Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stress–Strain Results
3.2. Crack Stress Thresholds Using Existing Methods
4. Novel Method of Crack Stress Threshold Calculation
4.1. Modified Strain Decomposition Method
4.2. Results of Volumetric Strain Decomposition
4.3. Determination of Crack Stress Threshold Based on Gas-Phase Volumetric Strain
- (a)
- Initialization: Point A is initialized to origin O, point D is initialized to point E where the volume strain changes from positive to negative, and points B and C are initialized to the peak of gas-phase volumetric strain (Figure 14b);
- (b)
- Update points B and C: Draw reference lines AC and BD and move points B and C to the maximum deviation between the gas-phase volumetric strain and the reference line, respectively (Figure 14c);
- (c)
- Update points A and D: Draw reference lines OB and CE and move points A and D to the maximum deviation between the gas-phase volumetric strain and the reference line, respectively (Figure 14d);
- (d)
- Termination judgment: The calculation is terminated if the stress corresponding to points A, B, C, and D changes by less than 0.1 MPa compared to its previous value. Otherwise, steps (b) and (c) are repeated. The final positions of points B and C correspond to crack initiation and damage stresses (Figure 14a).
4.4. Calculation Results
5. Discussion
6. Conclusions
- Based on the volumetric strain evolution of granite and siltstone under step loading and unloading, the volumetric strain of rock is decomposed into solid-, plastic-, and gas-phase elastic volumetric strains. The solid-phase volumetric strain is calculated by hydrostatic pressure and bulk modulus;
- The proposed method for calculating crack stress thresholds determines and from the initiation and termination points of the stationary stage of the gas-phase volumetric strain and from the point at which the gas-phase strain changes from positive to negative;
- The proposed method provides reasonable characteristic stresses of siltstone and granite and is applicable to rocks with similar stress–strain evolution. However, it may not be applicable to rocks that exhibit minimal dilatancy before peak and maximum volumetric strain near the peak, such as coal and marble;
- The proposed method offers the advantages of the independence from other methods, suitability across high and low confining pressures, and the capability for quantitative calculation and processing of numerous samples. This contributes to the assessment of long-term strength, fatigue strength, in situ spalling strength of the tunnel surrounding rock, and the long-term stability analysis of engineering projects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, M.; Brown, E.T. Challenges in the Mining and Utilization of Deep Mineral Resources. Engineering 2017, 3, 432–433. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Z.; Zhao, X.; Ma, L.; Zheng, Y.; Xia, D. Plastic and Damage Energy Dissipation Characteristics and Damage Evolution of Beishan Granite under Triaxial Cyclic Loading. Int. J. Rock Mech. Min. Sci. 2024, 174, 105644. [Google Scholar] [CrossRef]
- Hallbauer, D.K.; Wagner, H.; Cook, N.G.W. Some Observations Concerning the Microscopic and Mechanical Behaviour of Quartzite Specimens in Stiff, Triaxial Compression Tests. Int. J. Rock Mech. Min. Sci. 1973, 10, 713–726. [Google Scholar] [CrossRef]
- Lajtai, E.Z.; Carter, B.J.; Scott Duncan, E.J. Mapping the State of Fracture around Cavities. Eng. Geol. 1991, 31, 277–289. [Google Scholar] [CrossRef]
- Gatelier, N.; Pellet, F.; Loret, B. Mechanical Damage of an Anisotropic Porous Rock in Cyclic Triaxial Tests. Int. J. Rock Mech. Min. Sci. 2002, 39, 335–354. [Google Scholar] [CrossRef]
- Morgan, S.P.; Johnson, C.A.; Einstein, H.H. Cracking Processes in Barre Granite: Fracture Process Zones and Crack Coalescence. Int. J. Fract. 2013, 180, 177–204. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Tang, C.A. A Novel Method for Determining the Crack Closure Stress of Brittle Rocks Subjected to Compression. Rock Mech. Rock Eng. 2020, 53, 4279–4287. [Google Scholar] [CrossRef]
- Diederichs, M.S.; Kaiser, P.K.; Eberhardt, E. Damage Initiation and Propagation in Hard Rock during Tunnelling and the Influence of Near-Face Stress Rotation. Int. J. Rock Mech. Min. Sci. 2004, 41, 785–812. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Diederichs, M.S.; Martin, C.D.; Sharp, J.; Steiner, W. Underground Works in Hard Rock Tunnelling and Mining. In Proceedings of the ISRM International Symposium 2000, Melbourne, Australia, 19 November 2000. [Google Scholar]
- Martin, C.D.; Chandler, N.A. The Progressive Fracture of Lac Du Bonnet Granite. Int. J. Rock Mech. Min. Sci. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Diederichs, M.S. Manuel Rocha Medal Recipient Rock Fracture and Collapse under Low Confinement Conditions. Rock Mech. Rock Eng. 2003, 36, 339–381. [Google Scholar] [CrossRef]
- Meng, Q.B.; Liu, J.F.; Ren, L.; Pu, H.; Chen, Y. Long Experimental Study on Rock Strength and Deformation Characteristics under Triaxial Cyclic Loading and Unloading Conditions. Rock Mech. Rock Eng. 2021, 54, 777–797. [Google Scholar] [CrossRef]
- Amann, F.; Ündül, Ö.; Kaiser, P.K. Crack Initiation and Crack Propagation in Heterogeneous Sulfate-Rich Clay Rocks. Rock Mech. Rock Eng. 2014, 47, 1849–1865. [Google Scholar] [CrossRef]
- Zhao, X.G.; Cai, M.; Wang, J.; Li, P.F.; Ma, L.K. Objective Determination of Crack Initiation Stress of Brittle Rocks under Compression Using AE Measurement. Rock Mech. Rock Eng. 2015, 48, 2473–2484. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying Crack Initiation and Propagation Thresholds in Brittle Rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Du, R.; Pei, X.; Jia, J.; Zhang, X.; Gao, M.; Li, T.; Zhang, G. A Novel Observation Method for Determining the Crack Stress Thresholds of Rock Based on Hooke’s Law. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 3050–3062. [Google Scholar] [CrossRef]
- Chen, S.W.; Yang, C.H.; Wang, G.B.; Wei, X. Experimental Study on the Determination Method of Σcc,Σci and Σcd for Granite under Different Confining Pressures. J. Northeast. Univ. 2016, 37, 1789–1793. [Google Scholar] [CrossRef]
- Gong, F.; Wu, C. Identifying Crack Compaction and Crack Damage Stress Thresholds of Rock Using Load–Unload Response Ratio (LURR)Theory. Rock Mech. Rock Eng. 2020, 53, 943–954. [Google Scholar] [CrossRef]
- Ning, J.; Wang, J.; Jiang, J.; Hu, S.; Jiang, L.; Liu, X. Estimation of Crack Initiation and Propagation Thresholds of Confined Brittle Coal Specimens Based on Energy Dissipation Theory. Rock Mech. Rock Eng. 2018, 51, 119–134. [Google Scholar] [CrossRef]
- Peng, J.; Cai, M.; Rong, G.; Zhou, C.; Zhao, X. Stresses for Crack Closure and Its Application to Assessing Stress-Induced Microcrack Damage. Chin. J. Rock Mech. Eng. 2015, 34, 1091–1100. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, Y.; Zou, Q.; Ding, L. Determination of Crack Closure Stress under Constant-Fatigue Loading Based on Damage Variable Evolution. Theor. Appl. Fract. Mech. 2022, 121, 103526. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Brittle Fracture in Compression. Int. J. Fract. 1974, 10, 525–536. [Google Scholar] [CrossRef]
- Diederichs, M.S. The 2003 Canadian Geotechnical Colloquium: Mechanistic Interpretation and Practical Application of Damage and Spalling Prediction Criteria for Deep Tunnelling. Can. Geotech. J. 2007, 44, 1082–1111. [Google Scholar] [CrossRef]
- Nicksiar, M.; Martin, C.D. Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks. Rock Mech. Rock Eng. 2012, 45, 607–617. [Google Scholar] [CrossRef]
- Wen, T.; Tang, H.; Ma, J.; Wang, Y. Evaluation of Methods for Determining Crack Initiation Stress under Compression. Eng. Geol. 2018, 235, 81–97. [Google Scholar] [CrossRef]
- Tang, M.; Wang, G.; Chen, S.; Yang, C. An Objective Crack Initiation Stress Identification Method for Brittle Rock under Compression Using a Reference Line. Rock Mech. Rock Eng. 2021, 54, 4283–4298. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C. Dilatancy in the Fracture of Crystalline Rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Mechanism of Brittle Fracture of Rock. Part I-Theory of the Fracture Process. Int. J. Rock Mech. Min. Sci. 1967, 4, 395–404. [Google Scholar] [CrossRef]
- Lavrov, A.; Vervoort, A.; Filimonov, Y.; Wevers, M.; Mertens, J. Acoustic Emission in Host-Rock Material for Radioactive Waste Disposal: Comparison between Clay and Rock Salt. Bull. Eng. Geol. Environ. 2002, 61, 379–387. [Google Scholar] [CrossRef]
- Taheri, A.; Zhang, Y.; Munoz, H. Performance of Rock Crack Stress Thresholds Determination Criteria and Investigating Strength and Confining Pressure Effects. Constr. Build. Mater. 2020, 243, 118263. [Google Scholar] [CrossRef]
- Baud, P.; Klein, E.; Wong, T. Compaction Localization in Porous Sandstones: Spatial Evolution of Damage and Acoustic Emission Activity. J. Struct. Geol. 2004, 26, 603–624. [Google Scholar] [CrossRef]
- Wu, H.R.; Liu, H.L.; Zhao, J.D.; Xiao, Y. Multiscale Analyses of Failure Pattern Transition in High-Porosity Sandstones. Chin. J. Geotech. Eng. 2020, 42, 2222–2229. [Google Scholar] [CrossRef]
- Yu, H.; Chen, W.; Ma, Y.; Tan, X.; Yang, J. Experimental and Theoretical Study on the Creep Behavior of a Clayey Rock. Rock Mech. Rock Eng. 2023, 56, 1387–1398. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Rodríguez-Pérez, Á.M.; López, R.; Hernández-Torres, J.A.; Caparrós-Mancera, J.J. A Finite Element Method Integrated with Terzaghi’s Principle to Estimate Settlement of a Building Due to Tunnel Construction. Buildings 2023, 13, 1343. [Google Scholar] [CrossRef]
- Cai, W.; Su, C.; Zhu, H.; Liang, W.; Ma, Y.; Xu, J.; Xu, C. Elastic–Plastic Response of a Deep Tunnel Excavated in 3D Hoek–Brown Rock Mass Considering Different Approaches for Obtaining the out-of-Plane Stress. Int. J. Rock Mech. Min. Sci. 2023, 169, 105425. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza, C.; Corkum, B. Hoek-Brown Failure Criterion—2002 Edition. Narms-Tac 2002. Available online: https://www.researchgate.net/publication/282250802_Hoek-Brown_failure_criterion_-_2002_Edition (accessed on 19 July 2024).
- Lv, Z.; Wu, M.; Wang, Z.; Zeng, X. Thermal-Mechanical Modelling on Cumulative Freeze-Thaw Deformation of Porous Rock in Elastoplastic State Based on Drucker-Prager Criterion Considering Dilatancy. Int. J. Rock Mech. Min. Sci. 2024, 180, 105815. [Google Scholar] [CrossRef]
- Kovári, K.; Tisa, A.; Einstein, H.H.; Franklin, J.A. Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revised Version. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 285–290. [Google Scholar] [CrossRef]
- Bieniawski, Z.T.; Bernede, M.J. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 138–140. [Google Scholar] [CrossRef]
- Zhou, H.W.; Wang, X.Y.; Zhang, L.; Zhong, J.C.; Wang, Z.H.; Rong, T.L. Permeability Evolution of Deep Coal Samples Subjected to Energy-Based Damage Variable. J. Nat. Gas Sci. Eng. 2020, 73, 103070. [Google Scholar] [CrossRef]
- Chao, Z.; Ma, G.; Wang, M. Experimental and Numerical Modelling of the Mechanical Behaviour of Low-Permeability Sandstone Considering Hydromechanics. Mech. Mater. 2020, 148, 103454. [Google Scholar] [CrossRef]
- Pengjin, Y.; Shengjun, M.; Yuting, M.; Wenxuan, Y.; Xiangfan, S. Multi-Dimensional Non-Uniform Deformation and Failure of Siltstone Determined Using Acoustic, 3D-Digital Image Correlation, and Computed Tomography. Theor. Appl. Fract. Mech. 2023, 125, 103800. [Google Scholar] [CrossRef]
- Guy, N.; Colombo, D.; Frey, J.; Cornu, T.; Cacas-Stentz, M.C. Coupled Modeling of Sedimentary Basin and Geomechanics: A Modified Drucker–Prager Cap Model to Describe Rock Compaction in Tectonic Context. Rock Mech. Rock Eng. 2019, 52, 3627–3643. [Google Scholar] [CrossRef]
- Han, L.H.; Elliott, J.A.; Bentham, A.C.; Mills, A.; Amidon, G.E.; Hancock, B.C. A Modified Drucker-Prager Cap Model for Die Compaction Simulation of Pharmaceutical Powders. Int. J. Solids Struct. 2008, 45, 3088–3106. [Google Scholar] [CrossRef]
- Yuan, S.C.; Harrison, J.P. An Empirical Dilatancy Index for the Dilatant Deformation of Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 679–686. [Google Scholar] [CrossRef]
- Xue, L.; Qin, S.; Sun, Q.; Wang, Y.; Lee, L.M.; Li, W. A Study on Crack Damage Stress Thresholds of Different Rock Types Based on Uniaxial Compression Tests. Rock Mech. Rock Eng. 2014, 47, 1183–1195. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Z.; Yang, P.; Liang, M.; Wang, H.; Xia, D.; Zhao, Z. Mechanical Properties, Instability Precursors, and Fatigue Life Prediction of Siltstone under Bivariate Fatigue Damage-Controlled Tests. Rock Mech. Rock Eng. 2024. [Google Scholar] [CrossRef]
- Xue, L.; Qi, M.; Qin, S.; Li, G.; Li, P.; Wang, M. A Potential Strain Indicator for Brittle Failure Prediction of Low-Porosity Rock: Part I-Experimental Studies Based on the Uniaxial Compression Test. Rock Mech. Rock Eng. 2015, 48, 1763–1772. [Google Scholar] [CrossRef]
- Pan, X.-H.; Lü, Q. A Quantitative Strain Energy Indicator for Predicting the Failure of Laboratory-Scale Rock Samples: Application to Shale Rock. Rock Mech. Rock Eng. 2018, 51, 2689–2707. [Google Scholar] [CrossRef]
(MPa) | Upper Limit Increments per Cycle (MPa) | |
---|---|---|
Siltstone | Granite | |
0 | 3.6 | 17.0 |
4 | 7.0 | 20.0 |
8 | 8.5 | 25.0 |
12 | 10.0 | 30.0 |
16 | 11.5 | 35.0 |
20 | 13.0 | 38.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Miao, S.; Cai, M.; Li, F.; Liu, Z. Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite. Appl. Sci. 2024, 14, 6473. https://doi.org/10.3390/app14156473
Liang M, Miao S, Cai M, Li F, Liu Z. Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite. Applied Sciences. 2024; 14(15):6473. https://doi.org/10.3390/app14156473
Chicago/Turabian StyleLiang, Mingchun, Shengjun Miao, Meifeng Cai, Fei Li, and Zejing Liu. 2024. "Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite" Applied Sciences 14, no. 15: 6473. https://doi.org/10.3390/app14156473
APA StyleLiang, M., Miao, S., Cai, M., Li, F., & Liu, Z. (2024). Quantitative Calculation of Crack Stress Thresholds Based on Volumetric Strain Decomposition for Siltstone and Granite. Applied Sciences, 14(15), 6473. https://doi.org/10.3390/app14156473