The Quick Determination of a Fibrous Composite’s Axial Young’s Modulus via the FEM
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brinson, H.F.; Morris, D.H.; Yeow, Y.I. A New Method for the Accelerated Characterization of Composite Materials. In Proceedings of the Sixth International Conference on Experimental Stress Analysis, Munich, Germany, 18–22 September 1978. [Google Scholar]
- Xu, J.; Wang, H.; Yang, X.; Han, L.; Zhou, C. Application of TTSP to non-linear deformation in composite propellant. Emerg. Mater. Res. 2018, 7, 19–24. [Google Scholar] [CrossRef]
- Schaffer, B.G.; Adams, D.F. Nonlinear Viscoelastic Behavior of a Composite Material Using a Finite Element Micromechanical Analysis; Dept. Report UWME-DR-001-101-1; University of Wyoming: Laramie, WY, USA, 1980. [Google Scholar]
- Schapery, R. Nonlinear viscoelastic solids. Int. J. Solids Struct. 2000, 37, 359–366. [Google Scholar] [CrossRef]
- Violette, M.G.; Schapery, R. Time-Dependent Compressive Strength of Unidirectional Viscoelastic Composite Materials. Mech. Time-Depend. Mater. 2002, 6, 133–145. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Hashin, Z.; Rosen, B.W. The Elastic Moduli of Fiber-Reinforced Materials. J. Appl. Mech. 1964, 31, 223–232. [Google Scholar] [CrossRef]
- Hinterhoelzl, R.; Schapery, R. FEM Implementation of a Three-Dimensional Viscoelastic Constitutive Model for Particulate Composites with Damage Growth. Mech. Time-Depend. Mater. 2004, 8, 65–94. [Google Scholar] [CrossRef]
- Mohan, R.; Adams, D.F. Nonlinear creep-recovery response of a polymer matrix and its composites. Exp. Mech. 1985, 25, 262–271. [Google Scholar] [CrossRef]
- Findley, W.N.; Adams, C.H.; Worley, W.J. The Effect of Temperature on the Creep of Two Laminated Plastics as Interpreted by the Hyperbolic Sine Law and Activation Energy Theory. In Proceedings of the Proceedings-American Society for Testing and Materials, Conshohocken, PA, USA, 1 January 1948; Volume 48, pp. 1217–1239. [Google Scholar]
- Khalkar, V.; Hariharasakthisudhan, P.; Kalamkar, R. Some Studies Verify the Applicability of the Free Vibration Method of Crack Detection in Composite Beams for Different Crack Geometries. Rom. J. Acoust. Vib. 2023, 20, 30–41. [Google Scholar]
- Jarali, O.; Logesh, K.; Hariharasakthisudhan, P. Vibration Based Delamination Detection in Fiber Metal Laminates Composite Beam. Rom. J. Acoust. Vib. 2023, 20, 48–58. [Google Scholar] [CrossRef]
- Findley, W.N.; Peterson, D.B. Prediction of Long-Time Creep with Ten-Year Creep Data on Four Plastics Laminates. In Proceedings of the American Society for Testing and Materials, Sixty-First (61th) Annual Meeting, Boston, MA, USA, 26–27 June 1958; Volume 58. [Google Scholar]
- Dillard, D.A.; Brinson, H.F. A Nonlinear Viscoelastic Characterization of Graphite Epoxy Composites. In Proceedings of the 1982 Joint Conference on Experimental Mechanics, Oahu, HI, USA, 23–28 May 1982. [Google Scholar]
- Walrath, D.E. Viscoelastic response of a unidirectional composite containing two viscoelastic constituents. Exp. Mech. 1991, 31, 111–117. [Google Scholar] [CrossRef]
- Hashin, Z. On Elastic Behavior of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry. J. Mech. Phys. Solids 1965, 13, 119–134. [Google Scholar] [CrossRef]
- Marin, M.; Öchsner, A.; Bhatti, M.M. Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies. ZAMM-J. Appl. Math. Mech. 2020, 100, e202000090. [Google Scholar] [CrossRef]
- Bowles, D.E.; Griffin, O.H., Jr. Micromecjanics Analysis of Space Simulated Thermal Stresses in Composites. Part I: Theory and Unidirectional Laminates. J. Reinf. Plast. Compos. 1991, 10, 504–521. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Weng, G.J. Effective Elastic Moduli of Ribbon-Reinforced Composites. J. Appl. Mech. 1990, 57, 158–167. [Google Scholar] [CrossRef]
- Hill, R. Theory of Mechanical Properties of Fiber-strengthened Materials: I Elastic Behavior. J. Mech. Phys. Solids 1964, 12, 199–212. [Google Scholar] [CrossRef]
- Hill, R. Theory of Mechanical Properties of Fiber-strengthened Materials: III Self-Consistent Model. J. Mech. Phys. Solids 1965, 13, 189–198. [Google Scholar] [CrossRef]
- Marin, M.; Seadawy, A.; Vlase, S.; Chirila, A. On mixed problem in thermos-elasticity of type III for Cosserat media. J. Taibah Univ. Sci. 2022, 16, 1264–1274. [Google Scholar] [CrossRef]
- Hill, R. Continuum Micro-Mechanics of Elastoplastic Polycrystals. J. Mech. Phys. Solids 1965, 13, 89–101. [Google Scholar] [CrossRef]
- Weng, Y.M.; Wang, G.J. The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Compoisites. J. Appl. Mech. 1992, 59, 510–518. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metal. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Pasricha, A.; Van Duster, P.; Tuttle, M.E.; Emery, A.F. The Nonlinear Viscoelastic/Viscoplastic Behavior of IM6/5260 Graphite/Bismaleimide. In Proceedings of the VII International Congress on Experimental Mechanics, Las Vegas, NV, USA, 8–11 June 1992. [Google Scholar]
- Pintelon, R.; Guillaume, P.; Vanlanduit, S.; De Belder, K.; Rolain, Y. Identification of Young’s modulus from broadband modal analysis experiments. Mech. Syst. Signal Process. 2004, 18, 699–726. [Google Scholar] [CrossRef]
- Bhagat, A.D.; Sujatha, C. Determination of Young’s Moduli and Damping Ratios of Flexible Hoses from Experimental Modal Analysis. In Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Accoustics, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Liu, J.J.; Liaw, B. Vibration and impulse responses of fiber-metal laminated beams. In Proceedings of the 20th IMAC Conference on Structural Dynamics, Los Angeles, CA, USA, 4–7 February 2002; Volumes I and II 4753, pp. 1411–1416. [Google Scholar]
- Hwang, Y.F.; Suzuki, H. A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty. Acoust. Sci. Technol. 2016, 37, 115–122. [Google Scholar] [CrossRef]
- Kouroussis, G.; Ben Fekih, L.; Descamps, T. Assessment of timber element mechanical properties using experimental modal analysis. Constr. Build. Mater. 2017, 134, 254–261. [Google Scholar] [CrossRef]
- Yoshihara, H.; Yoshinobu, M.; Maruta, M. Interlaminar shear modulus of cardboard obtained by torsional and flexural vibration tests. Nord. Pulp Pap. Res. J. 2023, 38, 399–411. [Google Scholar] [CrossRef]
- Digilov, R.M. Flexural vibration test of a cantilever beam with a force sensor: Fast determination of Young’s modulus. Eur. J. Phys. 2008, 29, 589–597. [Google Scholar] [CrossRef]
- Swider, P.; Abidine, Y.; Assemat, P. Could Effective Mechanical Properties of Soft Tissues and Biomaterials at Mesoscale be Obtained by Modal Analysis? Exp. Mech. 2023, 63, 1055–1065. [Google Scholar] [CrossRef]
- Lina, H.; Jianchao, G.; Hongtao, L. A Novel Determination Method of IPMC Young’s Modulus based on Cantilever Resonance Theory. In Proceedings of the International Conference on Mechanical Materials and Manufacturing Engineering (ICMMME 2011), Nanchang, China, 20–22 June 2011; pp. 747–752. [Google Scholar]
- Lupea, I. The Modulus of Elasticity Estimation by using FEA and a Frequency Response Function. Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. 2014, 57, 493–496. [Google Scholar]
- Men, J.J.; Guo, Z.F.; Shi, Q.X. Research on Behavior of Composite Joints Consisting of Concrete and Steel. In Proceedings of the 2nd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2012), Yantai, China, 25–27 May 2012; pp. 815–818. [Google Scholar]
- Li, Y.; Li, Y.Q. Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation. Constr. Build. Mater. 2019, 200, 301–309. [Google Scholar] [CrossRef]
- Matsuda, T.; Ohno, N. Predicting the elastic-viscoplastic and creep behaviour of polymer matrix composites using the homogenization theory. Creep Fatigue Polym. Matrix Compos. 2011, 113–148. [Google Scholar] [CrossRef]
- Tian, W.L.; Qi, L.H.; Jing, Z. Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Compos. Struct. 2016, 152, 408–417. [Google Scholar] [CrossRef]
- Zhu, T.L.; Wang, Z. Research and application prospect of short carbon fiber reinforced ceramic composites. J. Eur. Ceram. Soc. 2023, 43, 6699–6717. [Google Scholar] [CrossRef]
- Anderson, W.; Mortara, S. F-22aeroelastic design and test validation. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 7 April 2007; p. 1764. [Google Scholar]
- Timoshenko, T. Strength of Materials, Part 1: Elementary Theory and Problems, 3rd ed.; CBS Publishers & Distributors Pvt Ltd.: New Delhi, India, 2002. [Google Scholar]
- Scutaru, M.L.; Vlase, S.; Marin, M. Symmetrical Mechanical System Properties-Based Forced Vibration Analysis. J. Comput. Appl. 2023, 54, 501–514. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S.; Scutaru, M.L. Finite Element Method-Based Simulation Creep Behavior of Viscoelastic Carbon-Fiber Composite. Polymers 2021, 13, 1017. [Google Scholar] [CrossRef] [PubMed]
- Katouzian, M.; Vlase, S. Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method. Polymers 2021, 13, 867. [Google Scholar] [CrossRef] [PubMed]
- Rades, M. Mechanical Vibration, II, Structural Dynamics Modeling; Printech Publishing House: Bangalore, India, 2010. [Google Scholar]
- Negrean, I.; Crisan, A.V.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95. [Google Scholar] [CrossRef]
- Teodorescu-Draghicescu, H.; Scutaru, M.L.; Grigore, P. New Advanced Sandwich Composite with twill weave carbon and EPS. J. Optoelectron. Adv. Mater. 2013, 15, 199–203. [Google Scholar]
- Bratu, P.; Dobrescu, C.; Nitu, M.C. Dynamic Response Control of Linear Viscoelastic Materials as Resonant Composite Rheological Models. Rom. J. Acoust. Vib. 2023, 20, 73–77. [Google Scholar]
- Bratu, P.; Nitu, M.C.; Tonciu, O. Effect of Vibration Transmission in the Case of the Vibratory Roller Compactor. Rom. J. Acoust. Vib. 2023, 20, 67–72. [Google Scholar]
- Itu, C.; Scutaru, M.L.; Vlase, S. Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method. Polymers 2024, 16, 354. [Google Scholar] [CrossRef]
- Marin, M.; Öchsner, A.; Vlase, S.; Grigorescu, D.O.; Tuns, I. Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies. Contin. Mech. Thermodyn. 2023, 35, 1969–1979. [Google Scholar] [CrossRef]
Mode No. | Eigenfrequency [Hz] | Representation | Ratio | Longitudinal Young’s Modulus ; EL [GPa] |
---|---|---|---|---|
1 | 264,380.6 | 1.00 | 54.01 | |
2 | 528,032.1 | 2.00 | 51.23 | |
3 | 790,496.2 | 2.99 | 51.06 | |
4 | 1,052,232 | 3.98 | 50.81 | |
5 | 1,311,324 | 4.96 | 50.49 | |
6 | 1,567,773 | 5.93 | 50.08 | |
Average longitudinal Young’s modulus EL [GPa] | 51.28 |
Mode No. | Eigenfrequency [Hz] | Representation | Ratio | Longitudinal Young’s Modulus ; [GPa] |
---|---|---|---|---|
1 | 128,773 | 1.00 | 53.92 | |
2 | 386,064 | 3.00 | 53.85 | |
3 | 642,587 | 4.99 | 53.71 | |
4 | 897,798 | 6.97 | 53.49 | |
5 | 1,151,110 | 8.94 | 53.19 | |
6 | 1,401,865 | 10.91 | 52.81 | |
Average longitudinal Young’s modulus EL [GPa] | 53.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itu, C.; Scutaru, M.L.; Vlase, S. The Quick Determination of a Fibrous Composite’s Axial Young’s Modulus via the FEM. Appl. Sci. 2024, 14, 6630. https://doi.org/10.3390/app14156630
Itu C, Scutaru ML, Vlase S. The Quick Determination of a Fibrous Composite’s Axial Young’s Modulus via the FEM. Applied Sciences. 2024; 14(15):6630. https://doi.org/10.3390/app14156630
Chicago/Turabian StyleItu, Calin, Maria Luminita Scutaru, and Sorin Vlase. 2024. "The Quick Determination of a Fibrous Composite’s Axial Young’s Modulus via the FEM" Applied Sciences 14, no. 15: 6630. https://doi.org/10.3390/app14156630
APA StyleItu, C., Scutaru, M. L., & Vlase, S. (2024). The Quick Determination of a Fibrous Composite’s Axial Young’s Modulus via the FEM. Applied Sciences, 14(15), 6630. https://doi.org/10.3390/app14156630