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Abstract: With the increasing complexity of unmanned aerial vehicle (UAV) missions, single-objective
optimization for UAV trajectory planning proves inadequate in handling multiple conflicting ob-
jectives. There is a notable absence of research on multi-objective optimization for UAV trajectory
planning. This study introduces a novel two-stage co-evolutionary multi-objective evolutionary
algorithm for UAV trajectory planning (TSCEA). Firstly, two primary optimization objectives were
defined: minimizing total UAV flight distance and obstacle threats. Five constraints were defined:
safe distances between UAV trajectory and obstacles, maximum flight altitude, speed, flight slope,
and flight corner limitations. In order to effectively cope with UAV constraints on object space limita-
tions, the evolution of the TSCEA algorithm is divided into an exploration phase and an exploitation
phase. The exploration phase employs a two-population strategy where the main population ignores
UAV constraints while an auxiliary population treats them as an additional objective. This approach
enhances the algorithm’s ability to explore constrained solutions. In contrast, the exploitation phase
aims to converge towards the Pareto frontier by leveraging effective population information, re-
sulting in multiple sets of key UAV trajectory points. Three experimental scenarios were designed
to validate the effectiveness of TSCEA. Results demonstrate that the proposed algorithm not only
successfully navigates UAVs around obstacles but also generates multiple sets of Pareto-optimal solu-
tions that are well-distributed across objectives. Therefore, compared to single-objective optimization,
TSCEA integrates the UAV mathematical model comprehensively and delivers multiple high-quality,
non-dominated trajectory planning solutions.

Keywords: UAV trajectory planning; multi-objective optimization; exploration and exploitation
stages; B-spline fitting curve

1. Introduction

With the rapid development of UAV technology, the high maneuverability, stability,
and flexibility of UAVs have resulted in their widespread use in many fields, such as
surveying and mapping, medical rescues, geological exploration, and hydrological resource
monitoring [1,2]. Among them, UAV trajectory planning is crucial to ensure that UAVs
complete their flight tasks, and it usually involves two key aspects: trajectory generation
and trajectory optimization. Trajectory generation includes UAV obstacle avoidance and
the solution of key trajectory points, while trajectory optimization determines the flight
efficiency and safety of UAVs. UAV trajectory planning has been widely researched but is
mainly regarded as a single-objective optimization problem [3], i.e., it only focuses on the
optimization of the performance of one objective or the optimization of the performance of
multiple objectives after weighting. With the increasing complexity of UAV missions, single-
objective optimization methods are unable to handle multiple conflicting optimization
objectives simultaneously. UAVs need to consider a variety of factors in actual flight, such
as the shortest flight distance, flight speed, flight altitude, etc. Single-objective optimization
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for UAV trajectory planning usually focuses on only one of these aspects, ignoring other
important optimization requirements, resulting in poor overall planning results.

Multi-objective optimization for UAV trajectory planning (MOUTP) simultaneously
considers the performance of multiple optimization objectives. Through multi-objective
optimization algorithms and constraint processing techniques, it yields a set of planning
solutions that satisfy different optimization objectives as much as possible. Not only can
it satisfy the shortest flight distance, but it also can satisfy constraints such as the flight
speed of the UAV, which makes the solution more flexible and the decision-making more
comprehensive. At present, MOUTP algorithms are roughly divided into the following
three categories.

The first category is MOUTP based on node algorithms, which are characterized by
short response times and high robustness and universality. This type of MOUTP is suitable
for a variety of complex scenarios where obstacle avoidance is the main optimization
objective. Yuan et al. [4] extended the obstacle grid in a map in order to maintain a safe
distance between the UAV and obstacles. Fan et al. [5] proposed MOUTP based on the
PF-RRT* algorithm in complex environments, introduced a target weight bias strategy to
simplify the search space near the obstacles by using a dichotomous method, and proposed
an improved artificial potential field. Yan et al. [6] proposed a new algorithm for fixed-wing
UAV trajectory planning based on a genetic algorithm and the theory of the Dobbins curve.
This method uses an initial circle node, a target circle node, a threat circle node, and key
trajectory points to jointly construct a coding scheme.

The second category is MOUTP based on intelligent optimization algorithms, which
can extend multiple optimization objectives according to the decision maker’s needs for
meeting the various constraints and requirements of UAV trajectories. This type is suitable
for balancing multiple optimization objectives. Xu et al. [7] used the multi-objective
optimization theory to model a UAV trajectory planning problem, designed multiple
objective functions and weight-vector-adaptive combinations for the model, and proposed
MOUTP with dimensional exploration as the main optimization objective. Chen et al. [8]
proposed an enhanced version of the chimpanzee optimization algorithm to solve MOUTP
in 3D environments by combining differential variational operators and adaptive norms to
enhance the algorithm’s search capability and prevent key trajectory point solutions from
falling into multiple local optima. Thoma, A. et al. [9] proposed an improved version of
the 3D Vector Field Histogram * (3DVFH *) method for local trajectory planning of UAV
in medical applications, in which a variant of weighted products, weighted Chebyshev
distance, and factorial achievement scaling were investigated in addition to the classical
weighted sum.

The third category is MOUTP based on deep learning algorithms, which provide more
flexible, intelligent, and adaptive multi-objective UAV trajectory-planning schemes. Zhou
et al. [10] proposed MOUTP based on a deep reinforcement learning (DRL) algorithm,
which introduced multiple target optimization allocation networks in a double-delay deter-
ministic policy gradient algorithm while establishing task assignment weight coefficients
to prioritize important tasks. Sina et al. [11] used a deep deterministic policy gradient
(DDPG)-based algorithm for set environments with 3D continuous actions, while a reward
function based on inner product weights was proposed in order to balance features such as
the UAV target tracking distance and UAV obstacle avoidance. Lv et al. [12] proposed an
information theoretical exploration algorithm for UAV platforms, called Entropy Explorer
(EE), for determining UAV obstacle avoidance in MOUTP.

Most of the above studies used weight vectors to balance multiple optimization
objectives, but the parameters of weight vectors are easily affected by the decision maker’s
preferences. Meanwhile, the UAV constraint divides the target space into multiple infeasible
domains, which makes solving for non-dominated critical waypoints quite difficult.

At present, a small number of studies have regarded MOUTP as a constrained multi-
objective optimization problem. By simulating the natural evolutionary process, multiple
performance objectives are optimized while satisfying the constraints of the planning
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system. The basic working principle is as follows. First, a random initial population
(a collection of candidate UAV solutions) is generated, and the optimal individuals are
selected for crossover and mutation by evaluating their fitness and constraint satisfaction
to generate a new generation of individuals (new candidate UAV solutions). Through
repeated iterations, the fitness of individuals is continuously optimized to find multiple
non-dominated solutions that satisfy the MOUTP constraints. However, they suffer from
problems such as a long response time and high computational complexity during the
planning process [13–15]. In order to further improve the performance of MOUTP, a novel
multi-objective evolutionary algorithm with two-stage co-evolution for UAV trajectory
planning (TSCEA) is proposed in this paper. The innovations and contributions of this
research are summarized as follows.

(1) A multi-objective optimization framework for UAV trajectory planning is proposed. Mean-
while, the distance of the UAV from an obstacle is regarded as a strong constraint, and the
framework can be extended with multiple conflicting objectives and multiple constraints.

(2) A two-phase co-evolutionary constraint-handling technique is proposed, where a
two-population strategy is adopted in the exploration phase, the primary population
is not restricted by the UAV constraints, and the secondary population treats the
constraints as an additional objective. The exploitation stage then gradually converges
to a well-distributed Pareto-optimal solution, thus contributing to the acquisition of
key UAV trajectory points.

(3) Several sets of test instances are constructed to simulate UAV trajectory planning by
several benchmark algorithms, while four performance metrics are used to test the
performance of the algorithms and verify the effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. The relevant research background,
including constrained multi-objective optimization problems and archive-based two-stage
evolutionary algorithms, is presented in Section 2. The general framework of the TSCEA is
presented in Section 3. Test examples and experimental analyses are described in Section 4.
The full study is summarized in Section 5.

2. Related Research Background

In this study, MOUTP is regarded as a constrained multi-objective optimization prob-
lem. We first introduce the basic theory of constrained multi-objective optimization prob-
lems. Then, a constrained multi-objective evolutionary algorithm with a powerful search
capability is introduced, which proposes a two-stage co-evolutionary constraint-processing
technique to provide a reference for solving the set of key trajectory points.

2.1. Constrained Multi-Objective Optimization Problem

Unlike unconstrained single-objective optimization problems, constrained multi-
objective optimization problems (CMOPs) need to satisfy different constraints and optimize
multiple objectives, which are usually coupled and in competition with each other, i.e.,
an increase in the performance of one optimization objective may cause a decrease in the
performance of other optimization objectives.

The final solution of CMOPs is not just an optimal solution but a set of Pareto-optimal
solutions consisting of compromise solutions [16–18]. CMOPs originated for the determina-
tion of the optimal design, modeling, and planning of complex systems, and they are now
widely used in a variety of practical works, such as the design of urban bus routes [19], the
optimization of the gait of bipedal robots [20], the resource allocation and scheduling of
unmanned aerial vehicles, etc., [21]. CMOPs can be defined as follows [22,23]:

Minimize F(x) = ( f1(x), . . . , fm(x))
T

subject x ∈ S,
gi(x) ≤ 0,i= 1, . . . , p
hj(x) = 0,i = p+1, . . . , q

(1)



Appl. Sci. 2024, 14, 6516 4 of 21

where F(x) denotes the objective function vector, fm(x) denotes m simultaneous optimiza-
tion objectives to be optimized. x = (x1, . . . , xn)

T is the n-dimensional decision vector, n
is the number of decision variables, x ∈ S, S denotes the search space, and gi(x) and hj(x)
are the i-th inequality and j-th equation constraints, respectively. p denotes the number of
inequality constraints, q is the number of constraints.

For solution x, its overall constraint violation (CV) can be calculated as follows:

CV(x) =
p

∑
i=1

max{0, gi(x)}+
q

∑
j=p+1

max
{

0,
∣∣hj(x)

∣∣− η
}

(2)

where η is a very small positive value, usually η = 10−6, and it converts an equality
constraint to an inequality constraint. If CV(x) = 0, then solution x is a feasible solution;
otherwise, x is a non-feasible solution. Meanwhile, the dominance relationship is the focus
of multi-objective evolutionary algorithms (any two decision variables x, y ∈ Ω) if the
following is true: {

fi(x) ≤ fi(y), ∀i ∈ {1, 2, . . . , m}
f j(x) ≤ fi(y), ∀j ∈ {1, 2, . . . , m} (3)

Then, x is said to dominate y, which is denoted as x ≺ y. If x and y do not dominate
each other, then x and y are said to be Pareto non-dominated.

Figure 1 is a schematic diagram of a CMOP for generating feasible solutions. Figure 1a
represents the constrained multi-objective decision space. Figure 1b represents the objec-
tive space; the blue points within the elliptical dashed lines represent the Pareto-optimal
solutions, and the red curves represent the Pareto front. Note that the set of Pareto-optimal
solutions refers to the constrained subset of the decision space, while the Pareto front is
composed of the constrained subset in the objective function space.
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2.2. AT-CMOEA

The constraints of UAVs cause the search space to generate multiple infeasible domains
that partition the objective space into multiple unevenly distributed subspaces. Most
CMOEAs focus on the diversity, convergence, and feasibility of the solutions (planning
solutions), ignoring the role of the infeasible solutions (the planning solutions of CV ̸= 0),
which leads to insufficient selection pressure on the nondominated solutions.

An archive-based two-stage evolutionary algorithm with constraints (AT-CMOEA)
provides an effective global search strategy that fully considers the balanced relationship
among objectives and between constraints and objectives, and this algorithm utilizes
information from both feasible and infeasible solutions to improve the diversity and
convergence of the solutions [12]. In this section, the AT-CMOEA is briefly introduced.
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The AT-CMOEA divides the evolutionary process into two stages—exploration and
exploitation. The exploration stage explores the search space extensively through two
populations, one biased towards constraints and one biased towards the objective, so that
the search resources are concentrated in the promising regions as much as possible. The
exploitation stage obtains a set of well-distributed Pareto-optimal solutions based on the
useful individual information found in the exploration stage, and the two populations with
different characteristics cooperate to converge to the constrained Pareto front (CPF). This is
organized as follows:

(1) The exploration stage consists of two populations: the main population, which does not
consider any constraints and aims to explore the search space quickly and efficiently, and
the assistant population, which takes all the constraints as an additional objective and
retains some infeasible solutions close to the feasible domain, with the aim of jumping out
of the local optimum and finding a promising feasible domain. Finally, all the solution
information is archived for further use in the exploitation phase.

(2) The exploitation stage is more concerned with fast convergence to CPF, where the main
population consists of the populations from the exploitation stage and the assistant
population considers all constraints in order to obtain a set of well-distributed Pareto-
optimal feasible solutions. In addition, by exchanging the offspring produced by the
two populations, the assistant population continuously helps the main population to
converge from the infeasible domain to the CPF by using the promising information
it carries.

The AT-CMOEA uses different populations to determine the CPF from different stages
and fully considers the effects of constraints and infeasible solutions on the objective space.
The main and auxiliary populations co-evolve schematically, as shown in Figure 2.
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Figure 2. Schematic representation of the co-evolution of the main and assistant populations. (a) rep-
resents the process of moving the main population; (b) represents the process of moving the assistant
population; (c) represents the process of moving both populations.

The red dots in Figure 2a,b denote the main population, the blue dots denote the
assistant population, the grey area denotes the feasible domain, the red solid line denotes
the Pareto front while considering the constraints, the blue solid line denotes the Pareto
front without considering the constraints, and the dashed arrows denote the direction of
the run of the populations. Figure 2c shows that the main and assistant populations were
simultaneously clustered in the feasible domain constraining the Pareto front.

There are many constraints coupled in MOUTP; if the constraints of the UAV are
ignored, then the generated key trajectory points will ignore the actual flight situation of
the UAV, which will have an impact on the stability and safety of the UAV. The constraint-
handling technique of the two-stage co-evolution of the AT-CMOEA is of high significance.
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3. General Framework of MOUTP Based on TSCEA

The overall framework of MOUTP based on the TSCEA proposed in this study is shown
in Figure 3 and consists of three main parts: (1) constructing the multi-objective mathematical
model of MOUTP and establishing the UAV constraints and multiple objectives to be optimized;
(2) using the mutation operator and selection operator of the differential evolutionary algorithm
to obtain a set of offspring key trajectory points; and (3) performing the evolutionary process of
the TSCEA. The main steps are described in detail below.
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3.1. Multi-Objective Model
3.1.1. Establishment of the Objective Function

In this section, two optimization objective functions of MOUTP are considered: the
UAV flight distance and the sum of the UAV’s distance to the obstacle threat. From the
perspective of actual UAV flight, the UAV and obstacle flight safety distance constraints
and the UAV’s maximum flight height, flight slope, and flight angle constraints were
established. This study constructed the MOUTP model using two optimization objective
functions and five constraints.

The first objective function was the sum of the UAV’s flight distances, f1:

f1 =
PN

∑
k=0
∥Kk+1 − Kk∥ (4)

where PN denotes the total number of key trajectory points in the UAV’s trajectory, K0 denotes the
position of the UAV, KPN+1 denotes the position of the mission point, [K1, K2, . . . , KPN ] denotes
the position of each key trajectory point, and ∥ · ∥ denotes the calculation of the Euclidean
distance between two points.

The second objective function is the sum of the UAV’s distance from the terrain and
the simulated radar obstacle threat, f2. In order to avoid collisions between the UAV and
obstacles, the generated key trajectory points should be far away from the terrain and
obstacle points:

f2 =
R

∑
r=1

λ

∥Pk − Pr∥
+

PN

∑
k=1

Terraink (5)

where R represents the number of radars, Pk represents the coordinates of the UAV at key
trajectory point k, Pr represents the position of the center of radar r, λ represents the threat
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coefficient of the radar, and Terraink represents the threat coefficient of the terrain and the
key trajectory point k.

3.1.2. Establishment of Constraints

The first constraint is the safe distance of the UAV trajectory from obstacles:

PN

∑
k=0
∥h∗k − hk∥ > 0 (6)

where h∗k denotes the elevation value below the k-th key trajectory point and hk denotes the
actual distance below the k-th key trajectory point.

The second constraint is the maximum flight altitude of the UAV:

PN

∑
k=0
∥hmax − hk∥ > 0 (7)

where hmax denotes the maximum flight altitude of the UAV.
The third constraint is the speed constraint of the UAV:

Vuav = [Vmin, Vmax] (8)

where Vmin denotes the minimum speed of the UAV and Vmax denotes the maximum speed
of the UAV.

The fourth constraint is the UAV flight slope θ, which is the angle between the UAV
and the horizontal:

θ ≥ arctan(
|zk+1 − zk|

|(xk+1 − xk, yk+1 − yk)|
) (9)

where zi
k denotes the altitude of the k-th key trajectory point of the i-th UAV in three-

dimensional space, xi
k denotes the horizontal coordinate of the k-th key trajectory point of

the i-th UAV in three-dimensional space, and yi
k denotes the vertical coordinate of the k-th

key trajectory point of the i-th UAV in three-dimensional space.
The fifth constraint is the UAV flight corner η:

η ≥ arctan(
ak

i (y)√
(ak

i (x))2
+ (ak

i (z))
2
) (10)

where ak
i (x), ak

i (y), and ak
i (z) denote the acceleration of the k-th path point of the i-th UAV

in the direction of the x, y, and z coordinate axes, respectively.

3.2. TSCEA

The AT-CMOEA cannot directly solve the MOUTP problem because it adopts a two-
stage constraint-handling technique with two populations, which promotes the diversity
and convergence of the solution but also increases the algorithm’s response time and
computational complexity. In this research, a multi-objective evolutionary algorithm with
two-stage co-evolution for UAV trajectory planning (TSCEA) is proposed.

In the TSCEA algorithm, constraints are effectively handled, and multi-objectives are
optimized through a combination of exploration and exploitation phases. The selection and
optimization of critical trajectory points is the core of the algorithm, which ensures that the
UAV’s trajectory planning in complex environments can both avoid obstacles and achieve
optimized objectives. Obtaining better key trajectory points through the exploration and
exploitation phases of the TSCEA algorithm not only improves the efficiency and accuracy
of trajectory planning but also enhances the adaptability of UAVs in dynamic and complex
environments. The main operational diagram of the algorithm is given in Figure 4.
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(1) Exploration stage of the TSCEA

The exploration stage aims to increase the searchability of the population across the
search space. The main population ignores the UAV constraints in order to find as many
feasible domains as possible. The assistant population uses the constraints as additional
objective functions to find more promising solutions. At this point, the constrained bi-
objective MOUTP optimization problem is converted to an unconstrained multi-objective
MOUTP optimization problem. The main and assistant populations generate the offspring
populations through the crossover operator and the variation operator of the differential
evolutionary algorithm, respectively. The main population was updated by NSGA-II [24],
and the assistant population was updated using SPEA2 [25]. The exploratory stage of the
TSCEA is shown in Algorithm 1.

Algorithm 1: Exploration Stage of the TSCEA.

Input: Terrain (Terrain dataset), Radar (Radar dataset), UAV (The location of the UAV), Mission
(The location of the mission), f1 (Objective function 1), f2 (Objective function 2), Cuav (UAV
constraint set), Pop (The size of population), Gen (The number of iterations). Pm (Mutation
probability);
Output: update_Mx1 (Updated parent population1), update_Mx2 (Updated parent population2);

1 Define terrain datasets and radar datasets and unify the simulation environment;

Terrain = Terrain3D; Radar = CRadar; E = [Terrain, Radar];

2 Initialize the population to obtain two random parent populations Mx1,Mx2;

Mx1 = initial (); Mx2 = initial ();
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3 Obtaining new offspring populations using the classical DE algorithm mutation operator
o f f Mx1;

for i = 1: Pop

[r1,r2,r3] = Gainthreenumber(i);/* Get three random numbers */

if rand() < Pm

o f f Mx1 = Mx1{r3} + Pm *(Mx1{r2}-Mx1{r1});/* Mutation operator for differential
evolutionary algorithm */

end

end

4 update_Mx1 ← Update_NSGAII(Mx1, o f f Mx1) ;/* Update Mx1 through NSGA-II */

5 Converting Mx2 constrained MOUTP (M-objects) to unconstrained MOUTP (M + 1-objects);

for i = 1: Pop

o f f Mx2(i) = DEFitness(UAV, Mission , f1, f2, Cuav, Mx2(i));

end

6 update_Mx2 ← Update_SPEA2(Mx2, o f f Mx2) ;/* Update Mx2 through SPEA2 */

7 Archive1 = {update_Mx1, update_Mx2};

(2) Exploitation stage of the TSCEA

The purpose of the exploitation stage is to converge to the CPF by utilizing the high-
quality populations from the archive in the exploration stage. The main population consists
of the populations from Archive 1. At this point, both the main and assistant populations
need to take into account all the constraints in order to obtain a set of well-distributed
feasible solutions. Both the main and assistant populations were used in NSGA-II. The
TSCEA utilized the stages shown in Algorithm 2.

Algorithm 2: Exploitation Stage of the TSCEA.

Input: update_Mx1 (Updated parent population1), update_Mx2 (Updated parent population2).
Output: Archive2.

1 Assigning populations from archive 1 to Mx1;

Mx1 ← Archive1 ;

2 Mx1 obtains a subpopulation o f f Mx1 by the mutation operator;

for i = 1: Pop

if rand() < Pm

o f f Mx1 = Mx1{r3} + Pm *(Mx1{r2}-Mx1{r1});/

End

End

3 Ditto for obtaining o f f Mx2;

4 Update_Mx1 ← Update_NSGAII(Mx1, o f f Mx1) ;/* Update Mx1 through NSGA-II */

5 Update_Mx2 ← Update_NSGAII(Mx2, o f f Mx2) ;/* Update Mx2 through NSGA-II */

6 Archive2 = {update_Mx1, update_Mx2};

3.3. B-Spline Curve

MOUTP yields a set of key trajectory points through the TSCEA, but some of the key
trajectory points are widely spaced, and the fitted trajectory segments have a large folding
angle with the trajectory segments, which is not in line with the maneuvering performance
of the UAV. The UAV trajectory can be smoothed using the B-spline fitting method, which
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can fine-tune the trajectory in a specific region without affecting the overall trajectory.
The order of the B-spline can be adjusted according to the actual needs of the UAV so as
to balance the accuracy of the fitting and the computational efficiency. This is suitable
for fitting the uneven distribution of the key trajectory points [26]. The mathematical
expression of the UAV 3D m-order B-spline curve equation is as follows:

X(s) =
m
∑

i=0
XiBi,m(s) = X0B0,m(s) + X1B1,m(s) + . . . + XmBm,m(s)

Y(s) =
m
∑

i=0
YiBi,m(s) = Y0B0,m(s) + Y1B1,m(s) + . . . + YmBm,m(s)

Z(s) =
m
∑

i=0
ZiBi,m(s) = Z0B0,m(s) + Z1B1,m(s) + . . . + ZmBm,m(s)

(11)

where 0 ≤ s ≤ 1, i = 1, . . . , m; Xi, Yi and Zi denote the position vectors of each key
trajectory point; and Bi,m(s) is the m-times Bernstein basis function, also known as the
B-spline segmentation mixing function, whose expression is as follows:

Bi,m(s) =
1

m!

m−i
∑

j=0
(−1)j·Cj

m+1(s + m− i− j)m

=
1

m!
[(s + m− i)m− (m + 1)(s + m− i− 1)m + . . .

. . .+(−1)m−i·Cm−i
m+1sm]

(12)

where Cn
m = m!

n!(m−n)! , C0
m = 1.

When m = 3, the basis function of the B-spline can be expressed as follows:
B(0,3)(s) =

1
6 (−s3 + 3s2 − 3s + 1)

B(1,3)(s) =
1
6 (3s3 − 6s2 + 4)

B(2,3)(s) =
1
6 (−3s3 + 3s2 + 3s + 1)

B(3,3)(s) =
1
6 s3

(13)

When the UAV key trajectory points are unevenly distributed, i.e., the key trajectory
points are not equidistant from the key trajectory points, they can be further iteratively
updated based on the following basis function:

Bi,1(s) =
{

1, τi ≤ s ≤ τi+1
0, elsewise

(14)

Bi,m(s) =
s− τi

τi+m−1
Bi,m−1(s) +

τi+m − s
τi+m − τi+1

Bi+1,m−1(s) (15)

where the nodal equation is as follows:

τi =


0, i < m
i−m + 1, m ≤ i ≤ b
b−m + 2, b < i

(16)

The corresponding expansion of Equations (8)–(12) can be obtained as follows:

 X(s)
Y(s)
Z(s)

 =
3

∑
i=0

Bi,3(s)

 Xi
Yi
Zi

 =
1
6
[S3, S2, S]


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




X0 Y0 Z0
X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3

 (17)
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3.4. Algorithmic Time and Space Complexity Analysis of TSCEA

In this section, we provide an analysis of the time and space complexity of the TSCEA
algorithm. The main components of the TSCEA algorithm are the exploration phase, the
exploitation phase, and the optimization process of the key trajectory points.

(1) Time complexity analysis

Exploration phase: In this phase, the algorithm performs an extensive search of the
search space, assuming that the population size is N and each individual evolves within
T generations; the time complexity of the exploration phase is O(N × T).

Exploitation phase: In this phase, the algorithm uses the population information stored
in the exploration phase to perform fine-grained optimization. The population size is N
and each individual evolves within T′ generations; the time complexity of the exploitation
phase is O(N × T′).

The optimization of key trajectory points includes B-spline fitting curves and other
optimization steps, assuming that the optimization of key trajectory points requires K
iterations and the complexity of each iteration is O(M), where M is the number of trajectory
points, the time complexity of this step is O(K ×M).

Combining the above parts, the overall time complexity of the TSCEA algorithm is
O(N × T) + O(N × T′) + O(K ×M).

(2) Space complexity analysis

The space complexity of the TSCEA algorithm depends mainly on the population size
and the stored population information.

Population storage: In the exploration and exploitation phase, N individuals need to
be stored, each containing d-dimensional decision variables; then, the space complexity of
population storage is O(N × d).

Auxiliary storage: Including key trajectory point information and other intermediate
variables, assuming that an additional S units of space are required, the space complexity
of auxiliary storage is O(S).

Combining the above parts, the overall space complexity of the TSCEA algorithm is
O(N × d) + O(S).

4. Experiments and Analysis

In order to validate the effectiveness of the proposed TSCEA, this section first presents
three test instances. Then, four comparative algorithms and algorithm parameters of the
classical DE algorithm [27], the DD-CMOEA [28], the cDADSEA [29], and the DPCPRA [30]
are introduced. Finally, we conducted several experiments and evaluated the performance
of the MOUTP planning results using four performance metrics: the hypervolume (HV) [31],
the inverted generational distance (IGD) [32], the feasible solution proportion (FP) [33],
and the average planning time.

4.1. Experimental Settings

(1) Test instances and model parameters

In this section, three different test instances are designed with the aim of examining
the UAV’s traversal of mountainous terrain and radar scanning areas, as shown in Figure 5.
Specifically, only the digital elevation model of real terrain was considered in Instance 1, as
shown in Figure 5a. Instance 2 contained the real terrain digital elevation model and three
radar models, as shown in Figure 5b. Instance 3 added three radar models to Instance 2, and
its main purpose was to analyze the effect of increasing radar density on the performance
of MOUTP. Instance 3 is shown in Figure 5c.

In Figure 5, the yellow circle indicates the location of the UAV, the yellow pentagram
indicates the location of the mission point, and the yellow hemisphere indicates the location
of each radar model. Table 1 shows the real terrain digital elevation model dimensions
and the coordinates and scanning radius of each radar model for different instances.
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sanfranciscos.dem.gz denotes the real terrain digital elevation model dataset [180,230,50],
denotes the terrain dimensions, Rc denotes the radar’s coordinates, and Rr denotes the
radar’s scanning radius.
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Table 1. Scope of DEM of real terrain and parameters for modeling radar obstacles.

Terrain-Type Obstacles Terrain-Type Obstacles_3 Radars Terrain-Type Obstacles_6
Radars

sanfranciscos.dem.gz
[180,230,50]

# Rc (km) Rr (km) Rc (km) Rr (km)

1 [120,70,4] 30 [120,70,4] 30

2 [110,140,4] 26 [110,140,4] 26

3 [52,103,5] 30 [52,103,5] 30

4 - - [80,30,5] 25

5 - - [140,160,5] 25

6 - - [40,160,5] 30

(2) Parameters for comparison algorithms

The classical DE algorithm reduces the limitations of UAV constraints through the
mutation operator, crossover operator, and other perturbation strategies, which makes it
easier for individuals to jump out of the local optima. The DE algorithm is more suitable
for solving optimization problems with complex environments and more constraints. The
DD-CMOEA adopts a dual-population co-evolutionary approach, which uses two popula-
tions, mainPop and auxPop, to explore the feasible and infeasible domains, respectively,
and the algorithm uses infeasible solutions that violate the constraints to participate in
the evolution, which enhances the diversity of the populations. The cDADSEA employs a
competing-constraint dual-archive two-stage evolutionary algorithm, which evolved in
different evolutionary stages by means of a convergence-driven archive (CA) and diversity-
driven archive (DA). The DDPCPRA designs a dynamic constraint-handling mechanism
and a resource allocation mechanism whose main and assistant populations directly opti-
mize all constraints. The basic parameters of each comparison algorithm in our experiment
were set as follows:

• Population size: N = 100;
• Number of iterations of the algorithm: Gen = 500;
• Probability of mutation: Pm = 0.9;
• Number of independent runs of the algorithm: 30.
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The remaining specific parameters corresponded to those described in the respective
original literature.

(3) Evaluation indicators for CMOEAs

• Hypervolume (HV)

HV(P, q) =
∫

Rn
1H(P, q)(z)dz (18)

In the above equation, P represents the solution set, q represents the predefined
reference point in the target space, 1H(P, q) is the eigenfunction of H(P, q), and the HV
indicator calculates the area covered by the population to the reference point. The larger
the HV value, the better the diversity of the algorithm.

• Inverted generational distance (IGD)

IGD(P, P∗) =
∑

x∈P∗
min
y∈P

dis(x, y)

|P∗| (19)

In the above equation, P is the non-dominant solution, P∗ represents the reference
point uniformly sampled from the PF, and the IGD index is the average value of the
minimum Euclidean distance between the calculated reference point and the non-dominant
solution. The smaller the IGD value, the better the convergence of the algorithm.

• Feasible solution proportion (FP)

FP =
N f s

Ns
∗ 100% (20)

In the above equation, N f s denotes the number of feasible solutions and Ns denotes
the number of solutions, including both feasible and infeasible solutions. This metric can
be used to obtain the percentage of all runs of a feasible solution, which helps to evaluate
the effectiveness and adaptability of the algorithm.

• Average planning time

Taverage(Ttotal , n) =
∑

n∈total
(T1 + T2 + . . . + Tn)

n
(21)

In the above equation, Ttotal represents the superposition of the planned system running
independently n times, and n represents the number of times the planning system is running.
The lower the Taverage value, the more stable the response time of the planning system.

4.2. MOUTP Simulation Experiments Based on Classical DE Algorithm

Complex terrain structures (e.g., mountain heights, slopes, occlusions, etc.) and radar
obstacles can cause algorithms to be affected by a large number of local extreme points during
operation, making it easy for individuals to fall into local optima. In this study, the classical DE
algorithm was used to simulate MOUTP in different instances, and the purpose of this section
is to analyze the performance of MOUTP based on the global search algorithm. Moreover, the
classical DE algorithm has fewer parameter settings and stronger adaptability.

Figure 6 shows the MOUTP simulation graphs for three different test instances, where
the red circles indicate the trajectory points; the thin solid lines indicate the connectivity
relationships between the UAV, the trajectory points, and the mission points; the red thick
solid lines indicate the optimal UAV trajectory, fitted according to the key trajectory points;
and the black circular dashed lines indicate that the trajectory segment crosses the obstacle
region. In order to show the trajectory point evolution generated by the algorithm more
intuitively during the iteration process, this study randomly shows the connectivity of
13 trajectory points in Gen iterations. On the premise that the fitted trajectories based on the
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key trajectory points do not traverse the real terrain digital elevation model, the real terrain
digital elevation model was hidden in Figure 6d–f in order to better observe whether the
key trajectory points traversed the radar obstacles or not.
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Figure 6. Simulation of MOUTP based on classical differential evolutionary algorithm. (a–c) represent
the simulation figures in the three test instances of the traditional DE algorithm respectively. (d–f)
conceal the terrain data in the three test instances respectively.

Table 2 represents the coordinates of the key trajectory points generated via MOUTP
based on the classical DE algorithm and the average time of its operation for the three
instances. The grey numbered areas indicate key trajectory points that crossed the obstacles.
Comprehensively, it can be seen in Figure 6 and Table 2 that the classical DE algorithm
jumped out of the local optimum and generated the final UAV flight trajectory in different
instances. The average response time was shorter, but the trajectory traversed the radar
obstacle in both Instance 2 and Instance 3, and the fitted trajectory segments resulted in a
certain collision risk to UAV flights.

Table 2. MOUTP based on classical DE algorithm to generate coordinates of key trajectory points.

UAV
(km) Coordinates of Key Trajectory Points Target

(km)
Taverage

(s)

Test
Instance 1

17.0 23.3 27.5 38.9 48.4 57.6 75.3 89.3 105.7 109.4 114.3 122.6 140.0

24 s17.0 29.7 34.2 52.4 69.6 79.8 105.5 125.0 142.0 149.1 157.2 169.4 200.0

20.0 23.4 24.8 27.9 29.9 28.3 28.5 28.1 29.0 28.6 30.1 28.5 20.0

Test
Instance 2

17.0 33.6 37.1 58.9 66.8 64.2 71.5 82.6 97.4 101.4 113.0 123.5 140.0

26 s17.0 29.2 44.9 66.5 79.4 80.4 110.5 110.4 130.4 150.4 168.4 189.0 200.0

20.0 19.3 20.3 20.3 18.5 18.5 21.0 20.7 20.3 21.4 20.2 21.0 20.0

Test
Instance 3

17.0 20.8 32.9 39.4 48.8 71.3 74.7 99.1 107.0 116.2 124.2 131.4 140.0

30 s17.0 25.4 52.3 59.9 64.7 74.3 106.0 114.1 137.7 151.9 174.3 185.8 200.0

20.0 23.2 25.3 25.5 24.8 25.6 24.7 25.1 24.9 24.8 25.0 25.2 20.0
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4.3. MOUTP Simulation Experiments Based on CMOEAs

(1) Validation of MOUTP based on TSCEA

As described in this section, the TSCEA was used to simulate MOUTP under different
instances. The TSCEA employed the classical DE algorithm mutation operator to enhance
the diversity of the population, which, in turn, enhanced the global search capability, and
the algorithm employed a two-phase strategy to take into account the limitations of the
UAV constraints on the objective space. The TSCEA has the advantage of performing a
global search while possessing the ability of constraint processing. Figure 7 and Table 3
represent the MOUTP simulation maps and key trajectory point locations, respectively,
based on the TSCEA for three different instances.
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Figure 7. Simulation of MOUTP based on TSCEA. (a–c) represent the simulation figures in the three
test instances of the traditional TSCEA algorithm respectively. (d–f) conceal the terrain data in the
three test instances respectively.

Table 3. MOUTP based on TSCEA to generate coordinates of key trajectory points.

UAV
(km) Coordinates of Key Trajectory Points Target

(km)
Taverage

(s)

Test
Instance 1

17.0 24.7 32.7 46.5 59.1 70.0 85.2 90.2 101.3 111.0 113.4 119.8 140.0

36 s17.0 30.3 37.5 56.1 74.4 94.1 108.7 114.8 129.1 152.3 161.3 171.9 200.0

20.0 25.8 26.2 28.2 28.9 27.8 28.1 28.1 28.7 28.1 27.7 28.6 20.0

Test
Instance 2

17.0 21.6 34.0 43.5 48.9 52.0 62.3 76.7 82.1 93.7 103.0 113.7 140.0

51 s17.0 23.0 40.4 65.3 71.6 75.8 94.8 105.6 117.3 131.6 151.0 160.8 200.0

20.0 24.9 30.1 29.8 27.5 28.1 29.8 28.9 28.0 27.4 28.3 28.6 20.0

Test
Instance 3

17.0 24.3 35.5 49.5 59.9 69.0 81.3 89.1 92.9 96.9 103.9 107.7 140.0

40 s17.0 27.7 43.5 60.2 78.3 95.7 115.5 134.3 141.7 147.3 156.6 164.5 200.0

20.0 28.4 29.5 28.4 28.4 28.8 28.7 28.5 29.3 29.1 28.3 30.3 20.0
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By combining Figure 7 and Table 3, it was found that the MOUTP fitted trajectories
based on the TSCEA in three different instances did not cross the obstacles. The third of
these instances, i.e., the location of the key trajectory point near the radar [110,140,4] in
Figure 7c,f and the fitted trajectory segments fit the shape of the radar, indicating that the
TSCEA had a better performance in balancing the constraints and objectives. Meanwhile,
the average planning time of MOUTP based on the TSCEA was higher than that of the DE
algorithm but still within a limited time.

(2) MOUTP based on different CMOEAs

As described in this section, three different CMOEAs were used to simulate MOUTP
under different instances, as shown in Figure 8. Table 4 displays the HV, IGD, FP, and
average planning time performance metrics for different CMOEAs.
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Figure 8. MOUTP simulation graph based on different CMOEAs. (a1–a3) denote the MOUTP simula-
tions based on the DD-CMOEA; (b1–b3) denote the MOUTP simulations based on the cDADSEA
algorithm; (c1–c3) denote the MOUTP simulations based on the DPCPRA.
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Table 4. Metrics of CMOEAs for different instances.

# Method
Metrics

HV IGD FP (%) Taverage (s)

Test Instance 1

DD-CMOEA 9.8750 × 10−3 (7.45 × 10−3) 7.1922 × 10−1 (4.36 × 10−2) 100% 20

cDADSEA 3.5523 × 10−3 (3.65 × 10−3) 7.6204 × 10−1 (2.69 × 10−2) 94.2% 25

TSCEA 1.7388 × 10−2 (4.57 × 10−2) 6.9665 × 10−1 (1.68 × 10−1) 100% 27

DPCPRA 2.9169 × 10−3 (4.53 × 10−3) 7.7373 × 10−1 (3.46 × 10−2) 100% 31

Test Instance 2

DD-CMOEA 2.2770 × 10−1 (3.87 × 10−2) 2.5567 × 10−1 (2.63 × 10−2) 100% 35

cDADSEA 2.3768 × 10−1 (7.65 × 10−3) 2.9148 × 10−1 (3.01 × 10−2) 86% 30

TSCEA 2.4992 × 10−1 (5.30 × 10−3) 2.4768 × 10−1 (1.86 × 10−2) 100% 32

DPCPRA 2.5206 × 10−1 (5.45 × 10−3) 3.1852 × 10−1 (8.95 × 10−2) 100% 40

Test Instance 3

DD-CMOEA 2.0949 × 10−1 (7.92 × 10−3) 3.4199 × 10−1 (1.48 × 10−2) 100% 32

cDADSEA 1.5448 × 10−1 (8.48 × 10−2) 4.5464 × 10−1 (1.75 × 10−1) 75% 40

TSCEA 2.1166 × 10−1 (1.99 × 10−2) 3.2324 × 10−1 (7.55 × 10−2) 100% 37

DPCPRA 1.1034 × 10−1 (9.26 × 10−2) 5.3951 × 10−1 (1.91 × 10−1) 95% 58

From the MOUTP simulation graph based on different CMOEAs in Figure 8 and the
metrics of different CMOEAs in Table 4, the following was shown:

• In Test Instance 1, the HV values of the TSCEA were all larger than those of the
other CMOEAs, and the values of the IGD were all smaller than those of the other
algorithms, indicating that the TSCEA had better diversity and convergence than the
other CMOEAs. The values of the FP of the DD-CMOEA, the TSCEA, and the DPCPRA
algorithm were all 100%, and part of the key trajectory points of the cDADSEA crossed
the obstacles, so there were a small number of infeasible solutions. Although the
average running time of the TSCEA was longer than that of the DD-CMOEA and the
TSCEA, the difference was small.

• In Test Instance 2, the HV values of the TSCEA were lower than those of the DPCPRA,
suggesting that the TSCEA was less diverse than the DPCPRA; however, the values
of the IGDs were still superior to those of the other CMOEAs. The lower FP values
of the DD-CMOEA and the cDADSEA suggest that some of the key trajectory points
traversed the obstacles. Meanwhile, the average time of the algorithms in Test Instance
2 was longer than that in Test Instance 1 because the simulation environment was
more complex in Test Instance 2; however, the planning time was still shorter.

• The TSCEA’s HV and IGD values were superior to those of the other algorithms in
Test Instance 3. The FP of each CMOEA in Test Instance 1 remained at 100%, but as
the difficulty of the simulation environment in other instances increased further, the
FP value of the other two CMOEAs gradually decreased. The FP value of the TSCEA
did not change. This indicates that the performance of the TSCEA metrics was more
stable. Meanwhile, the average planning time of the TSCEA in Example 3 was also
more stable.

Figure 9 is a graph of the Pareto fronts for MOUTP based on different CMOEAs.
Figure 9a–c represent the CMOEA Pareto fronts for Test Instance 1, Test Instance 2, and
Test Instance 3, respectively. Since the simulation environment in Instance 1 was relatively
simple, the distribution of each CMOEA Pareto front was relatively uniform. However,
the TSCEA had a more uniform distribution, and the two optimization objective values
were smaller than those of the other algorithms, which indicates that the TSCEA was
able to effectively balance the UAV range distance and the threat value of the distance to
the obstacle. From Figure 9b,c, it can be seen that the UAV range distance and the UAV
distance to the obstacle threat values of MOUTP based on the TSCEA were smaller than
those of the other CMOEAs, which was mainly due to the TSCEA’s global search and
constraint-processing abilities.



Appl. Sci. 2024, 14, 6516 18 of 21

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 22 
 

to effectively balance the UAV range distance and the threat value of the distance to the 

obstacle. From Figure 9b,c, it can be seen that the UAV range distance and the UAV dis-

tance to the obstacle threat values of MOUTP based on the TSCEA were smaller than those 

of the other CMOEAs, which was mainly due to the TSCEA’s global search and constraint-

processing abilities. 

   

(a) (b) (c) 

Figure 9. Distribution of Pareto fronts for different CMOEAs. (a) denotes the Pareto frontier for each 

algorithm in test instance 1; (b) denotes the Pareto frontier for each algorithm in test instance 2; (c) 

denotes the Pareto frontier for each algorithm in test instance 3. 

Figure 10 shows the average planning time and the shortest planning time for each 

CMOEA in different test instances. From Figure 10, it can be seen that although the 

TSCEA-based MOUTP was not the shortest in terms of the average planning time and 

shortest planning time in different test instances, the average planning time and the short-

est planning time of MOUTP based on the TSCEA were more stable in each test instance. 

By combining the HV, IGD, and PF values of the TSCEA above, it can be concluded that 

the MOUTP planning system based on the TSCEA is more stable in its operation and able 

to provide an effective method for solving the key trajectory points. 

  

Figure 10. Average and minimum running time of CMOEAs under test instances. 

Figure 9. Distribution of Pareto fronts for different CMOEAs. (a) denotes the Pareto frontier for
each algorithm in test instance 1; (b) denotes the Pareto frontier for each algorithm in test instance 2;
(c) denotes the Pareto frontier for each algorithm in test instance 3.

Figure 10 shows the average planning time and the shortest planning time for each
CMOEA in different test instances. From Figure 10, it can be seen that although the
TSCEA-based MOUTP was not the shortest in terms of the average planning time and
shortest planning time in different test instances, the average planning time and the shortest
planning time of MOUTP based on the TSCEA were more stable in each test instance. By
combining the HV, IGD, and PF values of the TSCEA above, it can be concluded that the
MOUTP planning system based on the TSCEA is more stable in its operation and able to
provide an effective method for solving the key trajectory points.
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5. Conclusions

In this study, we first construct a multi-objective UAV trajectory planning framework
containing two optimization objectives and five constraints. Then, a TSCEA algorithm is
proposed in conjunction with the MOUPT mathematical model. The TSCEA algorithm divides
the evolutionary process into an exploration phase and an exploitation phase, where the
exploration phase aims to perform an extensive search of the search space. The exploitation
phase, on the other hand, obtains a set of well-distributed solution sets by using the population
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information stored in the exploration phase. Finally, the flight trajectory is smoothed to ensure
that the trajectory matches the maneuverability of the UAV by fitting a curve through a B-spline.
Comparisons between performance metrics are performed through three different test instances
and four benchmark algorithms. The simulation results show that the MOUPT planning system
based on the TSCEA algorithm is more stable, the optimized trajectory can effectively avoid
obstacles, can consider conflicting optimization objectives, and obtain multiple sets of better
Pareto non-dominated solutions, which significantly improves the performance of the MOUTP
planning system. The TSCEA algorithm has a significant advantage in UAV trajectory planning,
which provides new ideas for the UAV planning field. In future research, we will continue to
explore and optimize the algorithm, extend its application in other agent mission planning, and
further promote the development of agent mission planning in the direction of large-scale and
ultra-large-scale.

Author Contributions: Conceptualization, G.H. and M.H.; methodology, G.H. and M.H.; project
administration, M.H.; software, G.H. and M.H.; supervision, M.H. and Y.W.; validation, X.Y. and P.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61403416.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Thanks to Min Hu for his important technical help and for providing experimen-
tal equipment and related materials.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Acronym Full Name
UAV Unmanned aerial vehicle
TSCEA Two-stage co-evolution multi-objective evolutionary algorithm
MOUTP Multi-objective optimization for UAV trajectory planning
DRL Deep reinforcement learning
DDPG Deep deterministic policy gradient
EE Entropy explorer
CMOEA Constrained multi-objective evolutionary algorithm
CMOP Constrained multi-objective optimization problem
CV Constraint violation
AT-CMOEA An archive-based two-stage evolutionary algorithm with constraints
CPF Constrained Pareto front
UPF Unconstrained Pareto front
NSGA-II Non-dominated Sorting Genetic Algorithm II
SPEA2 Strength Pareto evolutionary Algorithm 2
DE Differential evolution
DD-CMOEA Dual-stage dual-population constrained multi-objective evolutionary algorithm
cDADSEA Constrained dual-archive dual-stage evolutionary algorithm

DPCPRA
Dual-population evolutionary algorithm based on dynamic constraint
processing and resources allocation

HV Hypervolume
IGD Inverted generational distance
FP Feasible solution proportion
DEM Digital elevation model
CA Convergence-driven archive
DA Diversity-driven archive
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