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Abstract: Borehole pulsed eddy-current (PEC) systems based on uniform linear multicoil arrays
(ULMAs) perform efficient nondestructive evaluations (NDEs) of metal casings. However, the limited
physical space of the borehole restricts the degrees of freedom (DoFs) of ULMAs to be less than the
number of constraints, which leads to the difficulty of compensating for the differences in signals
acquired by different receivers with different transmitting-to-receiving distances (TRDs), and thus
limits the effectiveness of the ULMA system. To solve this problem, this paper proposes sparse
linear constraint minimum variance (S-LCMV) for NDEs of downhole casings employing ULMAs.
By transforming and characterizing the original PEC signal, it was observed that the signal power
dramatically decreased with increasing Legendre polynomial stage, confirming that the signal was
sparsely distributed over the Gauss–Legendre stages. Using this property, the S-LCMV cost function
with reduced constraints was constructed to provide enough DoFs to accurately calculate the weight
coefficients, thus improving the detection performance. The effectiveness of the proposed method
was verified through field experiments on an 8-element ULMA installed in a borehole PEC system
for NDEs of oil-well casings. The results demonstrate that the proposed method could improve the
weighting effect by reducing the number of constraints by 70% while ensuring the approximation
accuracy, which effectively improved the signal-to-noise ratio of the measured signals and reduced
the computational cost by about 87.9%.

Keywords: borehole; pulsed eddy current techniques; nondestructive evaluation; uniform linear array

1. Introduction

The eddy-current technique has been widely applied to resource exploration [1],
environmental investigations [2], and stress measurements [3]. A variant of the eddy-
current technique called the pulsed eddy-current (PEC) technique [4,5] has been widely
adopted for the nondestructive evaluation (NDE) of wellbore casings because it accesses
the target without making physical contact. Furthermore, it identifies cracks, pits, and
corrosion in metallic infrastructures without requiring surface preparation [6–8]. Casing
defects are evaluated from broad-frequency-range data considering the electrical and
geometrical parameters of the individually estimated layer [9,10]. However, unlike surface
measurements, NDEs of downhole casings are degraded by high temperatures and metal
tool housings against high pressure, and the small operating space downhole can also limit
the inspection results [11–13].

Considering the harsh environment of actual downhole detection, array-based PEC
probes and corresponding novel signal processing methods have been proposed to im-
prove the performance of the NDE of downhole casings. References [14–18] designed and
controlled a transmitting array consisting of multiple transmitter coils to achieve magnetic
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field focusing, thus enhancing the longitudinal resolution of the PEC inspection system.
Similarly, the authors of [19,20] investigated the performance of downhole NDE using a
receiving array consisting of multiple receiver coils with different transmitting-to-receiving
distances (TRDs). The different TRDs resulted in “phase shifts” between the detection
curves obtained from different receiving elements, which affected the accuracy of the NDE
of downhole casings. To address this problem, the authors of [21] identified the correlations
among the receiving elements and weighted the array output using the linear constrained
minimum variance (LCMV)-based method, originally developed for radar and sonar de-
tection. The LCMV-based method effectively eliminates the influence of the TRD on the
array output. Reference [22] further applied the LCMV-based method to a downhole PEC
detection system with a multiple-input-multiple-output (MIMO) structure by increasing the
number of channels to reduce the system complexity while maintaining the performance.
The above studies show that configuring the transmitting and receiving arrays as uniform
linear multicoil arrays (ULMAs) and applying a corresponding signal-processing method
can effectively improve the NDE performance and accuracy of downhole PEC systems.

Although ULMAs enable the NDE of downhole casings, their degrees of freedom
(DoFs) are severely constrained within the limited physical space and borehole conditions
in practical applications, thus introducing a pathological problem caused by the DoFs being
much smaller than the number of constraints [23]. Using the standard LCMV method for
array signal processing can make it difficult to obtain valid weight coefficients due to the
irreversibility of the matrix. Diagonal loading (DL) [24–26] has been shown to help improve
the computational accuracy of the weight coefficients, but it is an empirical value-based
method with a computationally intensive process and is not practically usable. Recently,
sparse optimization has been proven to be effective in reducing computational complexity
and beneficial in solving underdetermined problems [27–29]. To prevent the DoFs falling
below the number of constraints, we propose a sparsity-based method for the NDE of
downhole casings using the ULMA. First, the ULMA-based borehole PEC signal model
was constructed and the Gauss–Legendre quadrature representation of the PEC signal was
obtained. Through the structural transformation of the PEC signal, it was observed that the
signal power decreased significantly with the increase in the Legendre polynomial stage,
and the sparsity of the PEC signal was then analyzed and proven. On this basis, the sparse
linear constraint minimum variance (S-LCMV) method was proposed to provide sufficient
DoFs to obtain the effective weight coefficients by reducing the number of constraints,
thus avoiding the influence of the ill-posed problem on the calculation accuracy. The
effectiveness of the proposed method was verified through field experiments on a ULMA
in a borehole PEC system designed for the NDE of oil-well casings. The results show that
the proposed method was able to eliminate the influence caused by the different TRDs on
the inspection effect, and improved the accuracy of the NDE of the downhole casings. In
addition, the proposed S-LCMV method had a higher signal-to-noise ratio (SNR) compared
to the standard LCMV method and a lower computational cost compared to the DL method,
providing practical usability.

The rest of this study is organized as follows. Section 2 presents the ULMA-based
borehole PEC signal model and the Gauss–Legendre quadrature representation for borehole
PEC signals. In Section 3, the sparsity of the PEC signal is analyzed and the cost function of
the S-LCMV method is proposed. Simulation and experimental results are provided and
analyzed in Section 4. Finally, we conclude the work in Section 5.

2. ULMA-Based Borehole PEC Signal Model

Consider a ULMA-based borehole PEC system equipped with a single transmitter and
M receivers. The receivers, each composed of a coaxial coil wound around a soft magnetic
core in a cylindrically layered medium, are separated by ∆z. The electrical and geometrical
parameters of each layer in the multilayered borehole PEC system are denoted as εj, µj,
σj, and rj (j = 1, 2, . . . J) (see Figure 1). The magnetic core is considered as the innermost
layer. The transmitter and M receivers, with NT and NR turns, respectively, are located in
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the second layer. Note that all receivers have the same number of turns. When M is large,
both NR and NT can be configured sufficiently small to diminish the TRD of each single
receiver. The individual TRDs can then be ignored and approximated as a single value.
Moreover, if the diameters of all coils are assumed sufficiently small, the source region
can be considered as the second layer alone. The induced electromagnetic force (EMF) of
the receiving coils is then related only to the vertical component of the magnetic field of
the first layer (the magnetic core). The remaining layers (such as liquid mud, casing, and
formation) are regarded as source-free regions.
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Figure 1. ULMA-based borehole PEC system. 
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When measuring the thickness of the metal pipes, we further assumed that the electri-
cal parameters of all layers and the inner radius of the metal pipes were fixed. Considering
one transmitter and M receivers with inter-element spacing ∆z, the induced EMF in the
m-th receiver can be calculated as [21]

Um(t, zm, dm) = − ξχ

tof

S

∑
s=1

Q

∑
q=1

P

∑
p=1

gs,q,p(t, dm)vp(zm) (1)

where gs, q, p(t, dm) = Ds{exp[(−sln2tof)/t]−1}Aq(Bq +1)Apx1C1I0(x1r)/2s, vp(zm) = cos [λ0zm(Bp

+1)/2], ξ = µ1NRNTIT/π, and χ = πr1
2λ0/2. In Equation (1), t and tof denote the observation

and turn-off times, respectively, zm and dm are the TRD and thickness of the metal casing
with respect to the observation position of the m-th receiver, respectively, and S and Ds
denote the stage and the integral coefficient of the Gaver–Stehfest inverse Laplace transform,
respectively. P and Q represent the number of stages of the two Legendre polynomials
with quadrature coefficient A and zero-point B. C1 denotes the reflection coefficient in
the innermost layer. xj and λ are introduced variables satisfying xj

2 = λ2 − kj
2. I0(·) is

a modified zero-order Bessel function of the first kind. Considering the monotonically
decreasing characteristic of modified Bessel functions, we approximated the upper limit of
integration of λ as λ0. Note that gs,q,p(t, dm) is related to s, q, and p whereas vp(zm) is only
related to p. Accordingly, Equation (1) can be concisely expressed as

Um(t, zm, dm) = − ξχ

to f

P

∑
p=1

gp(t, dm)vp(zm) = − ξχ

to f
v(zm)gT(t, dm) (2)
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where g(t, dm) = [g1(t, dm), . . ., gp(t, dm), . . ., gP(t, dm)] with elements gp(t, dm) = ∑S
s=1∑Q

q=1 gs,q,p

(t, dm) and v(zm) = [v1(zm), . . ., vp(zm), . . ., vP(zm)]. As the receiver array is much shorter
than the distance changes between two neighboring thicknesses, the thicknesses of the
metal casing with respect to the observation position of each receiving coil are identical
along the borehole axis, namely, d1 = d2 = . . . = dM = d0. Considering the noise generated in
each receiver, we stacked the EMFs induced in the M receivers into a vector as follows:

u(t, d0) = [U1(t, z1, d0), · · · , Um(t, zm, d0), · · · , UM(t, zM, d0)]
T + n = − ξχ

to f
VgT(t, d0) + n (3)

where V = [v(z1), v(z2), . . ., v(zM)]T and n = [n1, n2, . . ., nM]T is a Gaussian white noise
vector with a mean of 0 and a variance of σ2. According to Equation (3), the phase varies
with TRD, so the loss can be obtained by directly summing the EMFs [21]. To reduce the
loss and ensure a satisfactory casing effect, the phase should be compensated and the noise
should be suppressed. Therefore, the following LCMV cost function is established:{

min wTRuw
s.t. wTV = f

(4)

where Ru = E[uuT] denotes the auto-correlation matrix of u, and f = [1,1, . . ., 1] ∈
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Notation List 
a The vector a 
A The matrix A 
an The n-th entry of a 
A(m, n) The element of matrix A located in the m-th row and n-th column 
(·)T The transpose operator 
(·)−1 The inverse operator 
ℤM×N The M × N integer-valued matrix 
E[·] The statistical expectation 
∑N 

n=1an a1 + a2 + …+ aN 
exp(x) Exponential function of x 
ln x Natural logarithm of x 
A × B Matmul product of A and B 
besseli (·) The modified Bessel function operator of the first type 
besselk (·) The modified Bessel function operator of the second type 
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1×P is a
row vector with all P elements equal to 1. The weight is optimized through the Lagrange
multiplier methodology as

w = R−1
u V(VTR−1

u V)
−1

fT (5)

As shown in [21], Equation (5) can compensate for the phase shift at each receiver with
a different TRD. The output SNR is then enhanced to improve the corresponding casing
result. However, within the limited space of downhole casings, the number of receivers M
is usually far smaller than P, so the number of constraints in Equation (4) is considerably
larger than the dimension of w, and the inverse of VTRu

−1V becomes ill-conditioned.
Although the inverse of VTRu

−1V can be computed through the DL method, the selection
of the DL factor is based on empirical values and the process entails a large number of
calculations, making the method lack practical usability. To avoid the ill-conditioning of
Equation (4) and improve the NDE effect, we established a sparsity-based cost function
that reduced the number of constraints in Equation (4).

3. The Proposed S-LCMV Cost Function

This section analyzes the sparsity of g(t, dm) in detail and reconstructs the corre-
sponding cost function with a sparse g(t, dm) to provide sufficient DoFs. Based on the
aforementioned definition of the vector g(t, dm), we fixed s and q in gs,q,p(t, dm) to analyze
the variation in the values of gs,q,p(t, dm) with respect to the Legendre polynomial stage p.
Referring to the expression of gs,q,p(t, dm), we now examine the p-dependent variations of
Apx1C1I0(x1r). According to the boundary continuity condition, the important factor C1 can
be obtained as follows [30]:

C1 = Y1(1, 2) + Y2(1, 1) + Y3(1, 1) (6)

Y1 = A1
−1 × B1 × A2

−1 × B2 × A3
−1 × B3 × A4

−1 × B4 × A5
−1 × B5 × A6

−1 × B6 (7)

Y2 = A1
−1 × B1 × A2

−1 × O2 (8)

Y3 = A1
−1 × O1 (9)

where Y(i,j) denotes the element of matrix Y located in the i-th row and j-th column. The
matrix Aj

−1 represents the inverse of matrix Aj with

Aj = [
µj I1(xjrj) µjK1(xjrj)
xj I0(xjrj) −xjK0(xjrj)

] (10)
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Bj = [
µj+1 I1(xj+1rj) µj+1K1(xj+1rj)
xj+1 I0(xj+1rj) −xj+1K0(xj+1rj)

] (11)

O1 = [
µ2K1(x2r0)I1(x2r0)
x2K1(x2r0)I0(x2r0)

] (12)

O2 = [
−µ2K1(x2r0)I1(x2r0)
x2K0(x2r0)I1(x2r0)

] (13)

In the above equations, I0(xr) = besseli(0, xr) and I1(xr) = besseli(1, xr) are modified
Bessel functions of the first kind with order 0 and order1, respectively. K0(xr) = besselk(0,
xr) and K1(xr) = besselk(1, xr) are modified Bessel functions of the second kind with
order 0 and order1, respectively. When p becomes sufficiently large, λ >> kj, then we
have xj = (λ2 − kj

2)1/2 ≈ λ, I1(xjrj) ≈ I1(xj+1rj), K1(xjrj) ≈ K0(xjrj), I0(xjrj) ≈ I0(xj+1rj), and
K0(xjrj) ≈ K0(x j+1rj). For further analysis, we show the distributions of the Bessel functions
in Figure 2. The Bessel functions of the first and second kinds exponentially grow and
decay, respectively, with increasing parameter xr. Therefore, when λ is large (i.e., the stage
of the Gauss–Legendre integral is high or p is large), the elements in the second row of
Aj

−1 and the elements in the first column of Bj are dominant, while the other elements are
negligibly small (approximately zero).
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To facilitate the analysis, the variables α, β, a, and b are introduced to further simplify
the expression. Assuming that α and β are infinitesimally small (approaching zero) and
much smaller than a and b, the elements in Aj

−1 and Bj can be expressed as

A−1
j =

[
α′j α

′′
j

a′j a′′
j

]
(14)

Bj =

[
b′j β′

j
b′′

j β
′′
j

]
(15)

which multiply to give

ABj = Aj
−1 × Bj =

[
α′j α

′′
j

a′j a′′
j

][
b′j β′

j
b′′

j β
′′
j

]
=

[
α′jb

′
j + α

′′
j b′′

j α′jβ
′
j + α

′′
j β

′′
j

a′jb
′
j + a′′

j b′′
j a′jβ

′
j + a′′

j β
′′
j

]
(16)

Accordingly, we have Y1 = AB1×AB2×AB3×AB4×AB5×AB6. Since α′j, α
′′
j , β′

j, and β
′′
j are

all infinitesimals, their products are also infinitesimals. To simplify the subsequent expres-
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sions, let γ′
j, γ

′′
j , and γ

′′′
j denote the three infinitesimals in ABj, and let cj denote the constant

term in ABj, then we have

AB1 × AB2 =

[
γ′

1 γ
′′
1

c1 γ
′′′
1

][
γ′

2 γ
′′
2

c2 γ
′′′
2

]
=

[
γ′

1γ′
2 + γ

′′
1 c2 γ′

1γ
′′
2 + γ

′′
1 γ

′′′
2

c1γ′
2 + γ

′′′
1 c2 c1γ

′′
2 + γ

′′′
1 γ

′′′
2

]
(17)

AB3 × AB4 =

[
γ′

3γ′
4 + γ

′′
3 c4 γ′

3γ
′′
4 + γ

′′
3 γ

′′′
4

c3γ′
4 + γ

′′′
3 c4 c3γ

′′
4 + γ

′′′
3 γ

′′′
4

]
(18)

AB5 × AB6 =

[
γ′

5γ′
6 + γ

′′
5 c6 γ′

5γ
′′
6 + γ

′′
5 γ

′′′
6

c5γ′
6 + γ

′′′
5 c6 c5γ

′′
6 + γ

′′′
5 γ

′′′
6

]
(19)

Furthermore, we can obtain

Y1(1, 2) =
[
(γ′

1γ′
2 + γ

′′
1 c2)(γ

′
3γ′

4 + γ
′′
3 c4) + (γ′

1γ
′′
2 + γ

′′
1 γ

′′′
2 )(c3γ′

4 + γ
′′′
3 c4)

](
γ′

5γ
′′
6 + γ

′′
5 γ

′′′
6
)

+
[
(c1γ′

2 + γ
′′′
1 c2)(γ

′
3γ

′′
4 + γ

′′
3 γ

′′′
4 ) + (c1γ

′′
2 + γ

′′′
1 γ

′′′
2 )(c3γ

′′
4 + γ

′′′
3 γ

′′′
4 )

](
c5γ

′′
6 + γ

′′′
5 γ

′′′
6
) (20)

According to Equation (20), it can be seen that Y1(1, 2) is an infinitesimal quantity.
Similarly, as the multiplication product of the modified Bessel functions of the first and
second kinds approaches zero when λ is large, the elements in Y2(1, 1) and Y3(1, 1) are also
infinitesimal. Meanwhile, as Ap, Ds, and Bq, are all normal constants in gs,q,p(t, dm), gs,q,p(t,
dm) will follow C1 to become infinitesimally small when p becomes large. Then, the sum of
a finite number of infinitesimal quantities, namely, gp(t, dm) = ∑S

s=1∑Q
q=1 gs,q,p(t, dm), also

becomes an infinitesimal quantity. The above analysis shows that the value of gs,q,p(t, dm) is
dominated by only a small subset of gs,q,p(t, dm), and the term g(t, dm), containing the wall
thickness information, possesses an obvious sparse property. The sparse structure of g(t,
dm) is presented in the experimental section for ease of understanding

Based on the above discussion, it can be concluded that for large p, gp(t, dm) is an
infinitesimal quantity that minimally contributes to the received signal Um(t, zm, dm).
Consequently, sparse constraints corresponding to the dominant gp(t, dm) are imposed and
the S-LCMV cost function is formulated as{

min wT
s Rus ws

s.t. wT
s VK = fK

(21)

where VK = [v’(z1), v’(z2), . . ., v’(zM)]T, v’(zm) = [v1(zm), . . ., vk(zm), . . ., vK(zm)], fK = [1,1,
. . ., 1] ∈
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Notation List 
a The vector a 
A The matrix A 
an The n-th entry of a 
A(m, n) The element of matrix A located in the m-th row and n-th column 
(·)T The transpose operator 
(·)−1 The inverse operator 
ℤM×N The M × N integer-valued matrix 
E[·] The statistical expectation 
∑N 

n=1an a1 + a2 + …+ aN 
exp(x) Exponential function of x 
ln x Natural logarithm of x 
A × B Matmul product of A and B 
besseli (·) The modified Bessel function operator of the first type 
besselk (·) The modified Bessel function operator of the second type 
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1×K with K < P, and Rus = E[ũũT] denotes the auto-correlation matrix of ũ. Each
element in ũ is expressed as

Ũm(t, zm, d0) = − ξχ

tof

K

∑
k=1

gk(t, dm)vk(zm) (22)

Equation (21) is then solved as

ws = R−1
us VK(VT

KR−1
us VK)

−1
fK

T (23)

Due to the sparsity of g(t, dm), K is much smaller than P. In particular, numerical
simulations confirmed that K < M < P, meaning that the number of constraints was fewer
than the DoFs in the adaptive weight function. In this case, VK

TRus
−1VK will become

well-conditioned and invertible. Accordingly, accurate weight coefficients can be calculated
and the inspection effect can be improved effectively.

In addition, solving Equation (23) incurs a much lower computational cost than
solving Equation (5) because it involves a small-scale matrix multiplication. To evaluate
the computational cost in quantity, we adopted the multiplication and division number
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(MDN) [31]. Note that the MDN of an M×M matrix inverse is approximately 2M3/3, and
that of multiplying an M×N matrix by an N×H matrix is MNH. Therefore, we have

MDNS−LCMV =
2
3
(M3 + K3) + KM(K + M) + K2 + MK + M2 (24)

MDNLCMV =
2
3
(M3 + P3) + PM(P + M) + P2 + MP + M2 (25)

where MDNS-LCMV and MDNLCMV represent the MDNs of solving Equations (23) and (5),
respectively. Evidently, MDNS-LCMV is considerably smaller than MDNLCMV when K << P.
The above study shows that the PEC signal exhibits sparsity depending on the Gauss–
Legendre stage p, which is employed to construct an S-LCMV method that can accurately
calculate the weighting coefficients and thus effectively eliminate the interference of the
different TRDs on the detection effect. Moreover, the proposed method can also greatly
reduce the computational cost. The practical effectiveness of the proposed approach will be
verified by simulation experiments in the next section.

4. Simulation Experiments

The ULMA-based borehole PEC system for downhole casing inspections was validated
through field experiments conducted in standardized 51/2-inch metal casings (thickness
7.72 mm; outer diameter 139.7 mm). To illustrate the effectiveness of the proposed method,
the thickness of the metal casing was changed to varying degrees from the nominal thick-
ness, with wall thickness variations from top to bottom of 3 mm, 1 mm, 2 mm, and 4 mm,
corresponding to the lengths of the varied segments of 15 cm, 10 cm, 10 cm, and 15 cm,
respectively (as shown in Figure 3). Standard PEC measurements of the above metal
casing were performed using an 8-element linear multicoil array in accordance with the
standardized experimental procedure. The relevant models and experimental results were
processed using the MATLAB platform on a system using a 16-core processor with 32 GB
of RAM and a 1 TB hard disk. The parameters of the experiment and the multicoil array
sensor are listed in Table 1.
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Table 1. Parameters of the simulation experiment.

Parameters Symbol Value

Number of receiving coils M 8
Inter-element spacing ∆z 20 mm

Transmitting–receiving distances z1 − zM 20–160 mm
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Table 1. Cont.

Parameters Symbol Value

Number of transmitting coil turns NT 19
Number of receiving coil turns NR 62

Radius of the multicoil array sensor r1 12 mm
Tool housing inner radius r2 18.5 mm
Tool housing outer radius r3 21.5 mm

Standardized casing inner radius r4 62.13 mm
Standardized casing outer radius r5 69.85 mm

Cement ring outer radius r6 88.9 mm
Excitation current IT 0.3 A

Observation time interval t 0–50 ms
Step size ∆t 1 ms

By analyzing the PEC signals in this experiment, the distribution of each element in
g(t, dm) (normalized by the maximum value) as a function of p is obtained, as shown in
Figure 4a. It can be seen that the term g(t, dm) decays in an exponential-like manner as the
stage p increases (i.e., the signal characteristics are dominated by the first several elements),
verifying that g(t, dm) is sparse. To make it easier to understand, we provide the percentage
contribution of each element with different p-values to the overall signal power (as shown
in Figure 4(b)). Obviously, for the vector g(t, dm), the contribution of the first eight elements
could account for more than 90%, while the contribution of the other elements was basically
negligible. Therefore, by exploiting this property, it is possible to reduce the number of
constraints from P to K, thus providing enough DoFs to obtain accurate weight coefficients.
Initially, we determined K < 8 to avoid the pathological problems that would lead to the
failure of the weight coefficients. Combining the balanced relationship between model
approximation accuracy and computational cost, the original full-dimensional LCMV with
P = 20 could be reduced to an S-LCMV with K = 6 in this experiment. In other words, the
number of constraints was reduced by 70% from P for LCMV to K for S-LCMV. In addition,
according to the relevant definitions in Equations (24) and (25) in Section 3, the proposed
method was capable of reducing the computational cost by about 87% from the original.
It should be noted that the selection of the value of K is mainly related to the calculation
accuracy of the weight coefficients and the model approximation accuracy. Specifically,
the larger the value of K, the more the signal model approximates the actual situation,
but it introduces a larger amount of computation, and even when K > M, it is difficult to
obtain effective weight coefficients. Conversely, the smaller the value of K, the amount
of computation is greatly reduced, which is conducive to the accurate calculation of the
weight coefficients, however, an excessively small K leads to a large deviation between the
signal model and the actual signal, thus creating a large inspection error. Therefore, the
selection of K is the process of realizing the balance between the calculation accuracy of the
weight coefficients, the calculation speed, and the model approximation accuracy.

To analyze the performance of the proposed method, we processed the measured data
using the standard LCMV algorithm, the DL-based method, the MIMO-based method, and
the proposed S-LCMV algorithm. Figures 5 and 6 show the weighted-sum results of the
8-element ULMA at late and early times, respectively. As can be seen from Figures 5a and
6a, due to the sufficient DoFs for controlling the constraints in S-LCMV, it was possible to
obtain an accurate and effective weighting coefficient ws, which could well compensate for
the phase differences between the receivers and formed a smooth EMF curve for detection.
Note that the amplitude of the weighted induced EMFs monotonically increased with
the thickness of the metal pipe, revealing a relationship between the induced EMFs and
pipe thickness. In contrast, for the standard LCMV algorithm (shown in Figures 5b and
6b), it was difficult to obtain the accurate weighting coefficient w because Equation (5)
included an excessive number of constraints, resulting in poor compensation of the phase
difference between the receivers. Figures 5c and 6c demonstrate the processing results of
the MIMO-based method. It can be seen that the method improved the weighted-sum effect
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compared to the standard LCMV, but its consistency with the actual casing variation was
not high enough. In addition, due to the structure of the probe with multiple transmitters
and multiple receivers, the large TRD made the SNR of the signal poor, and the EMF
curve was not smooth enough. Moreover, Figures 5d and 6d demonstrate the experimental
results of the DL-based method. It can be seen that the DL-based method could improve the
detection effect and obtained a similar performance as the S-LCMV algorithm. However,
DL is an empirical-value-based method with a complicated process and tends to result in a
huge computational volume, making it not practically usable. In comparison, the S-LCMV
algorithm is not only able to avoid the pathological problem by exploiting the sparsity
characteristics of the signals, but also possesses strong practical usability, which effectively
achieves a good application of array weighting in downhole signal models.
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After obtaining the weighted sum of the induced EMFs, the detection curves needed
to be further interpreted to obtain the number and location(s) of the casing changes. For
the data processed by the three different methods above-mentioned, the constant false
alarm rate (CFAR) [32,33] detector, which is frequently used for target detection, was
employed, and the detection results are demonstrated in Figures 7 and 8. Figures 7a and
8a demonstrate the CFAR detection results based on the proposed S-LCMV method with
ws, where four target regions (in which the pipe was thicker than the nominal pipe) were
clearly detected and their corresponding positions and sizes were highly consistent with the
actual situation. When CFAR detection was performed using data processed by standard
LCMV with w, it was found that the number and location of targets could not be accurately
obtained and the detection was ineffective (as shown in Figures 7b and 8b). In addition,
the CFAR detection results of the data processed by the MIMO-based method are shown
in Figures 7c and 8c. Although the corresponding detection results improved compared
with the LCMV, the detection performance was still worse than the S-LCMV and it was
difficult to accurately reflect the real situation of the casing changes. It should be noted
that the detection results of CFAR based on S-LCMV were highly consistent with the actual
pipeline damage locations, but there was still a certain degree of deviation from the actual
because a known statistical distribution of noise is required to be assumed in typical radar
systems, which may not be applicable to borehole casing. The above results validate that
the CFAR is suitable for pipeline damage location detection, and the design of an improved
CFAR detector to accurately detect both the number and location of targets in borehole
application will be the focus of our future work.
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As a result of the above analyses, the S-LCMV algorithm is conducive to obtaining
accurate detection results in practical applications, which can reduce the calculation cost
in the signal processing process and effectively improve the inspection efficiency and
accuracy. In practical applications, the proposed method may face some challenges due to
the complexity and uncertainty of the downhole environment. On the one hand, when the
downhole physical space is very limited and the number of array elements is required to
be further reduced, the corresponding reduction in the value of K may make the model
approximation error too large due to the small stage of the Legendre polynomials, resulting
in unreliable detection results. In this case, further exploitation of the sparsity of PEC signals
can be considered to introduce emerging signal processing techniques such as a compressive
sensing method with dimensionality reduction properties to ensure detection performance,
which will be thoroughly investigated as a new research direction in future work. On
the other hand, the multi-layer cylindrical structure involves numerous structural and
electromagnetic parameters, while the uncertainties in the downhole environment make it
difficult to ensure the accuracy of these parameters, which in turn affects the effectiveness
of the proposed method. To decrease the sensitivity of the proposed method to the errors of
the background medium parameters, in future research, we will consider integrating some
cumulant algorithms to achieve adaptive weighting, thus further improving the robustness
of the method.

5. Conclusions

This study established an S-LCMV method that reduces the number of constraints
to below the DoFs in a ULMA system. The correlation between the PEC signal power
and Legendre polynomial stages revealed sparsity of the signal with respect to the Gauss–
Legendre stage. The S-LCMV provides an adequate number of DoFs under the imposed
constraints, making it possible to accurately obtain valid weights, thus mitigating the
influence of TRDs at different array elements. In addition, the number and locations of
the casing-thickness changes were evaluated using the CFAR indicator, enabling rapid
and intuitive nondestructive evaluations for downhole casings. Simulation and field
experiments confirmed the superiority of S-LCMV over LCMV, which not only reduced
the computational cost of the weights, but also improved the computational speed and
accuracy in spite of the deviation of the borehole axis from the true axis. In future work,
we will design an improved CFAR detector that accurately detects both the number and
location of targets in borehole applications.
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