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Abstract: The theoretical paradigm of geographic automata systems (GAS) underpins a wide range
of studies to represent dynamic complex geospatial phenomena. Specifically, cellular automata
(CA) were used extensively over the past 40 years for geospatial applications, though primarily for
modeling urban growth. Currently, the hyper-specialized and fragmented geospatial technology
ecosystem supporting CA model implementation often necessitates programmed solutions or use of
disconnected programs with graphical user interfaces (GUIs) separate from common geographic infor-
mation systems (GIS) software. Therefore, the main goal of this study is to present a general-purpose,
GIS-based CA modeling framework and extension for Esri’s ArcGIS Pro software environment. The
methodological approach centered around (1) developing generic functions for building binary or
multi-class CA models to capture various spatiotemporal systems and (2) enabling end-to-end CA
modeling projects that can incorporate built-in functionality available in ArcGIS Pro versions 3.1
and newer. Two case studies demonstrate the add-in capabilities to support geosimulation model-
building activities and exploration of new hybrid models. This research contributes to advancing
flexible, transparent spatiotemporal modeling tools within existing GIS software. The proposed
approach addresses the lack of streamlined geospatial technologies capable of simulating numerous
dynamic geospatial phenomena, exploring human and environmental processes, and examining
possible futures with CA in research, decision making, or educational settings.

Keywords: geographic automata; geographic cellular automata; geospatial spatiotemporal modeling
tools; geographic information systems software extensions; ArcGIS Pro add-in; geospatial technologies
for geosimulation

1. Introduction

Geographic automata systems (GAS) are a longstanding theoretical framework used
to represent and model complex dynamic geospatial phenomena [1]. Since its introduction,
this spatiotemporal modeling paradigm continues to be an important research theme within
the domain of geographic information science (GIScience) [2]. By portraying local-level
processes and interactions, GAS models support investigation of change mechanisms that
produce larger-scale patterns [3]. Additionally, their capacity to depict complex systems
behaviors like non-linearity, emergence, and feedback loops offers benefits over top-down
statistical modeling strategies [4]. Within the GAS paradigm, cellular automata (CA) and
agent-based modeling (ABM) approaches are used for simulating local and individual
dynamics, respectively, from the bottom up [1]. Of the two strategies, CA modeling
is utilized extensively due to lower technical barriers, less stringent data requirements,
flexibility of expression, and theoretical simplicity [5]. Such characteristics also make the
paradigm more accessible to multi-disciplinary researchers beyond the field of geography.

Geographic CA extends traditional elements of CA conveyed in earlier studies [6,7]
to include grids of regularly or irregularly spatially tessellated cells, discrete cell states,
neighborhood functions, transition rules, and discrete increments of time [8–11]. Simple
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transition rules capturing local interactions are used to simulate the behaviors of geospatial
systems [12], examine processes [10], explore “what-if” scenarios [13], assist in spatial
and environmental planning endeavors [14], and support spatial decision-making prac-
tices [15]. The nature of CA also allows seamless integration of geospatial data acquired
from remote sensing (RS) imagery or raster GIS datasets [16,17]. Although adjustments
to essential model elements can facilitate representation of innumerable real-world sys-
tems [6], studies leveraging the geographic CA paradigm mainly focus on land change
simulation [2,18], especially urban growth [3,19,20]. Even so, CA were successfully used to
model a range of geospatial phenomenon like human epidemics [21], deforestation [22],
forest fires [23], insect infestation [24,25], snow cover extent [26], seismicity [27], sand dune
dynamics [28], and avalanches [29]. However, the commonality among the listed pursuits
is their programmed implementations.

Whether code for each study is openly available or not, programming is a recurring
barrier in developing CA models that are explicitly spatial and compatible with geospatial
data. Several efforts to create standalone and integrated geographic CA modeling tools
equipped with graphical user interfaces (GUIs) sought to expediate model implementation
and reduce technical obstacles. Reflecting the dominant usage of geographic CA models
in urban land change applications, numerous GUI-based CA software applications spe-
cialized for this phenomenon have included SLEUTH [30], DUEM [31], UrbanSim [32],
Metronamica [33], and FLUS [34]. However, standalone CA tools typically encapsulate
fragments of model-building activities, requiring tasks like data preparation, geospatial
analyses, and cartography to be conducted using other solutions [35]. For example, previ-
ous studies employed ad hoc model-building procedures spanning multiple software and
programmatic solutions [36–38].

To alleviate tool-switching bottlenecks, studies proposed new extensions or “add-ins”
created for familiar GIS software environments. An early example of this is SimLand, which
was created to extend Esri’s ArcInfo software [39]. Since then, several works offered spe-
cialized extensions for Esri’s ArcGIS Desktop software such as iCity [35], GeoSOS [40],
BNID-CA [41], and WDUNE [28]. Other CA add-ins extended functionality of Idrisi
Kilimanjaro [42] and QGIS [43] for modeling forest fires and land change, respectively.
Nevertheless, both standalone and add-in tools routinely exhibit limited capacity to rep-
resent other geospatial systems and are often not updated for use in newer GIS software
environments. Additionally, fundamental components of geographic CA models like
neighborhood functions or transition rules are repeatedly disconnected from theoretical
terminology, lack flexibility, are entirely hard-coded, or are replaced with black-box mech-
anisms that impede transparency necessary for supporting real-world decision making.
Consequently, the rigidity and black-box nature of many specialized GUI-based CA model-
ing tools alienate multi-disciplinary researchers who may have benefited from even basic
model-building functionality.

To address the hyper-specialized, fragmented, and programmer-centric nature of
modern geospatial technologies and workflows supporting CA, the main goal of this study
is to develop a general-purpose, user-friendly geosimulation modeling tool accessible
in a contemporary GIS software environment. The proposed framework and add-in
functions should support end-to-end CA model-building activities, which include data pre-
processing, model parameterization, model execution, model evaluation, and visualization
of simulation outcomes. To meet the primary objective, this research describes the design
and development of the Geographic Automata add-in. The add-in is compatible with ArcGIS
Pro 3.1 and newer versions. The proposed framework and features aim to (1) provide
generic functions for creating binary or multi-class representations of various geospatial
systems and (2) facilitate end-to-end model-building workflows that can be entwined with
ArcGIS Pro functionality. The utility and capabilities of the Geographic Automata add-in
are demonstrated via two case studies involving hypothetical and real-world geospatial
datasets. The first case study focuses on multi-class insect infestation modeling encoded
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with previously reported behaviors, while the second case study introduces the inaugural
use of automated machine learning (AutoML) with CA to inform urban growth allocations.

2. Brief Overview of Geographic CA Modeling and Tools

The essential function of geographic CA modeling tools is to support flexible configu-
ration of five key elements (grids of cells, cell states, neighborhood functions, transition
rules, and discrete time). In general, a CA can be expressed as follows [17]:

ST+1 = {ST , NT , FT , ∆T} (1)

where the new cell state ( ST+1) at time T + 1 depends on cell state ST at the initial time T,
the cell’s neighborhood (NT), the transition rules (FT), and the discrete time represented by
the temporal interval corresponding with one iteration of the model (∆T). A CA model
is run in a stepwise manner, where the grid of cells, cell states, neighborhood functions,
and transition rules that generate or limit changes are stored in an intermediate data
layer [44]. At the end of an iteration, intermediate cell states are added to the output data
layer together [45,46]. A geographic CA is spatially explicit because it is directly linked
to georeferencing principles that determine the location of the cells and their connection
to Earth’s physical surface. As such, it innately links geospatial data as raster GIS data
layers that govern the cell states. Each iteration output can then be represented as a map
generated from the spatiotemporal model simulation.

2.1. Typical CA Transition Rule Mechanisms

Transition rules combine key geographic CA elements—the structural grid of cells,
possible cell states, and neighborhood compositions—to mechanize geospatial processes
that generate changes over time [8]. However, transition rules seldom rely exclusively
on a cell’s current state and those of its neighbors for propagating changes [47]. Instead,
change events are typically produced or constrained based on current cell states, neigh-
borhood characteristics, outcomes of other spatial or aspatial analyses, or global-level
settings [11,48,49]. One now-ubiquitous strategy in geographic CA modeling is to integrate
products of other spatial or aspatial analyses in transition mechanisms. For instance, studies
have guided transition rule behaviors with suitability or susceptibility maps outputted
by techniques like multi-criteria evaluation (MCE) [48,49], or probability maps produced
by machine learning (ML) classifiers [20,38,50]. Other studies involved estimated values
produced with geographically weighted regression (GWR) to influence allocation of new
changes [51]. Likewise, simply adding stochasticity to CA rule mechanisms was used
to produce non-deterministic simulation outcomes [10,44,52], to portray the inherent un-
certainty of real-world processes and anthropogenic activities [53], and to accommodate
lack of complete information about system behaviors [9]. Alongside suitability maps and
stochastic terms, global limits on the number of changes were also set to constrain a model’s
behavior [50,54,55] and used to implement “what-if” scenarios [37]. Other studies set spa-
tial constraints to prevent changes within certain locations [55] and to examine the effects of
policies [56]. Therefore, a general-purpose modeling tool should support implementations
of CA transition rule extensions without requiring users to abandon transparency unless
they choose to.

2.2. Previous General-Purpose CA Modeling Tools

Currently, there are few general-purpose, explainable CA modeling tools usable for
representing various geospatial phenomena. One example is SpaSim [57], a spatial model-
ing tool developed to overcome requirements of programming skills and the specialization
of CA tooling already observed thirty years ago. Since then, the Dinamica Geoprocessing
Objects (EGO) software [45] was presented as an openly available geosimulation modeling
solution with phenomena-agnostic functionality. However, the introductory documenta-
tion, expansive and jargon-filled functor list, and interface design pose difficulties for users
unacquainted with GIS analysis terminology or other GIS software. CA model-building
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workflows are also possible within the TerrSet 2020 GIS software [58] using the Macro Mod-
eler, CELLATOM module, and the experimental (and problematic) CA-Markov module [59].
For example, the Macro Modeler supported CA model implementation of landslides [49] and
insect infestation scenarios [60]. Still, the TerrSet GIS software is challenging for users who
are unfamiliar with performing raster GIS operations, preparing data for use in different
GIS software environments, resolving ambiguous and often undocumented errors, and
navigating the legacy UI design. Furthermore, initial hands-on model-building experiences
are often negatively impacted by the disconnection of rote implementation and theory of
geographic CA. When scientific procedures are predominately composed of memorized,
unintuitive procedures, beginners avoid experimenting beyond the guiderails they were
taught [61]. Hence, geographic CA modeling tools directly linked to key terminology and
integrated within existing GIS software environments would better support users of all
skill levels.

2.3. Essential Elements of GUI-Based Geographic CA Modeling Tools

To build and implement a geographic CA model in a GIS software environment,
add-in tools must have facilities for defining neighborhood functions, a structure for speci-
fying transition rules, and a means of applying transition rules in a synchronous [62] or
asynchronous manner [63]. Previous studies also outlined CA modeling tool requirements
such as input and output specification options [10], interactivity [64], and user-friendly
GUIs [42]. Though earlier GUI-based standalone applications had functions for displaying
previously simulated timesteps [57] or recreated basic GIS functionalities to support CA
modeling workflows [45], development endeavors that extend existing GIS software benefit
from the built-in data visualization, input, storage, and processing functions. As such,
programming efforts can be solely focused on creating CA modeling tools. In addition to
implementing CA model elements, GUI-based tools often support model evaluation ad-
hering to the broader tradition of comparing simulated outcomes and real-world data [65].
For example, prior CA modeling tools supplied small sets of map comparison metrics
including overall accuracy, various Kappa metrics, and the Figure of Merit (FOM) [34,43].
Overall, a general-purpose add-in should support users in configuring key model elements,
executing model routines, and conducting basic model evaluation to facilitate end-to-end
model-building activities within an established GIS software environment.

3. Methodology

The Geographic Automata add-in was developed using the C# programming lan-
guage [66] and the ArcGIS Pro Software Development Kit (SDK) for .NET [67]. In the
balance between generality, realism, and precision [68], the add-in implementation aimed
to maximize generalization of essential modeling functionality outlined in Section 2. The
main operations are implemented in three tool groups called Model Parameterization, Model
Execution, and Model Evaluation (Figure 1a). The functions support end-to-end binary
(Figure 1b) and multi-class CA modeling workflows (Figure 1c).

3.1. Model Parameterization

The Model Parameterization tool group hosts functions for defining neighborhoods
and transition rules. These simple elements underpin the built-in parameterization op-
tions in the Basic CA tool and serve as “building blocks” for customizing Advanced CA
model behavior.

3.1.1. Specifying Neighborhood Functions

The Neighborhood Definition tool supports GUI-based neighborhood function specifica-
tion (Figure 2a). The most common neighborhood configurations—Moore, Von Neumann,
and circular [53]—are available as preset options. Additionally, a Custom neighborhood
option supports manual specification of alternatives like linear [69], ring-shaped [70], and
simple directional configurations [25] (Figure 2d). Neighborhood functions are saved as
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Neighborhood Definition files (*.nb) for use in transition rule definitions described in the
next section.
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3.1.2. Specifying Transition Rules

The Specify Transition Rules tool was developed to facilitate specification of explainable
rule tables. Through a rule table structure [71], users can trace rule mechanisms that
generate larger-scale patterns. The tool interface supports typical “create, read, update,
and delete” (CRUD) operations applied to Transition Rule files (*.tr) produced by the tool.
There are no limits to the number of rules users can specify in Transition Rule files. Once
a Transition Rule file is specified, it can be provided to the Advanced CA tool described in
Section 3.2.

The initial version of the Geographic Automata add-in supports five basic transition rule
types that either generate or limit potential transitions based on previous works (Section 2.1).
Generative rules include Neighborhood-Based, Cell-Level, and Stochastic Disturbance rules,
while Allocation and Quantity and Constraint rules limit propagation of changes (Figure 3).
Figure 4 presents the UML diagram of Transition Rule objects, which require a current
state, the next state, and rule conditions. The generative rule types also offer a Probability
parameter that can be set to 100% to ensure deterministic behaviors. All rule types operate
by modifying an intermediate raster grid before producing the outcome for the model
iteration or timestep.
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Neighborhood-Based Rules

A Neighborhood-Based rule is used to propagate changes based on neighborhood con-
ditions. Rules of this type require a current state (ST), the possible next state (ST+1), the
cell state to search for within each cell’s neighborhood (SN

T ), a neighborhood function (NT)
provided as an *.nb file, neighborhood composition conditions (min ≤∑ SN

T ≤ max), and
the likelihood of the transition to occur (P). Numerous Neighborhood-Based rules can be
specified to represent behaviors for each cell state or class [72], to capture varying influences
at different neighborhood extents [31], or to set separate transition probabilities for specific
neighborhood conditions [11]. Additionally, the next state (ST+1) is not required to be the
same as the cell state being searched for in the cell’s neighborhood (SN

T ). This supports
portrayal of behaviours like “road-influenced growth” [30,73], varying urban expansion
patterns depending on nearby land use types [74], or presence of snow cover nearby [75].
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Cell-Level Rules

A Cell-Level rule is used to instigate changes based exclusively on a cell’s current
state. Rules of this type require a current state (ST), the possible next state (ST+1), and the
likelihood of the transition to occur (P). A Cell-Level rule can implement cell-level changes
such as eventual plant death or exhaustion of resources [76], wildfire progression from
newly burning, growing, to extinguished [77,78], or spontaneous urban growth without
proximity requirements [73].

Stochastic Disturbance Rules

While modeling some phenomena may benefit from global random disturbance mech-
anisms, propagation of change is more often driven by nearby conditions [64]. A Stochastic
Disturbance rule is used to generate changes at locations featuring some “affected state” (Sa

T)
within some cell distance (dmin, dmax) from an “emitter state” (Se

T) with a given probability
(P). The possible next state of an affected cell is equivalent to ST+1 = Se

T . Each “edge cell”
of the emitter state is permitted to propagate one stochastic disturbance if the probability
mechanism is satisfied and if the potential change does not violate the minimum distance
requirement of other emitter cells. A Stochastic Disturbance rule can be used to implement
behaviors like forest fire spotting [23] or invasive plant species propagation [76].

Constraint Rules

Constraint rules prevent transitions related to a specific cell state from occurring within
restricted areas. Rules of this type require a potential next state (ST+1) and a binary raster
map indicating where cells are barred from becoming ST+1 [48]. With Constraint rules,
users can easily add, swap, or delete areal restrictions to explore different scenarios or
spatial policies [56].

Allocation and Quantity Rules

Allocation and Quantity rules guide the location and amount of specific from-to transi-
tions through suitability maps and quantity limits. With this rule type, prospective changes
can be limited to the most suitable or susceptible locations identified using analyses like
MCE [79], or those corresponding to locations with higher probabilities outputted by ML
classifiers [55]. Allocation and Quantity rules require users to specify a cell’s current state (ST)
and the potential next cell state (ST+1). Unlike other rule types, Allocation and Quantity rules



Appl. Sci. 2024, 14, 6530 8 of 24

have three modes (Table 1). Optional fields for each mode include a minimum suitability
threshold (minm), a path to a suitability, susceptibility, or probability map (M), and an
integer (Q) indicating the maximum quantity of cells permitted to transition at each discrete
timestep or model iteration (∆T).

Table 1. Description of Allocation and Quantity rule modes.

Rule Mode Description Use Case Example

(1) Allocation Limit

The potential change must meet or exceed a
minimum
suitability/susceptibility/probability
threshold.

Limiting insect infestation propagation to
locations with MCE-derived susceptibility
values exceeding 0.6 [60].

(2) Quantity Limit The potential change locations are limited to
Q random locations.

Refining insect infestation rates or area
using historical averages [55].

(3) Allocation and Quantity Limits

The potential change location must be in the
top Q suitable locations based on the
suitability map. If specified, the location
must also meet or exceed a minimum
suitability threshold.

Limiting urban growth transitions to the
top Q locations based on transition
probability maps generated by ML
algorithms [20,50].

Rule Priority Scheme

With the Rule Priority field, users can override the default order of generative rule
execution at each model iteration (Figure 5). The purpose is to support prioritization of
change mechanisms and to maintain explainable model behavior, especially in multi-class
model implementations. For example, a less common but important transition occurring in
specific situations could be eliminated by competing rules that propagate more widespread
or probable change behaviors.
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3.2. Model Execution
3.2.1. Basic and Advanced CA Modeling Tools

The Model Execution tool group contains the Basic CA and Advanced CA tools (Figure 6),
with key differences outlined in Table 2. The Basic CA tool supports rapid implementation of
binary models by including nested Model Parameterization functions within a single ArcGIS
DockPane (Figure 6a). The Advanced CA tool supports binary or multi-class models, relying
on a Transition Rule file to parameterize simple to complex model behaviors (Figure 6b).
Each time a Basic or Advanced CA modeling tool is run, a Model Parameter Report is generated
and saved to the output directory. The Model Parameter Report supports interpretation
and communication of model behavior. The report includes information about model
execution time, datasets used, output directory information, the number of timesteps,
and a table of linguistic transition rule explanations that can be copied or modified for
scientific communications.
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Figure 6. Previews of the Model Execution tools, including subsets of interfaces for the (a) Basic CA
and (b) Advanced CA tools.

3.2.2. Transition Rule Execution

Given that fully probabilistic framing often impedes model transparency given the
manifold interpretations for why the pattern emerged [80], transition rules are applied
as a series of basic IF–THEN conditions to maintain model explainability in support of
real-world spatial planning and decision-making practices. With obvious computational
costs, it is necessary to process subsets or “blocks” of raster layers in parallel, as articulated
in previous work [81]. For Cell-Level, Allocation and Quantity, and Constraint rules, data
subsets are easy to assign to worker threads because blocks do not require information
about states of nearby locations. Conversely, Neighborhood-Based and Stochastic Disturbance
rules with proximal or distance-based operations require overlapping subareas or block
“halos” to be delegated to worker threads [82]. The default number of worker threads is
currently limited to half the number of threads available on the computing hardware.
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Table 2. Comparison of Model Execution tools.

Basic CA Tool Advanced CA Tool

Description

• A model execution tool with setup options
available in an ArcGIS Dock Pane tool for
rapidly implementing binary models (i.e.,
changes occur in one direction, from 0 to 1)

• A binary or multi-class model execution
tool used to apply transition rules specified
in a Transition Rule file

Required model execution
parameters

• Initial raster layer
• Output geodatabase and output prefix
• The number of iterations/timesteps for

model execution
• A Neighborhood-Based rule defined using

embedded input options

• Initial raster layer
• Output geodatabase and output prefix
• The number of iterations/timesteps for

model execution
• A Transition Rule file

Parameterization • Model parameters are set with the controls
available in the DockPane UI

• Apart from model initialization settings, the
model parameters are read from the
Transition Rule file

Benefits

• Beneficial for rapid implementation of
binary models (i.e., expansion or retraction
of one phenomena)

• Users do not have to use separate functions
from the Model Parameterization tool group
to configure model parameters

• Facilitates quick experiments to observe
effects of Neighborhood-Based, Allocation and
Quantity, or Constraint rule settings

• Beneficial for both binary and multi-class
model implementation

• Supports model execution with an
unlimited number of transition rules and
types

• Users can encode multi-directional and
overlapping transition rules

• Transition Rule files can be swapped out to
implement different scenarios

Limitations

• Users are limited to representing one-way
binary changes

• If the user closes the ArcGIS Pro application,
parameters entered in the tool UI will not
persist. Users will have to consult an
existing Model Parameter Report to replicate
previous input values, if available

• Several steps are required before running
the Advanced CA tool (i.e., specifying any
Neighborhood Definition files and the
Transition Rule file)

• The nested configuration of Neighborhood
Definition file paths within Transition Rule
files requires multiple steps to configure or
update

3.3. Model Evaluation

The Model Evaluation tool provides a selection of two- and three-map comparison
metrics (Figure 7) and outputs an HTML file containing the calculated values. Two-map
comparison measures are typically used to quantify the cell-by-cell agreement between a
real and simulated map, while three-map comparisons emphasize agreement of changed
locations [83]. In the Model Evaluation tool, two-map comparison metrics include overall
accuracy measures [34], cross-tabulation matrices [84], disagreements of quantity and
allocation [85], and Kappa statistics [86]. The three-map comparison metrics implemented
include change error measures [87], figure of merit (FOM) [83], and class-level change
metrics [88].
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4. Implementing Models with the Geographic Automata Add-In: Two Case Studies

Two case studies are developed to demonstrate the functionality of the Geographic
Automata add-in and its application for modeling real-world spatiotemporal phenomena.
The first case study simulates forest insect infestation by drawing on documented behaviors
to show how increasingly complex spatial patterns can be achieved with the five generic
transition rule types explained in Section 3.1.2. The second case study simulates urban
growth and compares traditional ML-CA outcomes with a novel AutoML-CA integration.
Both case studies were executed on a PC running Windows 11 Pro and ArcGIS Pro ver-
sion 3.2. The PC was equipped with an i7-13700K CPU, 64 GB of RAM, and an NVIDIA
GTX 1080Ti GPU.

4.1. Case Study 1: Multi-Class CA Modeling of a Forest Insect Infestation

The purpose of this case study is to show how any number of rules of each rule type
can be encoded and executed using the Advanced CA tool workflow from the Geographic
Automata add-in. In this case study, five scenarios were developed to illustrate how increas-
ingly complex behavior of forest insect infestation is realized with the generic transition rule
types. That is, rule lists for each scenario show the effects of layering different transition
rules and rule types to generate more realistic or nuanced outcomes. While the scenarios
are hypothetical, they are implemented using real-world geospatial datasets related to a
Mountain Pine Beetle (MPB) infestation. Transition rule mechanisms are based on previous
CA models of MPB infestations [55,89], where changes are generated or limited based on
neighborhood conditions, infilling settings, distance dispersal length, susceptibility maps,
quantity limits, and spatial constraints.

4.1.1. Study Area and Datasets

This case study focuses on a location spanning 130.29 km2 within Manning Provin-
cial Park, situated in the Cascade Mountains of British Columbia, Canada. To initialize
the model scenarios configured with the Geographic Automata add-in tooling, real-world
datasets were acquired from the BC Data Catalogue [90]. These include an initial infestation
map of the infested areas in 2004 [91], MPB susceptibility indices [92], and water bodies.
The MPB susceptibility indices were obtained from the “Bark Beetle Susceptibility Rat-
ing” dataset [92], which contains hazard ratings derived from key factors including basal
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area, age, density, and location of pine trees. To prepare each dataset for this case study,
each of the original vector datasets was clipped to the extent of the study region. Next,
the vector datasets were rasterized to a 30 m spatial resolution, each with 384 rows and
377 columns (Figure 8). Maps are displayed with the NAD 1983 UTM Zone 10N projected
coordinate system.
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for the year 2004 (T0), (b) the infestation susceptibility values, and (c) the constraint map with
water bodies.

4.1.2. Model Implementation

Five scenarios were parameterized and executed to generate outcomes using the
procedure shown in Figure 9, which leverages the Neighborhood Definition, Transition Rule
Specification, and Advanced CA tools.
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Figure 9. Overview of implementing the MPB CA model using the Geographic Automata add-in tools
to parameterize Scenario 5.

Cell States

Three cell states are represented in the hypothetical models: (0) not infested, (1) light–
moderate infestation, and (2) severe infestation (30% or more trees in the location recently
killed) based on intensity classes from the aerial overview survey used to derive the initial
data layer [91].

Scenario Setup and Transition Rules

The scenarios demonstrate increasing complexity of MPB infestation behavior encoded
using one or several transition rule types. In this case study, each scenario expands on the
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rule set implemented in its predecessor. For example, the behavior portrayed in Scenario 1
is augmented in Scenario 2, and so forth. The transition rules and scenario settings are
outlined in Table 3.

Table 3. Transition rules used to parameterize MPB infestation scenarios.

Rule ID Rule Type Purpose Transition Rule Description Scenario Application

A Neighborhood-Based
Propagating the
hypothetical insect
infestation to nearby areas.

IF 15 to 122 infested cells are
within a 11 × 11 circular
neighborhood of an uninfested
cell, THEN the central cell has an
80% chance of transitioning to
light-moderate infestation.

All Scenarios

B Cell-Level Randomly increase
infestation severity.

IF a cell is currently undergoing
light-moderate infestation,
THEN the cell has a 20% chance
of becoming severely infested.

Scenarios 2, 3, 4, and 5

C Neighborhood-Based

Hypothetical “infilling”
behavior, where new
infestation occurs within
gaps between existing
patches.

IF 4 to 25 cells are undergoing
severe infestation within the
5 × 5 circular neighborhood of a
light-moderate infested location,
THEN the central cell has a 100%
chance of becoming severely
infested.

D Stochastic Disturbance

Short-distance dispersal
behavior, where MPB
flights can occur randomly
up to a specified distance.

IF an uninfested cell is located
within 1 and 9 cells (up to 270 m)
THEN the uninfested cell has a
10% chance of becoming a
light-moderate infestation.

Scenarios 3, 4, and 5

E Allocation and Quantity
Imposing an arbitrary
quantity limit on
infestation spread.

IF a potential new infestation
location is among the 10,000
most susceptible locations,
THEN the cell is permitted to
transition; ELSE, the cell
maintains its previous state.

Scenarios 4 and 5

F Allocation and Quantity

Imposing an arbitrary
minimum susceptibility
value required for a
location to host severe
infestations.

IF a potential new location for
severe infestation corresponds
with a susceptibility value of 0.1
or higher, THEN the cell is
permitted to transition; ELSE,
the cell maintains its previous
state.

G Constraint

Infestation locations are
prevented from
propagating to water
bodies and rivers.

IF a potential new infestation
location is not located within a
restricted area, THEN the cell is
permitted to transition; ELSE,
the cell maintains its previous
state.

Scenario 5

Model Execution

The Advanced CA tool is used to execute the infestation model with the MPB infestation
data for 2004 (Figure 8a) provided as the initial raster layer. The number of iterations is set
to five, where each iteration of the model represents one year of MPB dispersal.

4.1.3. Results

The model execution time for each scenario was 31 to 36 s. The respective outcomes are
displayed in Figure 10. Rule types defining Scenarios 1 through 3 are exclusively generative,
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with hypothetical MPB dispersal and intensification propelled with Neighborhood-Based, Cell-
Level, and Stochastic Disturbance rule types. Meanwhile, Scenarios 4 and 5 introduce limiting
or refining mechanisms via the Allocation and Quantity and Constraint rules. The simulated
outcomes for Scenarios 4 and 5 also present the capacity of the Geographic Automata add-in
to incorporate auxiliary datasets like susceptibility maps and constraints during model
execution. For instance, the insect infestation simulation outcomes of Scenario 5 are
prevented from spreading to locations with water bodies or rivers (Figure 11e). After
obtaining model outputs, other data layers pertaining to constraints or other relevant layers
can be overlayed with simulation outcomes using ArcGIS Pro’s existing geoprocessing
functions. Overall, the visual comparison shows how the Geographic Automata add-in can
be used to model multi-class changes, to integrate real-world datasets, and to produce
simple to complex spatial patterns of insect infestation through combining and layering
rules created from the five basic rule types.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 26 
 

 

Figure 10. Results of the MPB infestation model with hypothetical Scenarios 1 to 5. Figure 10. Results of the MPB infestation model with hypothetical Scenarios 1 to 5.



Appl. Sci. 2024, 14, 6530 15 of 24
Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 26 
 

 

Figure 11. Sub-area centered on the Lightning Lake recreation area. The last iteration for each sce-

nario is depicted for hypothetical Scenarios 1–5 in panels (a–e), respectively. 

4.2. Case Study 2: Comparing ML-CA Models of Urban Growth 

The second case study demonstrates a novel combination of ArcGIS Pro tools and 

Geographic Automata add-in functionality to execute a comparison of ML-CA models for 

simulating urban growth (Figure 12). This example compares the effects of using urban 

growth probabilities outputted by different ML models to inform CA transitions [4] in-

cluding logistic regression (LR) [50,93] and random forests (RF) [4,38]. The traditional ML-

CA approaches are compared with an inaugural implementation of automated machine 

learning (AutoML) with CA to guide new urban allocations. Although this abridged work-

flow does not delve into ML model validation, testing, and feature importance analysis 

details, such operations are possible in the ArcGIS Pro software.  

4.2.1. Study Area and Datasets 

This case study focuses on modeling urban developments in the Township of Lang-

ley, located in the rapidly growing Metro Vancouver Regional District of British Colum-

bia, Canada. Land use datasets were obtained from Agriculture and Agri-Food Canada 

(AAFC) for years 2000 (T0), 2010 (T1), and 2020 (T2). The auxiliary data layers used as ex-

planatory factors to train the ML models are listed in Table 4. All data processing proce-

dures ensured layers were aligned to the 30 m spatial resolution of the AAFC Land Use 

datasets. The study area extent covers approximately 317.52 km2, with raster datasets 

spanning 541 rows and 775 columns to encapsulate the municipality extent. Maps are dis-

played with the NAD 1983 UTM Zone 10N projected coordinate system. 
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4.2. Case Study 2: Comparing ML-CA Models of Urban Growth

The second case study demonstrates a novel combination of ArcGIS Pro tools and
Geographic Automata add-in functionality to execute a comparison of ML-CA models for
simulating urban growth (Figure 12). This example compares the effects of using urban
growth probabilities outputted by different ML models to inform CA transitions [4] includ-
ing logistic regression (LR) [50,93] and random forests (RF) [4,38]. The traditional ML-CA
approaches are compared with an inaugural implementation of automated machine learn-
ing (AutoML) with CA to guide new urban allocations. Although this abridged workflow
does not delve into ML model validation, testing, and feature importance analysis details,
such operations are possible in the ArcGIS Pro software.

4.2.1. Study Area and Datasets

This case study focuses on modeling urban developments in the Township of Langley,
located in the rapidly growing Metro Vancouver Regional District of British Columbia,
Canada. Land use datasets were obtained from Agriculture and Agri-Food Canada (AAFC)
for years 2000 (T0), 2010 (T1), and 2020 (T2). The auxiliary data layers used as explanatory
factors to train the ML models are listed in Table 4. All data processing procedures ensured
layers were aligned to the 30 m spatial resolution of the AAFC Land Use datasets. The
study area extent covers approximately 317.52 km2, with raster datasets spanning 541 rows
and 775 columns to encapsulate the municipality extent. Maps are displayed with the NAD
1983 UTM Zone 10N projected coordinate system.
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Table 4. Datasets supplying initial, calibration, validation, and driving factor information.

Description Data Source

Land Use Data
2000 (Initial)

AAFC Land Use2010 (Calibration)
2020 (Validation)

Driving Factors

(1) Current land use type AAFC Land Use

(2) Elevation ASTER Digital Elevation Model
(3) Slope

(4) Euclidean distance to railways
BC Data Catalogue(5) Euclidean distance to streets

(6) Euclidean distance to highways

(7) Euclidean distance to conservation areas

Township of Langley Open Data Portal
(8) Euclidean distance to parks
(9) Euclidean distance to commercial areas
(10) Euclidean distance to industrial areas
(11) Euclidean distance to institutional areas

(12) Euclidean distance to rivers Government of Canada Open Data Portal

4.2.2. Model Implementation
Cell States

Binary cell states are specified as follows: (0) non-urban areas and (1) urban areas.

Training ML Models and Generating Change Probability Maps

For the ML subroutine, the training label is created by reclassifying the land use data
for 2010 (T1) such that urban areas and non-urban areas are signified by ones and zeros,
respectively. Next, the training dataset imbalance is addressed by retaining equal numbers
of changed and persistent samples [73]. Of the 352,803 cells comprising the study area,
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46,825 cells transitioned to urban between 2000 and 2010. To create the balanced dataset,
all changed samples are included in the training dataset, while 46,825 persistent cells
are randomly sampled from non-urban unchanged locations. The final training dataset
contains 93,650 samples.

The LR and RF models are implemented in an ArcGIS Pro Notebook calling on
scikitlearn functionality, while the ensemble model is executed using the graphical AutoML
tool available in ArcGIS Pro’s GeoAI toolbox. All models are trained with 80% of the
balanced training dataset, while 20% is withheld for ML validation purposes. Next, the LR,
RF, and AutoML models are applied to estimate the urban development probability values
across the study area.

Model Types and Transition Rule Specification

Four model types are configured using the Basic CA tool: LR-CA, RF-CA, AutoML-CA1,
and AutoML-CA2. Each model type differs in the Allocation and Quantity rule implemen-
tation shown in Table 5. Additionally, the AutoML-CA2 configuration implements an
alternative ML-CA model structure using demand limits instead of setting a minimum
suitability value [94].

Table 5. Transition rule types, descriptions, and model type application.

Rule ID Rule Type Transition Rule Description Model Types Using the Rule

Rule A Neighborhood-Based

IF there are 1 to 25 urban cells within the
5 × 5 Moore neighborhood of a non-urban
location, THEN the central cell will become
urban with a probability of 60%.

All

Rule B Constraint

IF a cell potentially transitioning to urban is
located within a restricted area, THEN the
cell is prevented from transitioning and will
maintain its previous state.

All

Rule C Allocation and Quantity
Cells potentially transitioning to urban must
be in a location where the suitability value is
at least 0.5.

LR-CA, RF-CA,
andAutoML-CA1

Rule D Allocation and Quantity
Only the 30,000 most suitable cells potentially
transitioning to urban are permitted to
become urban at the next iteration.

AutoML-CA2

Model Execution

Using the Basic CA tool, the initial raster layer represents urban areas in the year
2000 (T0). The number of timesteps is set to two, where one iteration represents a 10-year
temporal interval. The actual datasets for T1 and T2 are used for CA model calibration and
validation, respectively.

Model Evaluation

In CA model calibration, the goal is to adjust model parameters to reduce differences
between simulated outcomes and observed data. In model validation, simulated outcomes
are compared to real-world data independent from model calibration. Using the Model
Evaluation tool, agreement of real and simulated maps is quantified for calibration and
validation stages. To calibrate the model in this case study, the FOM value is primarily
used to determine agreement of changed locations. This three-map comparison measure
requires an initial raster layer, a reference layer, and a simulated layer. Therefore, the tool
inputs include the urban areas in the year 2000 as the initial raster layer, the real urban areas
in the year 2010 as the reference layer, and first timestep outputted by the model as the
simulated layer. To calculate metrics for the validation stage, the initial raster is maintained,
while the reference layer is replaced with the layer depicting urban areas in the year 2020
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and the simulated layer is the second timestep generated by the model. Cells outside of the
township boundary are excluded to ensure the model evaluation results are not obscured.
The options selected in the Model Evaluation tool were Accuracy Measures, Kappa Statistics,
Change Error Assessment, and Figure of Merit from the GUI options presented in Figure 7.

4.2.3. Results

The Basic CA model execution time was 12, 10, 10, and 30 s for each model type,
respectively. The simulated outcomes for years 2010 and 2020 produced by each model
configuration are shown in Figure 13, and corresponding metrics obtained from the Model
Evaluation tool are presented in Table 6.
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Table 6. The CA model calibration and validation metrics calculated for the four model types using
the Model Evaluation tool.

Metric LR-CA RF-CA AutoML-CA1 AutoML-CA2

Calibration
2000–2010

Overall Accuracy (%) 81.31 86.64 86.80 89.41
Kappa 0.61 0.71 0.72 0.77
FOM 0.24 0.33 0.34 0.35

Validation
2010–2020

Overall Accuracy (%) 75.72 85.58 86.05 87.66
Kappa 0.52 0.71 0.71 0.74
FOM 0.32 0.44 0.45 0.46

In both calibration and validation metrics (Table 6), there is a general upward trend
observed from the LR-CA to AutoML-CA2 models. The LR-CA models are associated with
the lowest overall accuracy, Kappa, and FOM values for both calibration and validation
stages, which adheres to comparative findings reported in other studies [38,50]. This model
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also produced the most “false alarms”, meaning that there were more new developments
forecasted to actual undeveloped locations than the other model types (Figure 14). Measures
of agreement and error associated with RF-CA and AutoML-CA1 model outcomes are
most similar. Meanwhile, the overall accuracy and Kappa measures related to AutoML-
CA2 suggest the quantity limit imposed in Rule D (Table 5) helped to reduce false alarms,
which is confirmed in the Change Error Assessment measures graphed in Figure 14. Overall,
this abridged ML-CA model comparison showed how real end-to-end model-building
procedures can be conducted using a combination of the Geographic Automata add-in and
ArcGIS Pro functionality. Once the stages of CA model calibration and validation are
completed, the best performing ML-CA model can be used to project urban growth for
more iterations to obtain simulated maps of years 2030, 2040, and beyond. In addition, the
model can be adapted to explore possible scenarios such as simulating faster or slower
urban expansion based on population projections or examining the effects of new forest
conservation or urban densification policies for the municipality.
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5. Discussion

This study introduces the first version of the Geographic Automata add-in for ArcGIS
Pro. The add-in was developed to address the lack of general-purpose GUI-based CA
technologies available in contemporary GIS software. Two case studies illustrated how the
add-in (1) provides general-purpose functions capable of supporting binary or multi-class
CA models of various geospatial systems and (2) facilitates end-to-end model-building
activities that can be intertwined with ArcGIS Pro functionality.

In the first case study, five MPB infestation scenarios presented the incremental effects
of combining and layering different transition rule types to implement a multi-class CA
model. The various scenario settings show the capabilities of the add-in tools to support as
many generative or limiting rules as a user decides. For instance, each scenario applied
additional rule mechanisms that produced increasingly complex spatial patterns. The out-
comes demonstrate the flexibility of transition rule types for use with real-world geospatial
datasets and for capturing the characteristics of documented insect infestation behavior.
For example, Scenario 3 showed a possible integration of behaviors drawn from previous
studies, while Scenarios 4 and 5 exemplified how dispersal could be guided with an expert-
derived susceptibility map and real-world physical constraints. Although some previous
studies describing CA models of MPB infestation have excluded detailed information
about the software or programming required to implement model behaviors described [55],
the Geographic Automata add-in tools enable researchers to encode documented dispersal
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mechanisms or investigate other possible processes that propel changes observed over
space and time.

The second case study demonstrates an end-to-end model-building activity involving
built-in ArcGIS Pro functionality and Geographic Automata add-in tooling to compare the
effects of ML-generated transition potential maps on CA model outcomes. The comparison
centered on comparing urban growth forecasts of traditional ML-CA models with those
produced by a novel AutoML-CA approach. The simulated outputs of each model type
adhered to trends reported in scientific literature using ML-CA routines [38,50]. However,
both studies relied on patchworks of software and custom programmed functionality to
implement and execute ML-CA routines. For example, Kamusoko and Gamba [38] relied
on an assortment of tools including Esri’s ArcMap, the Dinamica EGO software, various
ML packages available in R, and the Map Comparison Kit. The methodology presented
by Shafizadeh-Moghadam et al. [50] similarly included ArcMap, a standalone NN-based
land transformation modeling tool, and other ML models coded with MATLAB, R, and
Java. In contrast to the mosaics of disparate tooling described in preceding studies, the
second case study demonstrates the capacity of the Geographic Automata add-in to support
a simple, streamlined model-building workflow within an established GIS software. The
presented workflow shows the capability of the Geographic Automata add-in tools to support
researchers in implementing rapid comparisons of CA models enhanced with outcomes of
other analyses.

At this point, there are numerous possible trajectories for enhancing and extending
the inaugural version of the Geographic Automata add-in. Several enhancements of existing
CA functionality could include adding a transition rule fallback routine, implementing
support for dynamic variables and rule applications at specific temporal intervals, adding
explicit distance decay or weighted neighborhood function options, conducting more
rigorous performance benchmarking, expanding model parameter reports and rule tracing
options, and improving UI components. As tool development progresses, so should a
library of technical resources such as video tutorials and documentation web pages for
researchers, educators, and students. Next, the Model Evaluation tool would benefit from
an expanded assortment of metrics to support researchers looking to examine different
aspects of model outcomes [36]. Possible additions may include Fuzzy Kappa, the Total
Operating Characteristic (TOC), or landscape metrics. Another avenue for future upgrades
is to emphasize and expand on existing functionality to facilitate explainable CA models.
Currently, a potentially debatable but deliberate restriction of this work is that transition
rule mechanisms cannot be replaced fully with black-box sub-models. If explainable
outcomes are not required, users can use Allocation and Quantity rules to incorporate
the outcomes of any statistical analysis technique in their CA model implementation, as
demonstrated in the second case study. Lastly, the Geographic Automata add-in naming was
intentional and preserves opportunities to extend CA modeling capabilities and to support
other GA models. For example, functionality can be expanded to provide generalized
functions for implementing ABMs and hybrid ABM-CA models in ArcGIS Pro to further
advance geospatial technologies designed for geosimulation.

6. Conclusions

This paper introduces the Geographic Automata add-in created for ArcGIS Pro 3.1 and
newer. Despite the theoretical simplicity of CA, those looking to implement models without
specialized, inflexible, or black-box embellishments must have programming skills, rely
on ad hoc procedures spanning numerous GUI-based software tools, or leverage a mix-
ture of both. To address the absence of geospatial technologies available for streamlining
CA model-building activities, the Geographic Automata add-in provides general-purpose
functionality demonstrably capable of supporting CA model implementations of various
geospatial phenomena. The add-in also maintains direct connections between general
GAS and CA model theory and implementation, supporting users of all skill levels to
transfer proficiencies more easily to new domains or tooling. These qualities can facilitate
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the add-in’s usage for educational purposes and facilitate hands-on learning experiences
in classroom settings. Likewise, the add-in serves as a launch point for researchers and
decision-makers looking to survey methodologies, conduct model comparisons, and imple-
ment integrations of CA with different analysis procedures available in ArcGIS Pro.

In summary, the Geographic Automata add-in provides a first step toward generic,
user-friendly CA model-building tools accessible in the ArcGIS Pro software environment.
Its functionality supports a wide range of users such as researchers, educators, and decision-
makers. Future upgrades intend to enhance transparency and expand utility of the add-in
for research, education, and real-world spatial decision-making settings.
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