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Abstract: Distributed photovoltaic (PV) output exhibits strong stochasticity and weak adjustability.
After being integrated with the network, its interaction with stochastic loads increases the difficulty of
assessing the distribution network’s static voltage stability (SVS). In response to this issue, this article
presents a probabilistic assessment method for SVS in a distribution network with distributed PV that
considers the bilateral uncertainties and correlations on the source and load sides. The probabilistic
models for the uncertain variables are established, with the correlation between stochastic variables
described using the Copula function. The three-point estimate method (3PEM) based on the Nataf
transformation is used to generate correlated samples. Continuous power flow (CPF) calculations are
then performed on these samples to obtain the system’s critical voltage stability state. The distribution
curves of critical voltage and load margin index (LMI) are fitted using Cornish-Fisher series. Finally,
the utility function is introduced to establish the degree of risk of voltage instability under different
scenarios, and the SVS assessment of the distribution network is completed. The IEEE 33-node
distribution system is utilized to test the method presented, and the results across various scenarios
highlight the method’s effectiveness.

Keywords: stochastic variable; correlation; voltage stability; probabilistic assessment

1. Introduction

With the large-scale integration of distributed generators, line losses in the power grid
have significantly decreased, and voltage configuration has been optimized [1]. However,
the modern power system [2] must not only incorporate a high proportion of renewable en-
ergy, but also achieve high resilience, intrinsic safety, and reliability. Nevertheless, because
renewable energy is unstable and load demand fluctuates stochastically [3], the power
system faces severe challenges in maintaining secure and reliable performance [4]. The
distribution network, positioned at the terminal of the power grid, is essential for conveying
electricity from the transmission network to users of various voltage levels, making it the
most critical link in guaranteeing the secure functioning of the power grid [5]. Therefore,
to address the blind spot issues caused by the integration of distributed generators in
traditional distribution network state assessment methods, it is critically important to study
the stability of distribution networks with distributed generators [6].

SVS is essential for ensuring the overall stability of the distribution network [7]. The
LMI is commonly used as an assessment indicator for voltage stability due to its clear
physical meaning and ability to account for the nonlinearity of the system. Methods
for calculating the load margin include the CPF method, internal point method, etc. [8].
However, traditional SVS studies are based on deterministic models, which do not consider
the uncertainties of new energy sources and loads, making it impossible to analyze system
stability accurately and effectively [9]. Therefore, it is necessary to research probabilistic
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methods for assessing the SVS of a distribution network with uncertain new energy outputs
and load fluctuations.

Currently, widely used probabilistic assessment methods include the Monte Carlo
simulation (MCS) method, analytical method, and approximate method [10]. MCS pri-
marily involves extensive stochastic sampling and repeated deterministic calculations
for probabilistic analysis, providing clear physical significance, strong robustness, and
high accuracy [11]. In [12], MSC was combined with dimensionally adaptive sparse grid
interpolation to enhance computing efficiency. The MCS method is improved based on
the ideas of dispersed sampling, which can significantly shorten calculation time by de-
creasing the sample size [13]. Although the above methods have improved computational
efficiency while ensuring accuracy, the long processing time remains the biggest issue with
the MCS method, and it generally serves as a control group to validate other methods.
Widely used in analytical approaches are the semi-invariant method and the convolution
method, the core of which is to linearize the relationships between stochastic variables
for getting probabilistic characteristics of the variable values, resulting in faster solution
speed [14]. Wang, Y [15] established a probabilistic power flow calculation method, taking
into account load, and unit frequency characteristics based on the semi-invariant method.
Reference [16] proposed an improved interval semi-invariant method to analyze the SVS
margin for hybrid power grids with a large amount of new energy. Reference [17] used the
maximum entropy principle and the semi-invariant method to research the comprehen-
sive energy system of electric-gas interconnection with high efficiency, but it overlooked
the influence of correlation factors among energy systems. Although the semi-invariant
method has high computational efficiency, it involves complex mathematical calculations,
and the convolution method is also difficult to implement, leading to suboptimal practical
application results. The approximate method is to approximately analyze their numerical
feature based on the distribution of the variables, with the point estimate method being a
typical method [18]. Reference [19] utilized the point estimate method to obtain samples of
stochastic variables and combined it with maximum entropy to determine their probability
distribution, analyzing the impact of stochastic variables on system harmonics during the
calculation of harmonic power flow. In [20], a surrogate-assisted point estimate approach
was proposed to analyze the influence of mixed uncertainties on electric systems probabilis-
tically. The point estimate method is extensively employed in the uncertainty evaluation of
electric systems due to its short solving time, high accuracy, and the fact that it does not
require knowledge of the specific functional relationships between variables.

In the operation of distribution networks, it is crucial to consider influences such as
seasonal changes and weather conditions [21]. The solar radiation intensity at different
locations in the same region and the load demands are not independent of each other but
have certain correlations. These correlation factors significantly impact the operation of
the distribution network [22]. Therefore, in conducting SVS analysis, it is imperative to
not only account for the stochasticity of distributed generators but also for their correla-
tions. Methods for addressing the correlation of stochastic variables include the Rosenblatt
transformation [23], Orthogonal transformation [24], and the Nataf transformation [25].
Although the Rosenblatt transformation is applicable to any probability distribution, it
requires detailed joint distribution data, which is challenging to acquire from practical
engineering scenarios. Orthogonal transformation calculations are simple but only suitable
for stochastic variables that obey normal distributions. The Nataf transformation has high
computational accuracy, requiring only the marginal distributions and correlation coeffi-
cients of the stochastic variables, hence it has found widespread applications. Reference [26]
combined the Nataf transformation with kernel density estimation to take the generator
output power as input, and solve the probabilistic load flow using the point estimation
method. However, the Pearson coefficient was used in the correlation treatment in the
above literature, which cannot accurately describe the linear relationship between vari-
ables. The Copula function can accurately describe both linear and nonlinear relationships
between variables. There is already research that combines MCS for probabilistic stability
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analysis [27], but it is time-inefficient. Therefore, researching a probabilistic stability assess-
ment method with high efficiency and an accurate description of the correlation between
stochastic variables is essential.

Based on the above analysis, for the purpose of accurately characterizing the implica-
tions of uncertainty and correlation factors on SVS in distribution systems with distributed
generators, a probability assessment method for SVS of distribution networks is proposed,
which considers the uncertainties and correlations of the stochastic variables. The method
presented in this article has the following main contributions:

• Unlike the traditional probabilistic voltage stability method, which disregards cor-
relations, the method presented uses the Copula function to obtain the correlation
coefficients of stochastic variables. The Frank Copula function can describe both the
non-negative and negative correlations of variables;

• The 3PEM requires input variables to be mutually independent, thus it cannot handle
correlated stochastic variables that follow arbitrary distributions in actual distribu-
tion networks. The proposed method uses the Nataf transformation to convert the
correlated variable space into an independent standard normal space, which meets
the applicability conditions of the 3PEM;

• Traditional power flow calculation can only calculate the node voltage and branch
power. The load margin and critical voltage are important indexes to analyze voltage
stability. The method proposed derives the probabilistic distribution information of
these two indexes based on CPF calculation, which is more conducive to a thorough
SVS analysis of the system;

• When PV is integrated into the system, stochastic variables in the system are not all
normally distributed. The Cornish-Fisher series can be used to more accurately fit the
distribution curves of non-normal distribution stochastic variables;

• The utility theory can nonlinearly represent the degree of risk of the system. The proposed
method combines the utility function theory to define the extent of the LMI violations,
quantify the voltage instability risk, and more intuitively show the current system’s SVS.

2. Modeling of Stochastic Variables Considering Correlation
2.1. Probability Model for Stochastic Variables
2.1.1. Probabilistic Model of PV Generation

PV generation output is closely related to the solar irradiance in the area, and the solar
irradiance is significantly affected by various factors including time, location, and cloud
situations [28]. Therefore, its natural variability and time-varying lead to the instability
of PV output. Research has shown that, over certain time scales, the stochastic variation
characteristics of solar irradiance can be represented as Beta distribution, the probability
density function (PDF) of which is [16]:

f (r) =
Γ(α + β)

Γ(α)Γ(β)

(
r

rmax

)α−1(
1 − r

rmax

)β−1
(1)

where Γ() is the gamma function, r denotes the current solar irradiance at the location of
the PV system, and rmax is the maximum irradiance during the period. α and β are shape
parameters of the Beta distribution, and control the distribution curve together with the
Gamma function, which can be calculated according to Equations (2) and (3):

α = µ

[
µ(1 − µ)

σ2 − 1
]

(2)

β = (1 − µ)

[
µ(1 − µ)

σ2 − 1
]

(3)

where µ represents the average solar irradiance received by the PV power field, and σ
denotes the standard deviation.
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It is considered that the PV active power output is approximately linear and operates
in a constant power factor mode:

PPV = A · r · η (4)

QPV = tan ϕPV · A · r · η (5)

where PPV and QPV are the actual output power of PV power generation, A denotes the
area of PV array, r represents actual light intensity, η signifies the conversion efficiency of
PV power generation, while cosϕ represents the power factor during PV operation [29].

2.1.2. Probabilistic Model of Load

Research has indicated that fluctuations in the base load of power systems can be
effectively described using a normal distribution. To better understand and predict changes
of power system loads, a probability model of power based on normal distribution can be
established [30]:

f (P) =
1√

2πσP
· exp

[
− (P − µP)

2

2σ2
P

]
(6)

f (Q) =
1√

2πσQ
· exp

[
−
(
Q − µQ

)2

2σ2
Q

]
(7)

Here, f (P) and f (Q) are probability density functions of active power and reactive
power of stochastic load, respectively; µP, σ2

P and µQ, σ2
Q are the expected and variance of the

power, representing the average level and fluctuation range of the power load, respectively.

2.2. Stochastic Variable Correlation Modeling

In the distribution network with integrated, distributed PV, the stochasticity of the
variables mentioned is affected by multiple factors, including geographical location, cli-
mate conditions, and seasonal changes. These factors not only independently affect each
variable but also lead to certain correlations among them. In the same distribution network,
the locations of distributed PV are close to load points, and the external conditions are
similar, so there is also a correlation within the variables. PV generators located in similar
geographical areas are affected by similar climate conditions, showing certain correlations
in their power output. Similarly, loads in neighboring areas may also show correlations
due to similar climate conditions. To accurately simulate the correlations between these un-
certain variables, including their linear and nonlinear dependencies, Copula functions are
introduced for modeling correlation coefficients [27], thus flexibly describing and modeling
various complex dependency relationships.

Copula theory is based on Sklar’s theorem, which provides an accurate definition of
Copula functions by Nelsen. Assuming there are n stochastic variables, X1, X2, ···, Xn, with
their respective marginal distribution functions F1(x1), F2(x2), ···, Fn(xn), and their joint
distribution function H(X1, X2, ···, Xn), the Copula function, which serves as a connector
between marginal and joint distributions, is defined as follows [31]:

H(X1, X2 · · · Xn) = C(F1(x1), F2(x2), · · · , Fn(xn)) (8)

where C() is the Copula function. If there are stochastic variables with continuous marginal
distribution functions, then a unique Copula function exists:

C(u1, u2, · · · , un) = F
(

F−1
1 (u1), F−1

2 (u2), · · · , F−1
n (un)

)
(9)

Copula theory provides a method that allows for accurately describing dependencies
between variables, even when they have different marginal distributions. This approach
offers greater precision compared to other methods.

Common Copula functions take many forms, as shown in Figure 1. The Archimedean
Copula function is simple in form and can be uniquely determined by a convex function φ.
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So, the problem can be simplified as follows: when used in high-dimensional situations,
the rate and speed of convergence are higher [32]. Among them, the Gumbel and Clayton
Copula functions cannot describe positive correlations, whereas the Frank Copula function
can describe both positive and negative correlations [33]. Therefore, the Frank Copula func-
tion in Figure 1 is chosen to describe the correlation of stochastic variables in distribution
networks with distributed generators [34]. Its cumulative distribution function (CDF) and
PDF are, respectively, shown in Equations (10) and (11):

CF(u, v, θ) = −1
θ

ln

[
1 +

(
e−θu − 1

)(
e−θv − 1

)(
e−θ − 1

) ]
(10)

cF(u, v, θ) =
−θ

(
e−θ − 1

)
e−θ(u+v)[(

e−θ − 1
)
+

(
e−θu − 1

)(
e−θv − 1

)]2 (11)

where θ is the correlation parameter of stochastic variables u and v.
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The Kendall rank correlation coefficient τ can be derived instantly from these parame-
ters of Copula function, making it especially suitable for application in Copula correlation
models. The calculation equation is as follows:

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (12)

To establish the correlation model for distribution network variables based on the
Copula function, follow these specific steps:

Step 1: Obtain original data samples of distributed PV generators and loads;
Step 2: Choose the Frank Copula function to describe the correlations between the

stochastic variables, based on the uncertainty of positive and negative correlations between
PV and load data;

Step 3: Use the maximum likelihood estimation method derived from the initial sam-
ple’s probability distribution, and apply Equations (10) and (11) to calculate the parameter
θ of the Frank Copula function;

Step 4: Calculate the Kendall rank correlation coefficient τ using Equation (12), which
serves as an index to measure the correlation between variables.
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3. Probabilistic Assessment of Voltage Stability in Distribution Network Considering
the Correlation of Stochastic Variables

To accurately characterize the influence of stochastic factors on SVS in the distribu-
tion network, the critical state of distribution network is first obtained through the CPF
method [35], and then the probability distribution of LMI [7] is analyzed. The basic idea is:
First, handle the correlated samples of input variables. Second, compute the sample values
and weights using the 3PEM, conducting CPF calculations and obtaining the probabilistic
distribution of the LMI using the corresponding series expansion method. Finally, estab-
lish the degree of risk of exceeding the index, and thus assess the SVS of the distribution
network considering the correlation of stochastic variables.

3.1. Generating Correlated Samples Based on Nataf Transformation

When stochastic variables are correlated, 3PEM cannot directly sample. To generate
samples with correlations, Nataf transformation is used to process the correlation of variables,
which involves three steps. Namely, conversion between non-normally distributed input
variables and correlated standard normally distributed input variables, transformation of
the correlation coefficient matrix, and conversion between correlated standard normally
distributed input variables and independent standard normally distributed input variables.

Assuming there is an n-dimensional stochastic variable X = [x1, x2, ···, xn] that follows
arbitrary distributions, and the CDF of each stochastic variable xi is Fi(xi), then, according
to the principle of equal probability, the stochastic variable Y = [y1, y2, ···, yn] subject to the
standard normal distribution can be obtained from Equation (13).

yi = Φ−1(Fi(xi)) (13)

In Equation (13), Φ−1 represents the inverse of the CDF.
The correlation coefficient matrix for X is p and for Y is p0. According to the Nataf

transformation, the corresponding elements pij and p0ij (where i ̸= j) of p and p0 are not
equal [25], and this relationship is shown in Equation (14):

pij =
∫ +∞
−∞

∫ +∞
−∞

xi − µi
σi

·
xj − µj

σj
fij
(
xi, xj

)
dxidxj

=
∫ +∞
−∞

∫ +∞
−∞

F−1
i (Φ(yi))− µi

σi
·

F−1
j

(
Φ
(
yj
))

− µj

σj
.ϕ
(
yi, yj, p0ij

)
dyidyj

(14)

where µi, µj, σi, and σj, respectively, denote the means and standard deviations of the
stochastic variables xi and xj; ϕ (yi, yj, p0ij) is the joint PDF of a two-dimensional standard
normal distribution with p0ij.

Because the correlation coefficient matrix p0 is a symmetric positive definite matrix,
the lower triangular matrix L is acquired through Cholesky decomposition.

p0 = LLT (15)

After obtaining the correlated standard normal stochastic variables Y and matrix L,
we can derive the independent standard normal stochastic variables Z = [z1, z2, ···, zn] from
Equation (16):

Z = L−1Y (16)

The process described above, where correlated stochastic variables X that follow any
distribution are transformed into independent standard normal variables Z, is known as
the Nataf transformation. The samples of correlated stochastic variables that adhere to
arbitrary distributions are constructed on the basis of the Nataf inverse transformation. The
samples are obtained using Equation (17) [36]:

X = F−1(Φ(LZ)) (17)
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3.2. 3PEM Considering Variable Correlation

Considering the superiority of the point estimation method in dealing with uncertain
factors, this paper adopts 3PEM for probabilistic voltage stability analysis. The basic idea of
the 3PEM is: Given the probability distributions of the input variables on the condition that
they are mutually independent, three sampling points are taken from each input stochastic
variable to reflect probability and statistical characteristics of the variables. The output samples
are calculated according to the functional relationship between the input and output variables.
Subsequently, origin moments at each order of the output variables are determined, and
probability distributions of the output variables are acquired through fitting [19].

Assuming G is the m-dimensional output variable and xi (i = 1, 2, ···, n) are the input
stochastic variable, then:

G = P(X) = P(x1, x2, · · · , xn) (18)

In Equation (18), P is the correlation function of G and X, where G = [g1, g2, ···, gn]T.
According to the principle of 3PEM, three sampling values of each stochastic variable

xi in independent standard normal space are obtained, xi,k (k = 1, 2, 3), and the sampling
calculation equation is as follows [20]:

xi,k = µxi + ξxi,kσxi k = 1, 2, 3 (19)

where µxi, ξxi,k, and σxi represent the expected value, location coefficient, and standard
deviation of stochastic variable xi, respectively, where location coefficient ξxi,k can be
expressed as: {

ξxi,k =
λi,3

2 + (−1)3−k
√

λi,4 − 3
4 λ2

i,3 k = 1, 2
ξxi,3 = 0

(20)

where λi,3 represents the third-order moment of variable xi, known as the skewness coeffi-
cient. λi,4 represents the fourth-order moment, known as the kurtosis coefficient, and is
expressed as:  λi,3 =

E
[
(xi,k−µxi)

3]
σxi

3

λi,4 =
E
[
(xi,k−µxi)

4]
σxi

4

(21)

The weight coefficient corresponding to each sampling point is:

wxi,k =
(−1)3−k

ξxi,k(ξxi,1−ξxi,2)
k = 1, 2

wxi,3 = 1
n − 1

λi,4−λ2
i,3

(22)

Through the above process, 3n sampling points can be obtained, so 3n deterministic
evaluations need to be performed. However, when k = 3 and xi,k = µxi, only one calculation
is needed, hence there are only (2n + 1) samples, and only (2n + 1) evaluations need to be
performed. Using the Nataf inverse transformation, which is employed in Section 3.1, to
transform the sample correlations before input, and integrating the above results [37], the
l-order origin moment of the output variable gj is E(glj):

E
(

gl
j

)
≈

n

∑
i=1

2

∑
k=1

wxi,k
(

gj(i, k)
)l
+ w2n+1gl

2n+1 (23)

From Equations (24) and (25), the mean µgi and standard deviation σgi can be calcu-
lated as:

µgj = E
(

gj
)

j = 1, 2, · · · , n (24)

σgj =
√

E
(

gj
2
)
− µgj

2 j = 1, 2, · · · , n (25)
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The steps for the 3PEM based on the Nataf inverse transformation are as follows:
Step 1: Determine the input stochastic variable X = [x1, x2, ···, xn] and the correlation

coefficient matrix px, solve the correlation coefficient matrix py of standard normal stochastic
variable Y, and obtain matrix L through Cholesky decomposition.

Step 2: Determine the location coefficients and weight coefficients for the sampling
points in the independent standard space based on the principle of 3PEM. Construct (2n + 1)
matrices Z = [Z1,1, Z1,2, ···, Zn,1, Zn,2, Z2n+1] in the form of vectors Zik = [0, 0, zi,k, 0, 0]T.

Step 3: Perform the Nataf inverse transformation to obtain the point estimation matrix
X = [x1,1, x1,2, ···, xn,1, xn,2, x2n+1] in the original variable space corresponding to Z.

Step 4: Insert each column of X elements into Equation (18) to obtain the (2n + 1)
output result of G, and estimate its standard deviation and expectation.

3.3. Cornish-Fisher Series

With the aim of acquiring the distribution function characteristics of the LMI, semi-
invariants calculated from the origin moments derived in Section 3.2 were utilized. Com-
bining these with the Cornish-Fisher expansion series allows for the determination of
the PDF and CDF of these outcome stochastic variables. However, semi-invariants, as
numerical characteristics, are challenging to calculate directly. Finite order semi-invariants
are obtained through corresponding to the origin moment α:

κ1 = α1

κm = αm −
m−1
∑

j=1
Cj

m−1αjκm−j, m = 2, 3, · · · (26)

where κ represents the semi-invariant of the stochastic variable, Cj
m−1 are binomial coeffi-

cients, and αi are the origin moments of the stochastic variable.
Once the semi-invariants of variable X are known, it is essential to ensure the accuracy

of the fitted curve. The Cornish-Fisher expansion series is effective and precise in fitting
probability distributions of non-normally distributed variables due to its good convergence
properties. So, the probability distribution is derived through the Cornish-Fisher series
expansion approximation, where x(θ) can be expressed as [38]:

x(θ) = ζ(θ) + ζ(θ)2−1
6 κ3 +

ζ(θ)3−3ζ(θ)
24 κ4+

2ζ(θ)3−5ζ(θ)
36 κ2

3 +
ζ(θ)4−6ζ(θ)2

120 κ5 + . . .
(27)

Here, ζ(θ) = φ−1(θ), φ denotes the CDF of the standard normal distribution. From
x(θ) = F−1(θ), the CDF F(x) of the stochastic variable X should be obtained, from which the
PDF can be derived through differentiation.

3.4. Risk Preference Assessment Indicator

The risk index can quantitatively reflect the system’s security state by synthesizing the
probability of incident occurrence and the severity of its aftermath. This paper adopts a risk
preference utility function based on utility theory, and constructs a severity function model
in conjunction with the exceedance of the LMI. This allows the quantitative calculation of
the risk of static voltage instability, thereby enabling the accurate assessment of voltage
stability in the distribution network with distributed generators [39].

The severity function S(ILM) of the load margin index ILM is defined as [39]:

S(ILM) =
eh(ILM) − 1

e − 1
(28)
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Here, ILM is the LMI of the distribution network. The calculation formula of the index
lower limit h(ILM) is as follows:

h(ILM) =

{
(Ic − ILM)/(1 − Ic), ILM < Ic
0, ILM ≥ Ic

(29)

where Ic is the alarm limit of ILM index. The severity function curve under this definition is
shown in Figure 2.
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Figure 2. Curve of the severity function S(ILM).

Combined with the probability density function f (ILM) of ILM index, the system static
voltage instability risk can be defined as R, according to the ILM index-exceedance risk [40]:

R =
∫

f (ILM)S(ILM)dILM (30)

Using R as an indicator, it is possible to effectively analyze the impact of the stochas-
ticity of PV output and load power on the load margin, as well as the system-operational
risks of the distribution network under different PV connection methods and capacities.

4. Assessment Process

The probabilistic assessment method of the SVS of a distribution network proposed
by this paper utilizes the Copula function and Nataf transformation to address correlations
between variables. The 3PEM was used to select samples for CPF calculations, transforming
complex uncertainty issues into determinate issues. Finally, combined with the load margin
index ILM, the probabilistic voltage-stability assessment of the distribution network with
distributed generators was completed. The computational process is illustrated in Figure 3,
with detailed steps as outlined below:

Step 1: Establish typical probability models for PV generators and load, and the
Copula correlation coefficient matrix pij between the stochastic variables.

Step 2: Sample the input variables in the independent standard normal distribution
space. Calculate the position and weight coefficients of each input variable’s estimated point
according to 3PEM.

Step 3: Cause the matrix Z to be evaluated within the independent standard nor-
mal space, and use the Nataf inverse transformation to convert it back into the original
correlated variable space, obtaining the assessment matrix X.

Step 4: Carry out CPF calculations with every column of the evaluation matrix X as
input samples to determine the corresponding voltage stability critical values Vcr and load
margin index ILM. From Equations (23)–(25), their expected values, standard deviations,
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and raw moments are obtained, and the distribution model of critical value Vcr and the
PDF of ILM index are obtained by the Cornish-Fisher series expansion.

Step 5: Apply a risk preference function as specified in Equation (28) to obtain the
severity function, and combine it with the PDF from Step 1 to calculate the index-exceedance
risk of the distribution network, thus completing the SVS assessment of the distribution
network with distributed generators.
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5. Case Analysis

This paper conducts a case study of a distribution network with distributed PVs, using
the IEEE 33-node distribution system as an example to validate the effectiveness of the
proposed voltage stability assessment method [41]. Figure 4 illustrates the topology of the
distribution network.
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Figure 4. IEEE 33-node distribution system with distributed PVs.

The IEEE 33-node system has a total of 32 branches with a base power of 10MVA and
a base voltage of 12.66 kV, where node 1 is set as the slack node. The loads follow normal
distribution with the expected values by referring to the IEEE 33-node standard test system,
and the standard deviation is set at 10% of the expected values. In Figure 4, PV represents
distributed PV, and dashed lines indicate the options for connection, thereby facilitating
discussions of future scenarios. PV output obeys Beta distribution, which is calculated as
the PQ node. The shape parameters are α = 3.613, β = 5.938. The PV conversion efficiency
is η = 13.44%.

The proposed model was established using MATLAB R2021b and the Matpower 7.1
toolkit. In the MATLAB coder, the power models for the load and PV were constructed
through coding. The Matpower software package was then used to import the model data
of the IEEE 33-node system, and the continuous power flow calculation and stochastic
analysis were carried out to evaluate the voltage stability of the distribution network. The
testing system was implemented on a computer (Manufactured by Lenovo Group and
purchased in Xuzhou, China) with an Intel i7-7700HQ CPU (2.8 GHz) and 16 GB of RAM.

Without considering the stochastic factors, the CPF calculation was performed by
gradually increasing the load at each node in proportion, while maintaining a constant
power factor. The λ-V curve of each node in the system can be obtained by calculation, and
the voltage-stability critical point of the node can be obtained. Taking the curve of Node 16
as an example, as shown in Figure 5.

In Figure 5, λ is called the load parameter, which is the ratio of the active power
absorbed by the load at a certain moment to the base state active power. Vcr is the critical
voltage of the node.

This paper takes the IEEE 33-node distribution system with PV as a case study, con-
sidering the uncertainties of both PV and load. The stability critical state of each node
in the system was obtained through CPF calculation. The load margin index ILM was
obtained according to λ, and the probability distribution model was set up to complete the
probabilistic assessment of voltage stability.
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Figure 5. λ-V curve of Node 16.

5.1. Method Verification

To validate the calculation effect of the method presented in various scenarios of PV
integration into the distribution network, the following three scenarios were defined:

• Scenario 1: PV generators are centrally connected to node 33, and a total connection
capacity of 1.5 MW;

• Scenario 2: PV generators are dispersedly connected to nodes 33, 30, 25, 18, and 12,
with each node having a rated output of 0.2 MW and a total network connection
capacity of 1 MW;

• Scenario 3: PV generators are dispersedly connected to nodes 33, 30, 25, 18, and 12,
with each node having a rated output of 0.3 MW, and a total network connection
capacity of 1.5 MW.

A considerable amount of Monte Carlo simulations were carried out, and it was found
that the results tended to be stable after 5000 sampling instances. With the aim of validating
the precision and efficiency of the method, results from the MCS using 5000 samples were
used as a comparison. The proposed method, the traditional 3PEM method, and the MCS
method, were then used to perform probabilistic analyses of the distribution network
system under the three scenarios described. To calculate the voltage stability critical points,
it was assumed that the entire system load grew at a constant power factor. Figures 6–8
present the voltage stability critical values at various nodes, and the cumulative distribution
functions the system LMI for the three scenarios using different methods.

In these figures, Case 1 employs the MCS method, taking into account variable correla-
tions (5000 samples); Case 2 uses the method proposed by this paper, considering variable
correlations; Case 3 uses the traditional 3PEM, without considering variable correlations.

The simulations demonstrate that the presented method can precisely calculate the
voltage stability critical values at each node and the load margin of the entire network
when the loads at all nodes uniformly increase according to a constant power factor.

From (a) in Figures 6–8, it is evident that, as distributed photovoltaics are integrated
into the distribution network, the overall voltage at network nodes increases, and the
increase is more pronounced the closer to the connection node they draw. This integration
improves the SVS in the distribution network. However, centralized single-point connec-
tions can lead to voltage exceedances as capacity increases, posing a threat to the stable
operation of the distribution network. Dispersed multi-point connections more effectively
limit voltage fluctuations, maintaining the reliable and stable operation of the system.
Comparing the three methods in each scenario, the curve for Case 2 essentially coincides
with that of Case 1, while the curve for Case 3 shows a slight deviation. Moreover, as the
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number of stochastic variables and the connection capacity increase, the deviation becomes
more significant.

In (b) of Figures 6–8, by comparing the CDF for across the three scenarios as the
dimension of stochastic variables and capacity increase, we see the fitting effectiveness of
the traditional 3PEM deteriorates, and the error relative to the MCS method grows larger.
In contrast, the curves fitted by the proposed method has a high fit with the benchmark
method (MCS), and its probability distribution can be accurately obtained, which proves
the effectiveness of the method.
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Figure 6. Node voltage stability critical value and CDF of ILM index in Scenario 1: (a) voltage stability
critical values at each node; (b) CDF of ILM index.
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Figure 7. Node voltage stability critical value and CDF of ILM index in Scenario 2: (a) voltage stability
critical values at each node; (b) CDF of ILM index.
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Figure 8. Node voltage stability critical value and CDF of ILM index in Scenario 3: (a) Voltage stability
critical values at each node; (b) CDF of ILM index.

To further verify the computational accuracy of the method presented, the relative
error indicators εµ for the expected value, and εσ for the standard deviation of the ILM
index, as shown in Equations (31) and (32) [37], are used as accuracy-assessment indicators
for the method proposed in this paper.

εµ =

∣∣∣∣µMCS − µPEM

µMCS

∣∣∣∣× 100% (31)

εσ =

∣∣∣∣σMCS − σPEM

σMCS

∣∣∣∣× 100% (32)

where µMCS and µPEM are the expected values of the ILM index obtained by the MCS and
3PEM methods, respectively. σMCS and σPEM are the standard deviations of the ILM index
as calculated by the MCS and 3PEM methods, respectively.

From the statistical data in Table 1, it is observed that the relative error in the expected
values of the algorithm proposed in this paper do not exceed 0.2%, and the relative error in
the standard deviation is less than 1.18%. The calculation results are essentially consistent
with those acquired by the MCS method, effectively reducing the fitting errors of the two
methods, indicating that the proposed method achieves high accuracy in the statistical
characteristics of output variables. Generally, the error in the estimated standard deviation
of the output variable is greater than that of the estimated expected value, which accords
with the characteristics of the point-estimation method.

Taking Scenario 3 as an example, Table 2 presents the simulation times for the three
methods. The data indicate that, due to the consideration of correlations, the simulation
time required by the presented method is slightly slower than that of the 3PEM, which
does not consider correlations. However, compared to the MCS method, the method
algorithm still significantly reduces the amount of time required. Therefore, considering
both calculation time and precision, the method proposed by this paper is a highly precise
and time-effective SVS probabilistic assessment method.
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Table 1. Relative errors in the expected value and standard deviation of ILM derived from two kinds
of point-estimation methods.

Scenario

3PEM
Considering Correlations

3PEM
Without Considering Correlations

Relative Error of
the Expected

Value%

Relative Error of
the Standard
Deviation%

Relative Error of
the Expected

Value%

Relative Error of
the Standard
Deviation%

Scenario 1 0.09 0.76 0.32 3.12

Scenario 2 0.136 1.09 0.63 4.473

Scenario 3 0.153 1.18 0.78 4.96

Table 2. Comparison of simulation time among three methods.

Methods MCS (5000) 3PEM
Considering Correlations

3PEM
Without Considering

Correlations

Time (s) 7086.5 56.62 50.86

5.2. Probabilistic Voltage Stability Assessment under Different Scenarios

The method proposed by this paper was employed for carrying out probability assess-
ment of LMI under different scenarios, and the PDF and change trend of the indexes were
obtained, as shown in Figure 9. Since the input variables contained non-normal variables,
the probability density curves of the stability margin exhibited non-normal characteristics.
Additionally, as the capacity of photovoltaic integration increases, the probability curves of
the margin index generally shift to the right, and their values increase. It is evident that,
within a reasonable range of photovoltaic grid-connected capacities, the larger the capacity,
the more significant its role in enhancing the system’s operational stability. Furthermore,
with relatively lower connection capacities, the dispersed integration of PV generators
into the system displayed a broader load margin. The wider distribution indicates that,
under various operating conditions, the network exhibited higher variability but typi-
cally maintained higher stability, and the power grid had a greater ability to adapt to
load changes.
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Figure 9. Probability density curves of ILM under different scenarios.
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In the scenarios with distributed generators integrated into the distribution network,
the LMI also displayed a heavier tail distribution, which means that the grid had a higher
probability of maintaining a high load-margin under extreme conditions. This was due to
multi-point power generation, which could be supplemented by other nodes when some
nodes were affected by load or failure, thereby enhancing the overall resilience of the grid
and making it more stable in the face of a wide range of operating conditions and potentially
high-load events. In contrast, scenarios with centralized access to the distribution network
showed a lighter tail, which meant that, under extreme load conditions, the network had
difficulty maintaining a high load-margin, increasing the risk of grid collapse in the face of
high loads or failures. Particularly in Scenario 3, the higher overall capacity and distributed
configuration significantly enhanced the load margin, enabling the grid to better withstand
various load fluctuations, and thus enhancing overall stability.

In the aforementioned distribution network system scenarios, a warning value for the
ILM was set at 0.8. Therefore, the severity function of the LMI and the PDF of ILM were used
to calculate the static voltage instability risk, and the outcomes are presented in Table 3.

Table 3. Degree of risk of static voltage instability.

PV Integration
Scenario

Degree of Risk of Static Voltage Instability

MCS (5000) 3PEM
Considering Correlations

3PEM
without Considering

Correlations

Without PV Integration 0.2372 0.2370 0.2379

Scenario 1 0.0277 0.0275 0.0287

Scenario 2 0.0135 0.0138 0.0149

Scenario 3 0.0019 0.0017 0.0035

Analysis of the data shows that the instability risk calculated by the 3PEM considering
correlations is essentially consistent with the MCS (5000) method. Although the traditional
3PEM can also identify the degree of instability in various scenarios, there are still dis-
crepancies compared to the MCS method. Therefore, the better the fitting effect of ILM
probability distribution, the more accurate the results of the system stability assessment,
which also verifies the precision of the method presented.

Comparing values of each scenario, Scenario 3 shows the lowest risk due to its high
and widespread ILM values. This indicates that adopting distributed PV integration and
ensuring higher connection capacities can improve the load margin and thus effectively
reduce the risk of voltage instability. In contrast, centralized access systems, while sim-
plifying management and maintenance, may face a higher risk of instability due to low
load-margins.

6. Conclusions

This paper analyzed the uncertainty and correlation of distributed generators and
loads within the distribution network. Addressing the shortcomings of traditional probabil-
ity assessment methods to deal with the correlation between variables, the Copula function
and Nataf transformation were introduced into 3PEM, combined with the load margin
index ILM and a risk-preference utility function, to propose a probabilistic assessment
method for SVS that accurately handled the correlations among input variables. The IEEE
33-node power distribution system was connected to distributed PV for testing, and the
conclusions are as follows:

(1) Across different distribution functions, the proposed method accurately handled
the correlations among input variables, demonstrating strong applicability, high
computational efficiency, and precision;
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(2) Combined with the risk-preference utility function, the degree of risk of voltage
instability of the system was established, which can be a more comprehensive and
quantitative assessment of the operational risks of a distribution network with dis-
tributed generators in different scenarios;

(3) Distributed access not only enhances the stability of the electrical grid but also im-
proves the performance of the grid under extreme conditions by spreading risk and
enhancing system redundancy. Therefore, distributed access strategies should be
prioritized in the design and planning of modern distribution networks.

The case of the IEEE 33-node system provides validation that the method presented
significantly improves computational efficiency compared to the MCS method, while main-
taining high accuracy. This method is suitable for analysis and calculation tasks such as safe
operation, planning, and scheduling of distribution networks under strong uncertainties
on both the source and load sides. It provides more comprehensive and accurate auxiliary
decision-making information for planning and scheduling personnel, thus having practical
engineering application value. However, it should be noted that the proposed method
does not involve the ring network structure for voltage stability analysis of the distribution
network, which presents certain limitations. As part of future research, we will extend
the study to distribution network systems with ring structures. By researching different
network topologies and optimizing control strategies, we further enhanced the comprehen-
siveness and practicality of the study, providing a stronger guarantee for the safe operation
and optimized dispatch of the power system.
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