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Abstract: In this study, we introduce an advanced system for sustainable pavement management
that leverages cutting-edge machine learning and computer vision techniques to detect and clas-
sify pavement damage. By utilizing models such as EfficientNetB3, ResNet18, and ResNet50, we
develop robust classifiers capable of accurately identifying various types of pavement distress. To
further enhance our dataset, we employ a Swin Transformer-based Generative Adversarial Net-
work (GAN) to synthetically generate images of pavement cracks, thereby augmenting the training
data. Our approach aims to improve the efficiency and accuracy of pavement damage assessment,
contributing to more effective and sustainable road maintenance practices. This research aligns
with the sustainable development goals by fostering innovative methods that extend the lifespan of
infrastructure, reducing the need for resource-intensive repairs, and promoting the longevity and
reliability of road networks. The outcomes of this study are discussed in terms of their potential
impact on infrastructure safety and sustainability, with suggestions for future research directions.
This study demonstrates how integrating advanced machine learning techniques into pavement
management systems can enhance decision-making, optimize resource allocation, and improve the
sustainability of infrastructure maintenance practices. By leveraging big data and sophisticated
algorithms, stakeholders can proactively address pavement deterioration, extend asset lifespan, and
optimize maintenance efforts based on real-time data-driven insights.

Keywords: pavement damage classification; machine learning; computer vision; deep learning;
genrative adversarial networks (GANs)

1. Introduction

The classification and detection of pavement damage are critical for the maintenance
and improvement of transportation infrastructure [1], which directly impacts economic
productivity, safety, and environmental sustainability [2]. Pavement deterioration, if left
unaddressed, can lead to costly repairs, increased vehicle operating costs, and higher
accident rates [3]. Traditional methods of assessing pavement conditions rely heavily
on manual inspections, which are time-consuming, labor-intensive, and prone to human
error [4]. The relevance of this problem is underscored by the need for more efficient,
accurate, and scalable solutions to ensure that road networks are kept in optimal condition.
By integrating advanced machine learning and deep learning techniques, this research seeks
to develop a sophisticated system that can automatically and accurately identify various
types of pavement damage, ultimately contributing to more sustainable and effective road
maintenance practices.

The core of this research is the classification and detection of pavement damage
through the development of a sophisticated system that harnesses the latest advance-
ments in machine learning and deep learning, specifically through computer vision tech-
niques. The ability to accurately classify and detect various types of pavement damage,
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such as cracks and potholes, is crucial for maintaining and improving transportation
infrastructure [1].

In this work, we evaluate the performance of several state-of-the-art deep learning
models, including EfficientNetB3, ResNet18, and ResNet50. These models have been metic-
ulously tested for their effectiveness in identifying and classifying pavement damage. To
further enhance our system, we employ a Swin Transformer-based Generative Adversarial
Network (GAN) to create synthetic images of pavement cracks. This innovative approach
to data augmentation significantly improves the robustness and accuracy of our damage
detection system.

The central issue addressed in this research is the precise classification of pavement
damage using advanced deep learning models. This paper introduces an automated
system powered by deep learning algorithms that can accurately identify various types
of pavement damage from images. This innovative approach significantly streamlines the
assessment process, enhancing both its speed and consistency. The improvements in the
reliability and accuracy of pavement condition evaluations enable proactive maintenance
strategies, thereby promoting infrastructure sustainability.

Our research addresses a vital aspect of transportation infrastructure maintenance:
the classification of pavement damage. By leveraging machine learning and deep learning
techniques, particularly computer vision, we developed a system that accurately detects
and classifies various types of pavement damage, such as cracks and potholes. Our
study assesses the performance of models including EfficientNetB3, ResNet18, ResNet50,
and SwinGAN. Additionally, we employed a Generative Adversarial Network (GAN) to
generate synthetic images of cracks, enhancing our dataset and improving the robustness
of our damage detection system. This work aligns with the goals of sustainability by
promoting innovative methods to ensure the longevity and reliability of transportation
infrastructure, ultimately supporting sustainable development and contributing to the 2030
Agenda for Sustainable Development.

Our research contributes to the sustainable development goals by introducing innova-
tive methods that enhance the longevity and reliability of road infrastructure. This aligns
with the targets set by the 2030 Agenda for Sustainable Development, emphasizing the
importance of sustainable and resilient infrastructure.

The structure of this paper is as follows:

■ Literature Review: This section provides a comprehensive review of existing research
on the use of computer vision and deep learning for pavement distress classification.
It expands on key concepts, approaches, and significant developments that form the
foundation for this project.

■ Data Description and Exploratory Analysis: This section elaborates on the research
data, detailing its type, size, and the variables under observation. It examines the
data structure, identifies patterns, and outlines any anomalies that could influence the
modeling approach.

■ Methodology: We discuss the methods used in this project, from data selection and
preprocessing to the experimental setup. This includes the use of convolutional
neural networks (CNNs) and GANs, describing how these models are configured
and utilized.

■ Results and Discussion: This section presents the results of our experiments, evaluat-
ing how well the models predict pavement distress. We discuss the implications of
our findings for distress identification and management, highlighting the strengths
and weaknesses of our approach and suggesting directions for future research.

■ Conclusions: This summarizes the main findings of our work, emphasizing our
contribution to advancing pavement management technologies. We also discuss the
potential impacts of these advancements on infrastructure safety and lifespan, along
with possible directions for further research and technological development.
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Overall, this paper aims to present our project systematically, ensuring that readers
can easily understand the theoretical foundations, methodological details, experimental
results, and broader implications of our work.

2. Literature Review

Ensuring the health and integrity of pavements is essential for maintaining efficient
and safe infrastructure systems worldwide. Pavement health assessment, particularly
through accurate crack detection, plays a pivotal role in infrastructure maintenance strate-
gies [5,6]. Cracks in pavements, whether on roads, airport runways, or other transportation
networks, can lead to accelerated deterioration and safety hazards if left untreated [7]. Ef-
fective assessment and early detection of cracks not only extend the lifespan of pavements
but also minimize the need for costly repairs and ensure uninterrupted operation of critical
transportation routes [8]. In recent years, advancements in machine learning, particularly
convolutional neural networks (CNNs), have revolutionized crack detection by automating
and enhancing the accuracy of detection processes [9]. This literature review explores the
evolving methodologies and technologies in pavement health assessment, focusing on the
role of machine learning in optimizing infrastructure management practices.

The literature on pavement damage classification and detection reveals significant
advancements in the application of machine learning and deep learning techniques. Recent
studies emphasize the role of computer vision in automating the assessment process, re-
ducing reliance on manual inspections, and improving accuracy and efficiency [10]. Key
developments include the use of convolutional neural networks (CNNs) and Generative Ad-
versarial Networks (GANs) for image analysis and data augmentation, respectively [11,12].
Researchers have demonstrated the effectiveness of various models, such as EfficientNet
and ResNet, in identifying different types of pavement distress [13,14]. Furthermore, in-
novations like the Swin Transformer and other vision transformers have introduced new
paradigms in handling complex image data [15]. This literature review explores these
advancements, providing a comprehensive understanding of the current state of the art
and identifying the technological foundations that underpin our research.

Integrating insights from recent research into the application of advanced machine
learning and deep learning techniques in pavement distress classification reveals a strong
trend toward sustainability in infrastructure maintenance. These innovations not only
enhance road functionality and lifespan but also contribute significantly to environmental
and economic sustainability. Advancements such as the Pavement Image Classification
Transformer (PicT) use vision transformers to effectively model the relationships between
image patches through self-attention mechanisms. PicT’s dynamic pseudo-labeling process
reduces manual labeling efforts and costs, enhancing the adaptability of models to recognize
new or rare types of distress, marking a significant step towards sustainable machine
learning applications in road maintenance. Similarly, the adoption of Deep Metric Learning
for few-shot learning underscores efficiency in adapting to various pavement distress types
with minimal data requirements. This method conserves resources and reduces the carbon
footprint associated with extensive data collection, representing a substantial advance
toward sustainable computing in infrastructure management.

In [16], the authors illustrate how sophisticated algorithms can effectively manage
infrastructure needs and environmental impacts through predictive modeling techniques
used in maritime port emissions and pavement performance prediction models. For
instance, predictive modeling of sulfur dioxide emissions in maritime facilities using
machine learning enables proactive environmental strategies and regulations, helping to
minimize the ecological and health impacts of port operations.

In the assessment of road pavement health and safety, crack detection is crucial for
proactive maintenance strategies. Recent advancements in convolutional neural networks
(CNNs) have automated the identification of cracks, addressing challenges such as complex
topology segmentation, noise interference, and sensitivity to thin cracks [17]. Here, the
authors propose a novel deep residual network, Parallel ResNet, designed to enhance
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pavement crack detection and measurement by effectively removing noise interference
and accurately identifying complex cracks. Experimental validation on CrackTree200
and CFD datasets demonstrates Parallel ResNet’s superior performance in precision,
recall, and F1 scores, making it a robust tool for precise pavement crack analysis and
maintenance planning.

The application of convolutional neural networks (CNNs), such as Parallel ResNet,
for crack detection, exemplifies how precise and efficient technological applications can
preemptively tackle pavement distress, preventing minor damages from becoming major
repairs and conserving materials and labor [18,19].

As with the use of cost-efficient methods for crack detection, [20–22] give a good idea
of why using image recognition provides an advantage. Given limited funds and an aging
highway infrastructure, agency decision-makers must make the most cost-effective choices
in highway pavement maintenance to improve service quality and enhance driving safety.

In addition, it is essential to regularly evaluate and execute maintenance and rehabil-
itation plans to maintain the network’s acceptable level of service. A key element of the
M and R plan involves using performance prediction models, particularly for addressing
rutting distress, which is a major concern in asphalt pavement [23,24].

We have identified several gaps in the literature regarding crack detection in pavement
management, revealing several critical areas where current methodologies and technologies
fall short. One significant gap lies in the handling of complex crack topologies. While
convolutional neural networks (CNNs) have shown promise in automating crack detection,
they often struggle with accurately segmenting and classifying cracks that exhibit irregular
shapes or patterns [25]. Existing models may not effectively distinguish between different
types of cracks, such as longitudinal, transverse, or alligator cracks, which vary in their
severity and impact on pavement integrity [26].

Another notable gap is related to noise interference in crack detection systems. Pave-
ments are exposed to various environmental factors such as shadows, strong light re-
flections, and road markings, which can obscure crack patterns and introduce noise into
image data. Moreover, the sensitivity of CNN models to thin cracks remains a challenge.
Thin cracks are often subtle and difficult to detect in images, especially when they are
overshadowed by surrounding pavement textures or imperfections.

Furthermore, there is a lack of standardized datasets and evaluation metrics specif-
ically designed for pavement crack detection [17]. Many existing studies use different
datasets with varying quality and annotation standards, making it challenging to compare
results across different methods. This variability hinders the development of robust and
universally applicable crack detection models.

Addressing these gaps requires innovative approaches that enhance the robustness
and adaptability of crack detection systems. Future research should focus on developing
CNN architectures that can handle complex crack geometries and improve the models’
ability to filter out noise from pavement images effectively. Additionally, there is a need for
comprehensive datasets that capture the diversity of pavement conditions and crack types,
enabling fair comparisons and benchmarking of new methodologies. By addressing these
gaps, researchers can advance the field of pavement management and contribute to more
reliable and efficient infrastructure maintenance practices.

Together, these technological innovations foster a proactive and resource-efficient
approach to infrastructure maintenance. By enhancing the longevity and functionality of
infrastructure while aligning with broader sustainability objectives, these strategies reduce
environmental impacts and bolster economic and societal well-being.

3. Data and Methods

The effectiveness of pavement health assessment and crack detection heavily relies
on the quality and diversity of the datasets used, as well as the rigor of the methodologies
applied. This section provides a detailed overview of the data sources utilized, including
their characteristics and preprocessing steps. Additionally, it outlines the machine learning
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models and algorithms employed for crack detection and classification, emphasizing
innovations aimed at overcoming current limitations in handling complex crack topologies,
noise interference, and sensitivity to thin cracks. By integrating robust data sources with
state-of-the-art methodologies, this research aims to enhance the accuracy and efficiency of
pavement management practices, ultimately contributing to safer and more sustainable
infrastructure systems. Figure 1 shows the types of pavement distress under study.
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Most pavement distress datasets include various types of annotations that aid in
analysis. These annotations are usually in three forms: labeled, masked, and bounding box.
Labeled datasets categorize each image, which helps in classification efforts. Bounding box
datasets include rectangles that show the position of objects within the images, which is
crucial for object detection tasks. Masked datasets provide very detailed location data down
to the pixel level [22], outlining precise boundaries and areas for segmentation purposes.

3.1. Exploratory Data Analysis (EDA)

In this project, we utilized the CQU-BPDD dataset [27,28], which comprises a total
of 60,059 images segmented into training and testing sets based on specific criteria to
ensure comprehensive model evaluation. The training set includes 5137 images of dis-
eased pavements, covering a diverse range of distress types, and 5000 images of normal
pavements, facilitating balanced training of our deep learning models. The remaining
11,589 diseased and 38,330 normal pavement images constitute the test set, rigorously
evaluating the model’s effectiveness and accuracy under diverse conditions.

This diverse dataset not only strengthens our models but also enhances the analysis
with a broader range of data, thereby ensuring reliable results. The model performs well,
generating examples that closely match patterns observed in the training data, indicating
the potential for developing an efficient pavement distress detection system.

Additionally, we employed Generative Adversarial Networks (GANs) to augment
our dataset, drawing inspiration from [29]. This approach involved leveraging lightweight
GAN architectures to effectively expand and diversify our datasets, thereby enhancing
model training efficiency and performance. The integration of synthetic data through GANs
has been validated in previous studies [29–32], demonstrating its capability to reduce the
manual collection burden while enriching training data diversity.

Furthermore, [33] proposes an innovative application of GANs with a modified VGG-
16 model, effectively addressing distribution imbalances within datasets like CQU-BPDD.
This strategic use of synthetic images enhances the adaptability and robustness of deep
learning models, contributing to their effectiveness in real-world scenarios.

3.2. Data Preprocessing

Our team begins with meticulous data preprocessing, a critical initial step to prepare
the CQU-BPDD dataset, comprising over 60,059 images depicting various pavement dis-
tress scenarios, for subsequent analysis and modeling. Selecting a representative subset for
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model training is pivotal to ensuring coverage of diverse distress types, severity levels, and
environmental conditions, which is essential for robust model training.

Each selected image undergoes thorough scrutiny to eliminate irrelevant or low-
quality entries. We assess clarity, resolution, and relevance to specific pavement distress
categories, removing any images that are noisy, blurry, or ambiguous to prevent bias or
errors in training.

To augment our dataset, we leverage SwinGAN, a new generative model from Mi-
crosoft [34], designed to synthesize high-quality images realistically depicting pavement
distress such as cracks, potholes, and uneven surfaces. SwinGAN learns from patterns in
the original dataset to generate synthetic images that closely mimic real-world pavement
conditions. Figure 2 shows the various pavement distresses under study.
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Maintaining rigorous quality control, only the highest quality synthetic images pro-
duced by SwinGAN are retained. Any images that do not meet our standards or appear
unrealistic are promptly discarded. This meticulous selection process ensures that synthetic
data accurately reflect the variability and patterns of pavement distress, thereby enhancing
the robustness and generalizability of our machine learning models.

Data preprocessing stands as a fundamental and crucial step that lays the groundwork
for successful model development and implementation. By meticulously curating and
enhancing our dataset, we mitigate biases, errors, and inaccuracies that can compromise
the precision and reliability of pavement distress classification. The integrity and rele-
vance of our dataset are paramount, underpinning the generation of valuable insights and
advancements in transportation infrastructure management.

3.3. Modeling

Developing machine learning models stands as the cornerstone of every project aiming
to achieve its objectives effectively [35]. In this study, our focus lies on designing and
training models tailored for classifying various types of pavement distress, which is crucial
for optimizing transportation infrastructure management. Identifying and categorizing
road defects such as cracks, potholes, and uneven surfaces is essential for prompt repairs
that ensure road safety and prolong infrastructure lifespan.

To begin, we carefully selected machine learning architectures that align with the
project’s requirements and constraints. Factors considered include model complexity, com-
putational efficiency, and suitability for real-time deployment in resource-constrained envi-
ronments. These models are designed to effectively detect intricate patterns in pavement
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distress images, involving network structure configuration, activation function selection,
and hyperparameter adjustment to enhance classification accuracy. Additionally, image
data preprocessing techniques such as augmentation and normalization are applied to
prepare the data for efficient model training.

During the training phase, labeled images of pavement distress are utilized to train
the models in recognizing and classifying different types of damage. This iterative process
involves fine-tuning model parameters using optimization algorithms like stochastic gradi-
ent descent. Throughout training, models are regularly evaluated using validation data to
ensure their ability to accurately identify new instances of pavement distress.

This study explores three key machine learning models pivotal in pavement distress
classification, each offering unique advantages crucial to the success of our classification
efforts. The first structure is the ResNet50 architecture (Figure 3).
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The ResNet50 architecture is a cornerstone of deep learning and is renowned for its
exceptional performance in tackling challenging image classification tasks [35]. As part of
the ResNet family, it stands out for its depth, comprising 50 layers. Central to ResNet50 is its
innovation in employing residual connections, also known as identity or skip connections,
which have significantly enhanced the training of extremely deep neural networks.

These connections address the challenge of vanishing gradients, a common issue
in training deep networks, by allowing information to bypass certain layers, thereby
facilitating better gradient flow from input to output layers. This critical feature not
only prevents performance degradation as networks deepen but also optimizes overall
model performance more efficiently. Each residual block in ResNet50 consists of several
convolutional layers with batch normalization and ReLU (Rectified Linear Unit) activation
functions, serving as fundamental units that progressively extract features from basic to
complex throughout the network architecture.

As a result, ResNet50 excels in detecting intricate patterns within data, which is crucial
for tasks requiring advanced feature extraction, such as distinguishing between different
types of pavement distress that may appear visually similar. While ResNet50 demonstrates
impressive performance and leadership on complex datasets, its deep structure presents
challenges in environments with limited computational resources due to high computa-
tional demands and substantial memory requirements. Nevertheless, its exceptional ability
to process images accurately and efficiently positions ResNet50 as a highly valuable asset
for precision and reliability in fields like pavement distress classification.

The second structure is ResNet18 (Figure 4).
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ResNet18, a refined iteration of the residual network (ResNet) architecture, strikes a
balance between complexity and computational efficiency [37]. With its 18-layer structure,
ResNet18 offers a more compact alternative to deeper models like ResNet50 while still
incorporating the innovative residual connections characteristic of the ResNet family.

These residual connections address the challenge of vanishing gradients in deep
network training by allowing information to bypass certain layers, thus promoting better
gradient flow and more effective learning across the network. Each residual block in
ResNet18 includes two convolutional layers, batch normalization and ReLU activation,
leveraging these connections to enhance feature extraction.

This design not only reduces complexity but also enhances computational efficiency.
ResNet18 efficiently captures complex features with fewer computational resources, making
it suitable for environments where computing power is limited. It excels in analyzing
pavement distress imagery, utilizing its residual blocks to extract and propagate features
critical for the accurate classification of various pavement issues.

While ResNet18 may not capture as detailed features as deeper models, its optimized
design strikes a balance between complexity and computational efficiency [38,39]. This
balance renders ResNet18 particularly valuable in scenarios requiring lightweight models
or strict computational constraints. It proves effective for real-time processing and deploy-
ment on resource-constrained devices, offering a reliable solution for precise and efficient
pavement distress classification.

The third structure used in our research is the EfficientNetB3 network. EfficientNetB3
is part of the EfficientNet family, which marks a significant advancement in developing
efficient and effective convolutional neural network architectures. Unlike traditional models
like ResNet, which mainly increase network depth to enhance performance, EfficientNetB3
uses a unique compound scaling method that optimizes depth, width, and resolution
together. This method allows it to achieve better performance with fewer parameters
and makes it exceptionally resource-efficient, ideal for use in environments with limited
resources like mobile or edge computing devices [40].

The EfficientNetB3 architecture (Figure 5) is meticulously designed with multiple
blocks that specifically enhance feature extraction efficiency. These blocks incorporate
depth-wise convolutions and squeeze-and-excitation modules to boost operational effec-
tiveness. Depth-wise convolutions, which apply a separate filter to each input channel,
reduce computational demands significantly by limiting the number of parameters while
maintaining robust performance.

Squeeze-and-excitation modules heighten the model’s focus on important features
during training, significantly enhancing accuracy and the network’s ability to distinguish
between various inputs.
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EfficientNetB3 stands out for its lightweight design, which provides quick inference
times and a minimal memory footprint, making it exceptionally suited for real-world
scenarios where computational resources are limited. Despite its compact structure, Effi-
cientNetB3 does not sacrifice performance. It excels at extracting both hierarchical features
and spatial dependencies from images of pavement distress, considerably improving its
classification capabilities over more traditional models like ResNet [30].

In summary, EfficientNetB3 provides an excellent mix of both efficiency and effective-
ness, establishing it as a preferred option for classifying pavement distress. The model’s
success comes from its innovative compound scaling method and thoughtful architectural
choices, which allow it to deliver outstanding performance under the typical constraints
of real-world applications. Additionally, using SwinGAN to augment the dataset further
boosts EfficientNetB3′s ability to provide precise and dependable results in pavement
distress classification.

3.4. Model Training and Parameter Optimization

In this section, we present the results from our experiments focused on optimizing
key model parameters such as network depth, width, resolution, learning rate, and weight
initialization techniques. Our experiments involved comparative analyses using three
different models: ResNet18, ResNet50, and EfficientNetB3. Each model was tested under
various configurations to identify the most effective settings for precision in classification
and speed of convergence.

ResNet18 vs. ResNet50: We experimented with two depths in the ResNet architecture.
ResNet18, with fewer layers, demonstrated quicker convergence times and required less
computational power compared to ResNet50. While ResNet50, with its deeper config-
uration, was able to capture more complex features, this came at the cost of increased
overfitting and computational demand. The results underscored that ResNet18 provided a
balanced approach, offering sufficient depth to effectively capture relevant features while
maintaining faster training speeds and lower resource usage.

The introduction of EfficientNetB3, characterized by its compound scaling method
that optimally adjusts depth, width, and resolution, presented significant improvements in
both model efficiency and accuracy. The model outperformed both versions of ResNet in
terms of computational efficiency and precision, as indicated by higher F1 scores and lower
losses in validation phases.

We utilized adaptive learning rate techniques that helped stabilize the training process
across all models [42]. EfficientNetB3 benefited from this approach, showing improved
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convergence stability over ResNet models. In addition, The Adam optimizer was found
to be more effective across all models, facilitating faster convergence and reducing the
likelihood of getting stuck in local minima compared to SGD. This choice was instrumental
in achieving high precision and quick adaptation to new data patterns.

As in [43], we used data-driven analytics for weight initialization, particularly with
EfficientNetB3, which resulted in a noticeable improvement in model stability during the
initial training phases. This technique proved crucial in mitigating the vanishing gradient
problem in deep networks like ResNet50.

Figure 6 shows the pseudo-code for our project.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

ResNet18 vs. ResNet50: We experimented with two depths in the ResNet architec-
ture. ResNet18, with fewer layers, demonstrated quicker convergence times and required 
less computational power compared to ResNet50. While ResNet50, with its deeper con-
figuration, was able to capture more complex features, this came at the cost of increased 
overfitting and computational demand. The results underscored that ResNet18 provided 
a balanced approach, offering sufficient depth to effectively capture relevant features 
while maintaining faster training speeds and lower resource usage. 

The introduction of EfficientNetB3, characterized by its compound scaling method 
that optimally adjusts depth, width, and resolution, presented significant improvements 
in both model efficiency and accuracy. The model outperformed both versions of ResNet 
in terms of computational efficiency and precision, as indicated by higher F1 scores and 
lower losses in validation phases. 

We utilized adaptive learning rate techniques that helped stabilize the training pro-
cess across all models [42]. EfficientNetB3 benefited from this approach, showing im-
proved convergence stability over ResNet models. In addition, The Adam optimizer was 
found to be more effective across all models, facilitating faster convergence and reducing 
the likelihood of getting stuck in local minima compared to SGD. This choice was instru-
mental in achieving high precision and quick adaptation to new data patterns. 

As in [43], we used data-driven analytics for weight initialization, particularly with 
EfficientNetB3, which resulted in a noticeable improvement in model stability during the 
initial training phases. This technique proved crucial in mitigating the vanishing gradient 
problem in deep networks like ResNet50. 

Figure 6 shows the pseudo-code for our project. 

 
Figure 6. Project’s pseudo-code. 

3.5. Model Deployment and Screening Analysis 
FastAPI offers a powerful and efficient solution for deploying machine learning mod-

els, such as the EfficientNetB3, for image classification tasks. Known for its high perfor-
mance and user-friendliness, FastAPI enables developers to easily integrate their models 
into applications that are both scalable and ready for production. It allows for the quick 
setup of API endpoints that manage model inference requests, meaning users can submit 

Figure 6. Project’s pseudo-code.

3.5. Model Deployment and Screening Analysis

FastAPI offers a powerful and efficient solution for deploying machine learning
models, such as the EfficientNetB3, for image classification tasks. Known for its high
performance and user-friendliness, FastAPI enables developers to easily integrate their
models into applications that are both scalable and ready for production. It allows for the
quick setup of API endpoints that manage model inference requests, meaning users can
submit data and obtain real-time predictions effortlessly. Furthermore, FastAPI enhances
developer-user communication with its automatic documentation generation feature, which
clarifies and details API usage comprehensively. By utilizing FastAPI with the Efficient-
NetB3 model, advanced image classification applications can be created seamlessly, making
sophisticated machine learning model capabilities accessible for projects.

4. Results and Analysis

In this study, we assessed the effectiveness of three different convolutional neural
network (CNN) models, ResNet50, ResNet18, and EfficientNetB3, in classifying images de-
picting pavement distress. The table provided outlines the training and testing performance
for each model in terms of both accuracy and loss.

The experimental results from Table 1 highlight the performance metrics of different
models for pavement distress classification. Three models were evaluated: ResNet50,
ResNet18, and EffNetB3 + SwinGAN, each assessed over three runs for training accuracy
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(Tr. Acc.), testing accuracy (Ts. Acc.), training loss (Tr. Loss), testing loss (Ts. Loss), F1 score,
efficiency, and computational demand.

Table 1. Experimental results for pavement distress classification models.

Model Run Tr. Acc. Ts. Acc. Tr. Loss Ts. Loss F1 Score Efficiency Computational
Demand

ResNet50 1 72.9% 69.0% 2.97 3.02 0.80 Moderate High
2 73.5% 70.1% 2.90 2.95 0.78 Moderate High
3 74.2% 71.0% 2.85 2.90 0.81 High High

ResNet18 1 75.0% 72.6% 2.65 2.82 0.83 High Moderate
2 76.0% 73.5% 2.60 2.75 0.85 High Moderate
3 77.1% 74.3% 2.50 2.65 0.82 High Moderate

EffNetB3 + SwinGAN 1 78.3% 76.7% 1.47 1.60 0.87 Very High Low
2 79.0% 77.4% 1.40 1.50 0.91 Very High Low
3 79.8% 78.2% 1.33 1.45 0.90 Very High Low

ResNet50: Across its three runs, ResNet50 demonstrated consistent performance with
training accuracies ranging from 72.9% to 74.2% and testing accuracies from 69.0% to
71.0%. However, it exhibited moderate to high computational demands throughout all
runs, with an F1 score peaking at 0.81, indicating good overall performance but with
noticeable variability in efficiency.

ResNet18: This model consistently showed improvements over ResNet50 in both
training and testing accuracies, achieving ranges from 75.0% to 77.1% and 72.6% to 74.3%,
respectively. ResNet18 also maintained high F1 scores ranging from 0.82 to 0.85. It exhibited
moderate computational demands, making it a more efficient alternative to ResNet50,
especially in scenarios where computational resources are constrained.

EffNetB3 + SwinGAN: Combining EfficientNetB3 with SwinGAN resulted in the
highest accuracies among the models evaluated, with training accuracies ranging from
78.3% to 79.8% and testing accuracies from 76.7% to 78.2%. This model consistently
achieved the highest F1 scores, ranging from 0.87 to 0.91, indicating robust performance
in classifying pavement distress. Despite its very high efficiency in terms of F1 score
and moderate computational demand, it demonstrated low computational requirements,
making it suitable for resource-constrained environments.

While ResNet50 and ResNet18 showed competitive performance, EffNetB3 + SwinGAN
emerged as the most effective model for pavement distress classification, balancing high
accuracy with efficient computational demands. The results underscore the importance
of model selection based on both performance metrics and computational feasibility in
real-world applications of infrastructure management.

To further explain the model training loss in more detail, Figure 6 depicts the variation
in training loss over epochs for the different convolutional neural network models used in
this study, showcasing their convergence patterns and relative performance.

Standing out among the three, EfficientNetB3 delivered the best results with the
highest accuracies (78% training and 76.5% testing) and the lowest losses (1.47 in training
and 1.60 in testing). This model leverages a compound scaling method that optimally
adjusts its depth, width, and resolution, providing superior performance with fewer
parameters compared to the ResNet models.

4.1. Statistical Insights

In this section, statistical methods are employed to assess the performance disparities
observed among machine learning models in this study. The statistical tests aim to address
the question: To what extent do the differences in performance across models vary in terms
of F1 scores and accuracies?

To achieve this, a series of t-tests were conducted to compare the mean F1-scores of
EfficientNetB3 + SwinGAN with other models such as ResNet50. The t-test was selected
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under the assumption of normality in the distribution of mean F1-scores derived from
multiple independent model runs. The hypotheses for these tests are stated as follows:

• H0: There is no statistically significant difference between F1-scores from Efficient-
NetB3 + SwinGAN and ResNet50.

• H1: There is a significant difference in the F1-scores between EfficientNetB3 + SwinGAN
and ResNet50.

These t-tests result, then, in a p-value equal to 0.0029 when comparing EfficientNetB3 +
SwinGAN with ResNet50. Clearly, such a p-value is way lower than the standard threshold
of 0.05; therefore, the F1-score differences are statistically significant. This strong statistical
evidence supports our claim that EfficientNetB3 + SwinGAN has architectural advantages
for the efficient handling of image classification tasks, especially pavement distress imagery.

For the two models, the difference in their mean F1-scores is within 5% to 15% with
confidence, which statistically upholds the significance of the performance increase when
using EfficientNetB3 + SwinGAN. Figure 7 illustrates the fluctuation of precision scores
over epochs across different convolutional neural network models, offering insights into
their precision performance and convergence patterns.
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4.2. EfficientNetB3 + SwinGan vs. PicT

As new models emerge in the field, one particularly caught our attention. PicT, the slim
weakly supervised vision transformer designed for pavement distress classification [44],
represents a pioneering approach to leveraging vision transformers for infrastructure
management. Unlike traditional convolutional neural networks (CNNs), PicT integrates
transformer-based architectures specifically tailored for handling image patch relationships
through self-attention mechanisms.

This innovative model optimizes the detection and classification of various pavement
distress types, such as cracks and potholes, by learning from weakly labeled data. By
enhancing the efficiency of model training and improving classification accuracy, PicT
demonstrates significant potential in advancing the field of automated pavement assess-
ment, supporting proactive maintenance strategies and infrastructure sustainability.

We further experimented with a benchmark of our EfficientNetB3 model to that of
PicT. The distinctions between the EfficientNetB3 + SwinGan model and the state-of-
the-art PicT for pavement distress classification are clearly evident in direct comparison.
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EfficientNetB3 achieves a precision rate of 76.7% in identifying pavement distress, while
PicT, utilizing vision transformers, slightly surpasses this with a precision of 77%. This
marginal difference underscores the effectiveness of both models in accurately recognizing
patterns of pavement distress.

EfficientNetB3 adheres to the conventional architecture of convolutional neural net-
works but excels in optimizing computational efficiency, making it particularly advanta-
geous in resource-constrained environments. In contrast, PicT adopts a novel, slim, weakly
supervised Vision Transformer architecture that prioritizes self-attention mechanisms and
efficient transfer learning of intricate image features. Despite requiring more computational
power and a specialized architecture, PicT achieves comparable precision to EfficientNetB3.

Therefore, the choice between EfficientNetB3 and PicT hinges on several factors, includ-
ing required precision, available computational resources, and environmental constraints
during model deployment. This decision is crucial for ensuring that the selected model
effectively represents and addresses the specific application needs at hand. Figure 8 shows
the different precision levels achieved by each model during our implementation.
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Figure 9 shows the benchmark in model precision for both, PicT and EfficientNetB3
(after using the SwinGan model).

4.3. Detection and Classification versus Maintenance Plan Execution

Throughout our work, we have focused on utilizing machine learning techniques for
the detection and classification of cracks to automate part of the pavement management
process, specifically identifying where to implement healing techniques. One such tech-
nique that has garnered attention is microwave-heating healing technologies. In a study on
self-healing asphalt concrete [45], the authors introduce a novel dual microwave-heating
approach designed to enhance the self-healing capabilities of asphalt pavements. It is not
the intention of this research to study, apply, or develop healing techniques but rather to
study the detection and classification of cracks.
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5. Conclusions and Implications for Decision Makers and Practitioners

Effective pavement management is essential for maintaining infrastructure integrity
and ensuring safe transportation networks. Traditional approaches to pavement main-
tenance often rely on periodic inspections and manual assessments, which can be labor-
intensive and prone to subjective interpretation. Recent advancements in machine learning
have revolutionized the field by enabling predictive modeling and automated detection of
pavement distress, such as cracks and potholes.

This article explores the integration of advanced machine learning techniques into
pavement management systems. These technologies enhance decision-making processes,
improve resource allocation, and contribute to the overall sustainability of infrastructure
maintenance practices. By leveraging big data and sophisticated algorithms, stakehold-
ers can proactively address pavement deterioration, extend asset lifespan, and optimize
maintenance efforts based on real-time, data-driven insights.

The integration of machine learning techniques into pavement management systems
represents a significant advancement towards more efficient and sustainable infrastructure
maintenance. Predictive modeling and automated detection of pavement distress enable
stakeholders to make informed decisions, optimize resource allocation, and enhance the
resilience of transportation networks.

Machine learning algorithms have demonstrated their capability to accurately pre-
dict pavement degradation and identify critical maintenance needs, thereby improving
operational efficiency and reducing lifecycle costs. These technologies enable proactive
maintenance strategies that prioritize interventions based on risk assessment, leading to
prolonged pavement lifespan and enhanced user safety.

However, adopting machine learning in pavement management is not without its chal-
lenges. Issues such as data quality, model interpretability, and implementation costs require
careful consideration. Standardizing data collection protocols, investing in staff training,
and addressing privacy concerns are essential steps toward overcoming these obstacles.

Our study highlights the performance of various models. ResNet50 demonstrated
moderate to high accuracy, with testing accuracies ranging from 69.0% to 71.0% and an F1
score up to 0.81. ResNet18 showed improvements, achieving testing accuracies from 72.6%
to 74.3% and F1 scores from 0.82 to 0.85, with moderate computational demands. EffNetB3
+ SwinGAN emerged as the most effective model, achieving testing accuracies from 76.7%
to 78.2% and F1 scores from 0.87 to 0.91, with low computational demands.
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While ResNet models showed competitive accuracy, EffNetB3 + SwinGAN excelled in
both accuracy and efficiency, making it suitable for resource-constrained environments. Our
benchmark analysis comparing EfficientNetB3 with PicT revealed that both models are effec-
tive in pavement distress classification. EfficientNetB3, integrated with SwinGAN, achieved
a precision rate of 76.7%, while PicT, utilizing vision transformers, slightly surpassed this
with a precision of 77%. This marginal difference underscores the robust performance of
both models in accurately recognizing and classifying pavement distress features.

Future research could focus on optimizing these CNN models for real-time applica-
tion in varying environmental conditions and pavement types. Additionally, exploring
ensemble methods or hybrid models could enhance the robustness and generalizability of
pavement distress classification systems.

Looking forward, continuous research and development in machine learning method-
ologies tailored to pavement management will be crucial. Collaborative efforts between
researchers, policymakers, and industry stakeholders are necessary to refine algorithms,
validate findings across diverse environments, and integrate new technologies seamlessly
into existing infrastructure management frameworks.

Machine learning holds immense promise for revolutionizing pavement management
practices, but its successful implementation hinges on addressing technical challenges and
fostering collaboration across disciplines. Thus, we can pave the way for smarter, more
resilient transportation infrastructure capable of meeting the demands of the future.

Policymakers and managers should prioritize integrating machine learning algorithms
into existing pavement management systems. This integration can enhance maintenance
scheduling efficiency by accurately predicting pavement degradation and identifying crit-
ical areas needing immediate attention. Standardizing data collection protocols across
jurisdictions can facilitate the development of robust machine learning models, and policy-
makers can establish guidelines for data collection, storage, and sharing to enhance model
accuracy and reliability.

Managers should advocate for investment in advanced technology and training pro-
grams for personnel involved in pavement management. This includes acquiring cutting-
edge machine learning tools and ensuring that staff are proficient in using and interpreting
the results from these technologies.

Utilizing machine learning for risk-based prioritization can optimize resource alloca-
tion. Policymakers can develop policies that prioritize maintenance interventions based on
the severity and likelihood of pavement deterioration, identified through machine learn-
ing models. Establishing policies for continuous monitoring and evaluation of machine
learning applications in pavement management is crucial. This ensures that implemented
strategies are effective and adaptable to changing conditions, thereby improving long-term
infrastructure resilience.
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