtained with PLCB-AKO-1 rose for a longer time and dropped to 393.15 K at 27.16 a, while
the heat generation power curve reached a stable output of 5.2 MW without a downward
trend. Additionally, a comparison of other infill tactics shows that the suggested approach,
which uses a control function that monotonically decreases and oscillates, achieves the
best statistical optimization outcome. In the future, the heat losses and exchange in the
tube segment from and to the ground surface would be taken into consideration in the
heat production performance optimization problem for a two-horizontal-well geothermal
system. A stochastic representation of the fracture distances and apertures considering the
fracture surface roughness would be another interesting research direction.
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