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Abstract: Structural graph clustering is a data analysis technique that groups nodes within a graph
based on their connectivity and structural similarity. The Structural graph clustering SCAN al-
gorithm, a density-based clustering method, effectively identifies core points and their neighbors
within areas of high density to form well-defined clusters. However, the clustering quality of SCAN
heavily depends on the input parameters, ϵ and µ, making the clustering results highly sensitive
to parameter selection. Different parameter settings can lead to significant differences in clustering
results, potentially compromising the accuracy of the clusters. To address this issue, a novel structural
graph clustering algorithm based on the adaptive selection of density peaks is proposed in this paper.
Unlike traditional methods, our algorithm does not rely on external parameters and eliminates the
need for manual selection of density peaks or cluster centers by users. Density peaks are adaptively
identified using the generalized extreme value distribution, with consideration of the structural simi-
larities and interdependencies among nodes, and clusters are expanded by incorporating neighboring
nodes, enhancing the robustness of the clustering process. Additionally, a distance-based structural
similarity method is proposed to re-cluster noise nodes to the correct clusters. Extensive experiments
on real and synthetic graph datasets validate the effectiveness of our algorithm. The experiment
results show that the ADPSCAN has a superior performance compared with several state-of-the-art
(SOTA) graph clustering methods.

Keywords: structural clustering; adaptive peak selection; generalized extreme value distribution;
distance-based similarity

1. Introduction

Graphs or networks represent a fundamental data structure utilized for depicting data
without a fixed schema [1]. Composed of nodes and edges, nodes symbolize objects while
edges denote the relationships between these objects. Clustering and classification tasks
find applications across various domains. For instance, the latest methods in hyperspectral
image (HSI) classification, such as M3FuNet [2], and the CC-MIDNN [3] method for
estimating arrival times, illustrate their wide-ranging impact. This paper focuses primarily
on graph clustering tasks. Graph clustering is a critical task in graph data analysis, aimed at
dividing vertices into distinct groups where connections within groups are dense, and those
between groups are sparse. This technique is widely applied in identifying functional
modules in metabolic networks [4], communities in social networks [5], research teams in
collaborative networks [6], and handwritten character recognition [7,8].

Numerous graph clustering methods have been proposed to date, encompassing a
range of approaches such as graph partitioning [9], hierarchical methods [10], density-based
methods [11,12], grid-based methods [13], spectral methods [14] and propagation-based
meth-ods [15]. Most existing methods successfully partition clusters. However, many
methods still face challenges in practical. In particular, selecting the appropriate graph
clustering technique requires careful consideration of specific application contexts and
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data characteristics. For instance, the SCAN [16] is a structural graph clustering method.
The core premise of the SCAN algorithm is that if two nodes are sufficiently similar in
terms of their neighboring nodes, they are likely to belong to the same cluster. Unlike
other clustering algorithms, SCAN can identify the unique roles of different nodes, such as
identifying hub nodes that connect distinct clusters and outliers that are loosely connected
to any cluster [16]. Although the SCAN algorithm has been successfully implemented in
various fields, its clustering accuracy is heavily dependent on the selection of parameters
ϵ and µ. This dependency makes the clustering results extremely sensitive to parameter
adjustments, and varying these parameters can lead to significant differences in clustering
results [17]. Additionally, according to the SCAN algorithm’s definition, any boundary
nodes that are neither core nodes nor connected to core nodes are considered noise. This
categorization may erroneously label many boundary nodes that have specific connectivity
patterns as noise, especially in sparsely connected graphs where the lack of sufficient con-
nections among nodes tends to increase the prevalence of noise nodes.Therefore, the main
issues affecting the accuracy of structural graph clustering are:

1. How to reduce or avoid the impact of parameter variations on clustering results?
2. How to correctly assign misclassified noise points to the appropriate clusters?

Considering the limitations of existing solutions, we propose a new structural graph
clustering algorithm called ADPSCAN, which includes adaptive density peak selection and
noise re-clustering parts. This algorithm executes structural graph clustering in three main
steps. Firstly, we use our defined methods for local density and dependency similarity to
construct a decision graph based on the input data. Secondly, to adaptively identify density
peaks in the decision graph, we propose using the Generalized Extreme Value (GEV)
distribution to fit the local density and dependency similarity. This fitting process yields
thresholds for local density and dependency similarity, which are then used to identify
density peak points. These points serve as potential cluster centers and form clusters with
their first-order neighbors. If two density peak points are first-order neighbors, they are
merged into the same cluster. Lastly, to accurately handle nodes that may be misclassified as
noise but actually have specific connection patterns, we propose a distance-based structural
similarity method. This method calculates the structural similarity between noise points
and the existing clusters, reassigning the noise points to the cluster with the highest
structural similarity.

Our main contributions can be summarized as follows:

1. ADPSCAN: We propose a structural graph clustering algorithm that utilizes adaptive
density peak selection to significantly reduce the dependency on parameters ϵ and µ,
characteristic of traditional SCAN algorithms. Our method utilizes a distance-based
structural similarity metric to accurately reclassify noise nodes. Our method not
only enhances the flexibility of the clustering process but also boosts the algorithm’s
adaptability to diverse datasets.

2. Adaptive Density Peaks Selection: We propose a method that utilizes the generalized
extreme value distribution to automatically select density peaks from decision graphs,
overcoming the limitations of existing density peak-based structural graph clustering
algorithms that require manual selection of cluster centers.

3. Noise Re-clustering: To address the issue of misclassifying noise nodes, we propose a
distance-based structural similarity method that effectively reassigns noise nodes to
the correct clusters.

4. Experimental Validation: We conduct extensive experiments on various real and
synthetic network datasets. The results demonstrate that our approach significantly
enhances clustering accuracy.

2. Related Work

In this section, we review the Density Peaks Clustering (DPC) algorithm and structural
graph clustering techniques.
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Density Peaks Clustering. The DPC algorithm [18] is a density-based clustering
technique primarily employed to identify cluster centers through local density and distance
metrics. One of the primary advantages of this method is its inherent ability to identify
distinct clusters naturally, without the necessity of predefining the number of clusters.
The essence of the DPC method lies in pinpointing data points that have the highest local
density and are significantly distant from other high-density points, designating them
as cluster centers. While the DPC algorithm demonstrates robust clustering capabilities,
its performance can be compromised when dealing with non-uniform datasets. Recently,
several variants of the DPC have been proposed to enhance the original algorithm. CPF [19]
improves clustering by partitioning data into areas of distinct densities before identifying
density peaks within each area, thus grouping points within the same cluster. The BC-
DPC algorithm [20] refines cluster center identification by creating balanced densities to
mitigate differences among clusters. However, due to fundamental differences in problem
definitions, these methods do not apply to structural graph clustering.

Structural Graph Clustering. The SCAN algorithm [16] is a well-known method
within the field of graph clustering. Its core concept is based on a simple yet powerful
principle: if two nodes are sufficiently similar within their neighborhood, then they are
likely to belong to the same cluster. This method not only identifies clustering results
but also recognizes the unique roles of different nodes within the graph. For instance,
the algorithm can identify hub nodes that connect different clusters and outliers that do not
have strong connections to any cluster. This capability allows for a deeper understanding
of the intrinsic structure and relationships within the graph.

Despite its effectiveness, the SCAN algorithm [16] exhibits lower efficiency when
handling large-scale graphs, leading to the development of various optimized versions.
One line of research has focused on overcoming the efficiency challenges of the original
SCAN algorithm in processing large graphs. For instance, the SCAN++ algorithm [1]
reduces redundant similarity calculations significantly by accurately identifying vertex
types and their two-hop neighbors. Additionally, the pSCAN algorithm [11], a state-of-
the-art method based on pruning techniques, optimizes the computation sequence of
vertices and implements timely pruning strategies to accelerate clustering. This approach
avoids unnecessary similarity calculations after vertex types have been determined, thereby
enhancing processing efficiency.

On another front, methods like GS*-Query [17], developed based on the GS*-Index [17]
algorithm, offer an efficient response to clustering queries. SCAN-XP [21], ppSCAN [22],
and GBBSIndexSCAN [23] leverage parallel computing technologies to expedite the gener-
ation of clustering results, making them particularly suitable for the rapid processing of
large-scale network data.

Although all these methods have made advancements in the field of graph clustering,
they often fail to adequately address issues related to parameter dependency or clustering
accuracy. This paper proposes a structural graph clustering algorithm based on the adap-
tive selection of density peaks, which effectively eliminates reliance on input parameters.
Additionally, we propose a distance-based structural similarity method for accurately
managing noise nodes, thereby enhancing the quality of the clustering process, as well as
its level of automation.

3. Problem Definition

In this paper, we focus on an unweighted undirected graph G = (V, E), where V is
the set of nodes and E is the set of edges, with |V| represented by n and |E| by m. The
objective of this paper is to develop a new structural graph clustering algorithm that
adaptively selects density peaks as potential cluster centers, thereby reducing dependency
on parameters and improving clustering accuracy by reassigning noise points. The key
parameters involved in the algorithm are summarized in Table 1.
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Table 1. The Summary Of Key Notations.

Not. Definition and Description

G = (V, E) Unweighted undirected graph, with V as nodes and E as edges.
N[u] Structural neighbors of node u, including u itself.
deg[u] Degree of node u, i.e., the size of N[u].
N(u) Open neighborhood of u, i.e., its direct neighbors.
σ(u, v) Structural similarity between nodes u and v.
µuv Relative similarity between u and its neighbor v.
ρu Local density of u, summing σ(u, v) values under a normal distribution.
δu Dependency similarity of u, the max similarity to neighbors with higher density.
DirREACH(u, v) Direct density reachability from u to v if u is a peak.
REACH(u, v) Density reachability if there is a path of peaks between u and v.

Definition 1 (Structural Neighbors). For a graph G(V, E), the structural neighbors of a vertex u
include its neighboring vertices and itself, denoted as N[u] = {v ∈ V | (u, v) ∈ E} ∪ {u}.

Note that, the degree of u, denoted by deg[u], is the cardinality of N[u] (i.e., deg[u] =
|N[u]|). The open neighborhood of u, denoted by N(u), is the set of neighbors of u (i.e.,
N(u) = {v ∈ V | (u, v) ∈ E}).

Definition 2 (Structural Similarity). The structural similarity between two vertices u and v in a
graph is defined as the number of common neighbors between u and v divided by the square root
of the product of the degrees of u and v. This metric is formulated as shown in Equation (1) and
denoted by σ(u,v).

σ(u, v) =
|N[u] ∩ N[v]|√
deg[u] · deg[v]

(1)

In the algorithm design section, two metrics are defined for each vertex: local density
and dependency similarity. Utilizing these definitions, density peak vertices can be identi-
fied, and the algorithm’s extension steps can then be used to form the final set of clusters.

Definition 3 (Local Density). Given µuv = σt
σ(u,v) , where vertex v is a structural neighbor of

vertex u, the local density of vertex u is defined as the sum of the values of σ(u,v) under a standard
normal distribution for µuv, as shown in Equation (2) and denoted by ρu.

ρu = ∑
v∈N[u]

1√
2π

exp
(
−µ2

uv
2

)
(2)

Definition 4 (Dependency Similarity). The maximum structural similarity between vertex u and
any of its neighboring vertices that have a higher local density than u is referred to as dependency
similarity. This measure is presented in Equation (3) and denoted by δu.

δu = max
v:ρv>ρu ,v∈N(u)

(σ(u, v)) (3)

For example, in Figure 1a, the first-order neighbors of node u are v1, v2, and v3.
Among these, v1 and v3 have higher local densities than node u. The dependency similarity
δu is the maximum structural similarity between u and either v1 or v3.

Based on local density and dependency similarity, a definition for density peak vertices
can be established. A vertex u is designated as a density peak vertex if it possesses a
relatively high local density ρu and a relatively low dependency similarity δu.
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(a) Dependency Similarity (b) Direct Density Reachability (c) Density Reachability

Figure 1. Visualization of Key Definitions in the Problem Statement.

Definition 5 (Direct Density Reachability). If a vertex is a density peak, then it is directly
density-reachable from all its structural neighbors. For instance, if vertex u is a density peak and
vertex v is a structural neighbor of vertex u, then vertex u is directly density-reachable to vertex v,
which is formally defined as follows:

DirREACH(u, v)⇔ DensityPeak(u) ∧ v ∈ N(u) (4)

For example, in Figure 1b, node u is a density peak, and node u is directly density-
reachable to all its first-order neighbors.

Definition 6 (Density Reachability). If there exists a path between two vertices such that every
vertex along the path is a density peak, then these two vertices are considered density-reachable.
Vertices that are density-reachable are grouped into the same cluster. For instance, if vertex u is a
density peak and there is a path from vertex u to vertex v where every vertex on the path is a density
peak, then vertex u is density-reachable to vertex v, which is formally defined as follows:

REACH(u, v)⇔ ∃ path P(u→ v) : ∀w ∈ P, DensityPeak(w) (5)

Here, w represents each vertex w along the path P(u→ v), emphasizing that each of
these vertices is a density peak. For example, in Figure 1c, there is a path from u to v1 that
passes through w1 and w2, where u, w1, w2, and v1 are all density peaks. Therefore, u is
density-reachable to v1.

4. Method

In this section, we propose a structural graph clustering algorithm named ADPSCAN,
which includes adaptive density peak selection and noise re-clustering parts. Our algorithm
aims to address the parameter dependency issues inherent in traditional SCAN algorithms,
significantly enhancing clustering accuracy. Traditional SCAN algorithms typically rely on
manually setting parameters ϵ and µ. To overcome this challenge, we propose analyzing
data trends in decision graphs and utilizing the generalized extreme value distribution to
automatically select thresholds for local density and dependency similarity,thereby further
enabling the selection of density peak nodes. This automated approach identifies density
peaks as potential clustering centers, reducing the manual intervention required and
making the clustering process more automated. Additionally, we propose distance-based
structural similarity to effectively handle noise nodes, accurately reassigning these nodes
to appropriate clusters based on their structural similarities with clusters. This further
enhances the algorithm’s accuracy. Framework of our algorithm is shown in Figure 2. We
will now provide a detailed description of each component.
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Figure 2. Overview of ADPSCAN.

4.1. Adpative Density Peaks Selection

In this section, we present our method for the automated identification of density
peaks in structural graph clustering. Our approach fundamentally relies on analyzing
decision graphs and utilizing the generalized extreme value distribution to autonomously
determine clustering centers. This greatly reduces the dependency on parameter selection
that is common in traditional clustering algorithms. In Section 4.1.1, we define decision
graphs and describe their role in our proposed methodology. In Section 4.1.2, we detail
the observed characteristics of decision graphs and their correlation with the generalized
extreme value distribution. Subsequently, in Section 4.1.3, we introduce the generalized
extreme value distribution and validate its close fit to the observed characteristics of
decision graphs through preliminary experiments. Finally, in Section 4.1.4, we introduced
the process of adaptive density peak selection and the pseudo code.

4.1.1. Decision Graph

Decision graph is a commonly utilized tool in density peaks clustering algorithms,
employed for visualizing and assisting in the selection of clustering centers. In this graphical
representation, each point within the graph represents a data point; the horizontal axis
typically indicates the local density of the point (i.e., the number or density of surrounding
points), while the vertical axis represents the distance to the nearest point with a higher
density. In this paper, in accordance with Definitions 3 and 4, we design decision graphs
where ρ is plotted on the x-axis and δ on the y-axis, representing the local density and
dependency similarity of each node in the graph, respectively.

4.1.2. Observation

Nodes on the decision graph exhibit several distinctive features:

1. Cluster Centers: Nodes characterized as potential cluster centers typically possess a
higher local density and a lower dependency similarity, consistently appearing in the
lower right quadrant of the decision graph.

2. Non-cluster Nodes: Conversely, nodes that are not cluster centers often display high
values of both ρ and δ or low values of ρ and high values of δ, typically found in the
upper right or upper left quadrants.

Observations indicate that cluster centers typically exhibit higher local density (ρ)
and lower dependency similarity (δ), while non-cluster centers display the opposite char-
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acteristics, with lower local density and higher dependency similarity. This distribution
characteristic provides a critical insight: it is feasible to distinguish between cluster centers
and non-cluster centers by setting appropriate thresholds. Specifically, determining suitable
thresholds for ρ and δ can effectively identify potential cluster centers. The selection of
these thresholds not only impacts the accuracy of clustering but also directly influences
the efficiency of the clustering process. Next, we will explore in detail how to automati-
cally determine these thresholds through the algorithm, optimizing the identification of
cluster centers and reducing the dependency on manual intervention. This step is a key
component of the adaptive density peak identification in our proposed structural graph
clustering algorithm.

By observing the local density graph in Figure 3a and the dependency similarity graph
in Figure 3b of nodes, it is apparent that certain nodes exhibit significantly higher local
density and significantly lower dependency similarity, albeit in smaller numbers. The
presentation of extreme values in local density and dependency similarity characteristics is
crucial here. The generalized extreme value distribution is used to model extreme values
in samples, particularly suitable for extreme value theory. Thus, employing statistical
methods to determine thresholds for local density and dependency similarity is appro-
priate. Therefore, the decision graph is divided into two sections by these thresholds,
with cluster centers located in the lower right quadrant and other nodes in the opposite
section. Therefore, cluster centers can be automatically identified.

(a) Local density (b) Dependency similarity

Figure 3. Local density and dependency similarity distribution.

4.1.3. Generalized Extreme Value Distribution

Local density and dependency similarity approximately follow the Generalized Ex-
treme Value (GEV) distribution. In statistics, the GEV distribution is a class of continuous
probability distributions used to model the maximum or minimum values of samples.
It plays a pivotal role in extreme value theory, particularly in identifying and analyzing
extreme behaviors in datasets, such as the identification of cluster centers in this paper. The
GEV distribution encompasses three types of extreme value distributions: Gumbel, Fréchet,
and Weibull, each corresponding to different tail behaviors. The GEV distribution can be
expressed as follows:

G(z; µ, σ, ξ) = exp

(
−
[

1 + ξ

(
z− µ

σ

)]− 1
ξ

)
(6)

In the formula, z represents a standardized variable, while µ, σ, and ξ are the location,
scale, and shape parameters, respectively. The value of the shape parameter ξ determines
the type of the GEV distribution. In this paper, we employ maximum likelihood estimation
to automatically derive these parameters. As demonstrated in Figure 4a,b, the fits for local
density and dependency similarity are performed using the generalized extreme value
cumulative distribution, which aligns perfectly with the empirical distributions.
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(a) Local density fitting (b) Dependency similarity fitting

Figure 4. Fitting plots of GEV.

After obtaining the three parameters through maximum likelihood estimation, xp can
be obtained using the Equation (7), where p represents the probability of the quantile, and σ̂,
µ̂, and ξ̂ denote the estimated parameters of the generalized extreme value distribution:

x̂p =

µ̂− σ̂
ξ̂
(1− y−ξ̂

p ), if ξ̂ ̸= 0;

µ̂− σ̂ log yp, if ξ̂ = 0,
(7)

yp = − log p (8)

where yp = − log p is the quantile function corresponding to the probability p. Specifi-
cally, xpρ represents the threshold for local density, and xpδ represents the threshold for
dependence similarity. These thresholds are computed using the parameters σ̂, µ̂, and ξ̂. If
the local density of node i exceeds xpρ and the dependence similarity is less than xpδ, it is
considered a density peak node. In the following section, we will introduce the specific
design used to determine thresholds through the generalized extreme value distribution.

4.1.4. Adpative Density Peaks Selection Algorithm Procedure

The method for adaptively selecting density peaks is outlined in Algorithm 1. First,
the upper tail of local density is fitted to the GEV distribution to obtain the parameter set
gev_params_rho. Subsequently, the lower tail of dependency similarity is also fitted to
the GEV distribution, yielding its distribution parameters, gev_params_delta (lines 1–2).
Based on these parameter sets, we calculate the thresholds for ρ and δ. The threshold for
ρ is determined by setting a high probability point to isolate extreme high values, while
the threshold for δ is identified through a low probability point to recognize extreme low
values (lines 3–4). The algorithm begins by initializing an empty list, density_peaks,
to store the indices of the identified density peaks (line 5). It then iterates over each
node i in the decision graph (line 6), checking whether the local density ρ[i] exceeds the
threshold threshold_rho and the dependency similarity δ[i] falls below the threshold
threshold_delta (line 7). If both conditions are satisfied, the node i is appended to the
density_peaks list (line 8). Finally, the algorithm returns the list of identified density
peaks (line 9). The functions fit_gev and find_threshold are defined to fit the GEV
distribution and determine the thresholds, respectively. The fit_gev function takes the
data and the tail type as inputs and fits the GEV distribution accordingly (lines 10–15).
For the upper tail, it directly fits the data, whereas for the lower tail, it fits the negated
data to focus on the lower extremes. The find_threshold function calculates the threshold
based on the fitted parameters and the specified probability. For the upper tail, it uses the
probability directly, and for the lower tail, it adjusts the probability to reflect the lower
extreme values (lines 16–20).And The probability is typically set to 0.95, as it represents a
confidence level that ensures the selected thresholds capture the significant extreme values
while maintaining robustness against outliers.
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Algorithm 1: Adaptive Density Peaks Selection
Input : Local density values, ρ; Dependency similarity values, δ
Output : Density Peaks

1 // Fit GEV distribution
2 gev_params_rho← fit_gev(ρ, ’upper’)
3 gev_params_delta← fit_gev(δ, ’lower’)
4 // Determine threshold
5 threshold_rho← find_threshold(gev_params_rho, ’upper’, rho_prob)
6 threshold_delta← find_threshold(gev_params_delta, ’lower’, delta_prob)

7 density_peaks← empty list
8 for each node i in the decision graph do
9 if ρ[i] ≥ threshold_rho and δ[i] ≤ threshold_delta then

10 // Identify density peaks
11 density_peaks.append(i)
12 return density_peaks
13 Function fit_gev(data,tail):
14 if tail == ’upper’ then
15 // Fit upper tail
16 params← genextreme.fit(data)
17 else
18 // Fit lower tail
19 params← genextreme.fit(-data)
20 return params
21 Function find_threshold(params,tail,probability):
22 if tail == ’upper’ then
23 // Upper tail threshold
24 return genextreme.ppf(probability, *params)
25 else
26 // Lower tail threshold
27 return −genextreme.ppf(1 - probability, *params)

4.2. Redefining Noise Nodes

In this section, we propose a distance-based structural similarity measurement method
used for effectively partitioning noise nodes in graph data. Our method relies on distance
information between nodes in the graph to identify and reclassify nodes erroneously
labeled as noise. Initially, we introduce the definition of structural similarity and its
application in our approach. Finally, we demonstrate the specific design of this method in
clustering algorithms.

4.2.1. Calculate Structural Similarity

In contrast to Definition 2, when addressing the problem of partitioning noise nodes,
structural similarity is computed by comparing the sets of neighboring nodes reachable
within a specific hop range in the graph. Specifically, for any two nodes u and v in the
graph G = (V, E), we define their similarity sim(u, v) as follows:

sim(u, v) =
|NL(u) ∩ NL(v)|
|NL(u) ∪ NL(v)|

(9)

where NL(u) and NL(v) respectively represent the sets of neighbors within L hops for
nodes u and v. For each node, we recursively compute the set of neighbor nodes reachable
within up to L hops. Specifically, for any node u, the set of neighbors reachable within L
hops is obtained by merging the adjacency sets of neighbors reachable within L− 1 hops
of u.
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Through this approach, we address the situation where the structural similarity be-
tween any arbitrarily non-adjacent nodes is always zero. This method quantifies the
structural similarity between any two nodes in the graph, providing a means for in-depth
analysis based on data structure for subsequent noise nodes processing.

4.2.2. Re-Clustering of Noise Nodes

During the initial clustering process, some nodes may be erroneously labeled as noise
due to various reasons. Through distance-based structural similarity, we can effectively
reassess the cluster membership of these nodes. Our method first focuses on noise nodes
and computes their distance-based structural similarity with each cluster’s centroid nodes
to evaluate their similarity. The noise nodes are then assigned to the cluster with the highest
similarity to the centroid, and the clustering results are updated accordingly. The pseudo-
code for our method is provided in Algorithm 2.

Algorithm 2: Calculate Distance-Based Structural Similarity
Input: Graph G = (V, E), hop
Output: Dictionary D representing distance similarity

1 Initialize result as list of sets for each node for up to hop hops;
2 for h from 0 to hop− 1 do
3 foreach node u in V do
4 if h = 0 then
5 // Set initial adjacency
6 result[u][h]← set(adj);
7 else
8 // For each neighbor
9 foreach neighbor n in adj do

10 // Update result for hop
11 result[u][h]← result[u][h] ∪ result[n][h− 1];
12 Initialize distance_similarity as empty dictionary;
13 foreach node x in V do
14 Initialize distance_similarity[x];
15 foreach node y in V do
16 if x = y then
17 distance_similarity[x][y]← 1;
18 else
19 // Compute intersection and union
20 Set Intersection and Union of result[x][hop− 1] and result[y][hop− 1];
21 if Union empty then
22 distance_similarity[x][y]← 0;
23 else
24 // Similarity is intersection over union
25 distance_similarity[x][y]← Intersection

Union ;
26 return distance_similarity;

Firstly, we establish a result list, to store collections of neighbor nodes for each node in
the graph by the number of hops (line 1). For each hop from 0 to hop-1, the algorithm iterates
over all nodes in the graph. At hop 0, the direct neighbor set of each node is directly stored
in the corresponding entry in the result list. For hops greater than 0, the algorithm traverses
through each node’s neighbors, incorporating the neighbor’s previous hop neighbor set
into the current node’s current hop neighbor collection (lines 2–8). Then, we establish a
dictionary distance_similarity, to store the similarity degree between any two nodes
(line 9). For every pair of nodes, x and y, within the graph, if the nodes are identical, their
similarity is set to 1. If different, their similarity is calculated based on the intersection and
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union of their neighbor sets at the maximum hop count. If the union is empty, the similarity
is set to 0; otherwise, the similarity is calculated as the size of the intersection divided by
the size of the union (lines 10–20).

For example, as shown in Figure 5, the distance-based structural similarity between
nodes u and v is calculated using their L-hop neighborhood sets. Specifically, the method
for calculating structural similarity is based on the ratio of the size of the intersection of
these node sets to the size of their union. In the figure, the number of nodes n1, n2, . . . , n7
represents the intersection of the neighborhood sets NL(u) ∩ NL(v), and the sum of the
numbers of nodes S1, S2, . . . , S5 and n1, n2, . . . , n7 represents the union NL(u) ∪ NL(v).
By dividing the size of the intersection by the size of the union, the distance-based structural
similarity is obtained sim(u,v).

Figure 5. Distance-Based Structural Similarity.

Using the method above for computing structural similarity, we calculate the average
structural similarity between noise nodes and each cluster. Specifically, this involves
computing the average distance-based structural similarity between a node and all nodes
in a cluster. If a cluster achieves the highest average similarity score, the noise node
will be reassigned to this cluster. In the subsequent section, we will provide a detailed
implementation of the method for reassigning noise nodes.

Proof. Let N be the set of all noise nodes. Let Ck denote the cluster k. Define the average
structural similarity avg_simu,k of a noise node u with the nodes in cluster k as:

avg_simu,k =
1
|Ck| ∑

v∈Ck

sim(u, v)

where |Ck| represents the number of nodes in cluster k, and sim(u, v) denotes the structural
similarity between nodes u and v.

For a noise node u, compute its average structural similarity with each cluster Ck
as follows:

avg_simu,k =
1
|Ck| ∑

v∈Ck

sim(u, v)

Let avg_simu,k represent the average similarity of node u with the nodes in cluster
k. If:

avg_simu,k ≥ avg_simu,j for all j ̸= k,

then node u should be assigned to cluster k. This is because if avg_simu,k is the largest
among all clusters, then the overall similarity between node u and the nodes in cluster k is
the highest. That is, the average similarity of node u with cluster k is greater than with any
other cluster.

By assigning a noise node to the cluster with the maximum structural similarity, we
ensure that the node is allocated to the most appropriate cluster. This method enhances the
accuracy of clustering results and effectively manages noise nodes.
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4.3. ADPSCAN

In this section, we summarize the work above, and the pseudocode of ADPSCAN is
shown in Algorithm 3.

Algorithm 3: ADPSCAN
Input: Graph G = (V, E)
Output: Clusters

1 similarity← calculate_similarity(G);
2 ρ← calculate_rho(similarity, |V|);
3 δ← calculate_delta(similarity, ρ, |V|);
4 peak_list← automatic_density_peaks_selection(ρ, δ)(Algo.1);
5 clusters← get_clusters_reclassify_noise(G, peak_list);
6 distance_similarity← calculate_distance_structural_similarity(G, peak_list, hop);
7 clusters← reclassify_noise(G, peak_list, distance_similarity);
8 return clusters;

Firstly, we calculate the structural similarity for all nodes in the graph (line 1). From this
similarity, we calculate each node’s local density (ρ) and dependency similarity (δ) (lines
2–3). We then identify density peaks using an automated density peaks selection method
(line 4). We traverse each density peak node, initializing a cluster for unvisited peak nodes
and adding their neighboring nodes to a pending queue. We continuously extract nodes
from this queue and incorporate them into the current cluster. If these nodes are also density
peak nodes, we add their unvisited neighbors to the queue to expand the cluster (line 5).
Finally, for unprocessed nodes, identified as noise, we calculate the average distance-based
structural similarity to the clusters and assign them to the cluster with the highest structural
similarity (lines 6–7).

5. Experiments

In this section, we evaluate our proposed algorithm, ADPSCAN, on synthetic and real
networks to demonstrate its advantages.

Selection of Comparative Methods. To assess the performance of ADPSCAN, we
compare it against state-of-the-art structural graph clustering algorithms. Additionally,
to thoroughly validate the effectiveness of our method, we also compare it with five other
representative graph clustering algorithms.

- DistanceSCAN [24] is the state-of-the-art graph clustering algorithm based on dis-
tance, which utilizes structural similarities and distance information between nodes
to identify core nodes and their community structures within a graph.

- GS*-Query [17] is a recently proposed graph clustering approach, which is an index-
based approach.

- DPSCAN [25] is a density peak-based structural graph clustering method that identi-
fies core nodes using density and similarity metrics.

- FluidC [15] is also a recently proposed graph clustering approach, which is based on
the idea of fluids interacting in an environment.

- Girvan-Newman [26] (GN) is a method used in network analysis to detect commu-
nity structure in networks. It identifies communities within networks by iteratively
removing edges with high betweenness centrality, revealing clusters of densely inter-
connected nodes.

- SCAN [16] is a method that detects communities in networks by clustering nodes
based on structural similarity and hop-reachability, distinguishing hubs and out-
liers effectively.

Evaluation Measures. To conduct a comprehensive comparison of the performance
of various graph clustering algorithms, we employ two prevalent metrics: Normalized
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Mutual Information (NMI) and Adjusted Rand Index (ARI), both of which are commonly
used to gauge the effectiveness of clustering outcomes.

5.1. Synthetic Networks

In this section, we construct several synthetic networks to assess the performance
of various graph clustering algorithms. We use the LFR benchmark network [9], which
facilitates easy modifications of degree distributions and cluster sizes. Due to the high time
complexity of GN and SCAN, our comparisons are limited to clustering algorithms such as
DistanceSCAN, DPSCAN, GS*-Query, and FluidC.

Cluster Density: To assess the algorithms’ responsiveness to network variations,
the average degree (k) was adjusted, maintaining a fixed mixing parameter (λ = 0.1)
while varying k from 5 to 25. Each network consisted of 5000 nodes. As k increased,
the performance of five methods, evaluated by NMI, is displayed in Figure 6a. In Figure 6a,
DistanceSCAN shows moderate performance at lower k values, but its performance im-
proves as k increases. In contrast, FluidC’s performance diminishes with increasing k.
ADPSCAN maintains stable performance across the range, particularly excelling at k = 15,
where it nearly achieves perfect clustering.

(a) Varying the cluster density (b) Varying the inter-cluster edges

(c) Varying node size

Figure 6. Performance of different algorithms on the LFR benchmark networks.

Inter-Cluster Edge: To evaluate the algorithms’ sensitivity to changes in inter-cluster
edges, the λ was varied from 0.1 to 0.5, with k = 15, generating networks with different
inter-cluster connectivity. Each network comprised 5000 nodes. As λ increased, the per-
formance of all five methods, assessed by NMI, is depicted in Figure 6b, Figure 6b shows
a sharp decline in performance for all algorithms at λ = 0.4, with GS*-Query and FluidC
experiencing the most rapid declines. Both ADPSCAN and GS*-Query approached perfect
clustering at λ = 0.1.

Network Scale: To assess the adaptability of algorithms to networks of varying sizes,
we fixed the mixing parameter λ = 0.1 and the average degree k = 15, and varied the
number of nodes in the network from 500 to 2500. This setup allows us to observe the
performance and stability of the algorithms as they handle networks of different sizes.
As shown in Figure 6c, ADPSCAN consistently performs well, peaking at 500 nodes; Dis-
tanceSCAN steadily improves; DPSCAN peaks at 500 nodes but declines afterward; FluidC
exhibits significant fluctuations on smaller datasets but gradually stabilizes as the node
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size increases.; GS*-query starts lower but shows significant improvement, highlighting
each algorithm’s scalability and efficiency.

5.2. Real World Data

To evaluate various graph clustering algorithms, we employ three publicly available real-
world networks. Complete descriptions and data for these networks are accessible through
the UCI Network Data Repository (https://networkdata.ics.uci.edu/index (accessed on 25
July 2024)) and the Stanford Large Network Dataset Collection (https://snap.stanford.edu/
data/index.html (accessed on 25 July 2024)).

Zachary’s Karate Club Network: The Karate Club dataset is a well-known social
network dataset. Collected by Wayne W. Zachary in the 1970s, it was derived from ob-
serving the social interactions among members of a karate club at an American university.
The dataset includes 34 members and 78 edges representing social interactions among them.
This network became particularly famous due to a case study where internal conflict led
to the club’s split. Zachary accurately predicted the members’ alignment during the split,
showcasing the potential of social network analysis in understanding dynamics of social
structures. This dataset is frequently utilized to test the effectiveness of social network
analysis and graph clustering algorithms.

Books About US Politics: The network dataset consists of books related to US politics,
which were published around the 2004 presidential election. It represents books as nodes,
sourced from sales on Amazon.com. The connections or edges between nodes indicate that
books were often bought together by the same customers. This network includes 105 nodes
and 441 edges. According to Mark Newman, these books are categorized into three groups:
“liberal,” “neutral,” and “conservative.”

Dolphin social network: This dataset offers a comprehensive analysis of the behav-
ioral patterns of 62 bottlenose dolphins in New Zealand, resulting in the creation of a social
network diagram that illustrates their interactions. In this network, each of the 62 nodes
represents an individual dolphin, with edges between nodes indicating frequent interac-
tions between dolphin pairs. The Dolphin network is frequently cited as a classic example
for community detection and segmentation in complex network studies, illustrating the
social connections among the dolphins, which are categorized into two distinct groups.

5.2.1. Clustering Quality Analysis of ADPSCAN

The experimental results on several real-world datasets demonstrate that the ADP-
SCAN algorithm excels in clustering accuracy. We evaluated its performance on three
datasets—Karate, Polbooks, and Dolphins—and compared the results with other cluster-
ing algorithms, including DistanceSCAN, GS*-Query, DPSCAN, FluidC, GN, and SCAN.
The results are summarized in Table 2.

Table 2. Performance of different graph clustering algorithms on real-world data sets.

Karate Polbooks Dolphins

Algorithm ARI a NMI b ARI a NMI b ARI a NMI b

ADPSCAN 1.000 1.000 0.668 0.601 0.935 0.889
DistanceSCAN 0.515 0.502 0.633 0.531 0.753 0.608

GS*-Query 0.725 0.684 0.673 0.581 0.759 0.784
DPSCAN 0.882 0.837 0.695 0.593 0.586 0.740

FluidC 0.882 0.837 0.635 0.547 0.408 0.459
GN 0.882 0.837 0.680 0.576 0.935 0.889

SCAN 0.725 0.628 0.601 0.537 0.601 0.672
a ARI: Measures how similar two clustering results are, with values from −1 to 1. Higher values mean more
similarity. b NMI: Measures the shared information between two clustering results, with values from 0 to 1.
Higher values mean better agreement. The bold values indicate the best performance for each dataset.

https://networkdata.ics.uci.edu/index
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
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On the Karate dataset, ADPSCAN outperformed the other five algorithms, achieving
a perfect score of 1.000 in both ARI and NMI metrics. This indicates that ADPSCAN is
highly effective in precisely delineating cluster boundaries within structurally simple and
well-defined networks. Figure 7a illustrates the clustering results of ADPSCAN on the
Karate dataset, successfully grouping the data into two clusters, which further validates
the algorithm’s effectiveness.

(a) Zachary’s Karate Club Network (b) Dolphin social network

Figure 7. Performance of different algorithms on the LFR benchmark networks.

In the Polbooks dataset, ADPSCAN achieved an NMI score of 0.601, outperforming
other compared algorithms. Although the ARI score is slightly lower than that of DPSCAN
(0.668 vs. 0.695), this discrepancy can be attributed to the different focuses of the ARI and
NMI metrics. ARI emphasizes accurately recovering the true group boundaries within the
dataset, while NMI assesses the amount of shared information between the algorithmically
identified groups and the true groups. The presence of nodes connecting multiple clusters
in the Polbooks dataset contributes to the slight decrease in ARI score.

For the Dolphins dataset, ADPSCAN achieved the highest values for both ARI (0.935)
and NMI (0.889), indicating exceptional performance in capturing the true clustering struc-
ture within biologically influenced complex networks. Figure 7b presents the clustering
results of ADPSCAN on the Dolphins dataset, where the algorithm accurately identifies
the majority of dolphins in their respective clusters.

Overall, the observation that ADPSCAN consistently achieves optimal NMI and ARI
scores can be attributed to two key components of its design. The first component is the
adaptive density peak selection module, this module accurately identifies potential cluster
centers without requiring manual input, thereby ensuring the accuracy of clustering. Addi-
tionally, the second component is the noise re-clustering module,the high clustering quality
of ADPSCAN is further enhanced by its ability to re-cluster noise points. By computing
the distance-based structural similarity between noise points and clusters, ADPSCAN
reassigns noise points to appropriate clusters, thereby improving overall clustering quality.

5.2.2. Performance of Noise Re-Clustering

To validate the effectiveness and practical feasibility of our method,we conducted
ablation studies on multiple real-world datasets, including Karate, Polbooks, and Dolphins.
These datasets are not only characterized by complex structures and diverse data character-
istics but are also widely used to evaluate the performance of clustering algorithms. Our
study focused particularly on assessing the impact of noise re-clustering. We designated the
version of our algorithm without noise re-clustering as ADPSCAN-NR. The decision not to
perform ablation studies on adaptive density peaks selection was deliberate. Adaptive den-
sity peaks selection forms the foundational step of our approach, responsible for identifying
potential cluster centers without requiring manual input from users. The accuracy of this
step directly influences the precision of subsequent clustering. Hence, we concentrated our
efforts on evaluating how noise re-clustering enhances the final clustering results, ensuring
the integrity of our method.



Appl. Sci. 2024, 14, 6660 16 of 17

Across the Karate dataset, ADPSCAN achieved perfect scores with ARI and NMI
both reaching 1.000 compared to ADPSCAN-NR. On the Polbooks dataset, ARI and NMI
improved to 0.668 and 0.601, respectively, while on Dolphins, these metrics rose to 0.935
and 0.889. These significant performance improvements can be attributed to our noise
re-clustering method, which calculates distance-based structural similarities between noise
points and clusters, thereby enhancing clustering quality and stability (Table 3).

In conclusion, our ablation study underscores that by integrating adaptive threshold
selection and noise re-clustering, our method substantially enhances clustering accuracy.

Table 3. Ablation Study Results for Noise Re-clustering.

Karate Polbooks Dolphins

Algorithm ARI a NMI b ARI a NMI b ARI a NMI b Avg.ARI c Avg.NMI d

ADPSCAN 1.000 1.000 0.668 0.601 0.935 0.889 0.868 0.845
ADPSCAN-

NR 0.486 0.494 0.193 0.349 0.168 0.326 0.282 0.390

a ARI:AMeasures how similar two clustering results are, with values from −1 to 1. Higher values mean more
similarity. b NMI:Measures the shared information between two clustering results, with values from 0 to 1.
Higher values mean better agreement. c Avg.ARI: Average Adjusted Rand Index across all datasets. d Avg.NMI:
Average Normalized Mutual Information across all datasets. The bold values indicate the best performance for
each dataset.

6. Conclusions

In this paper, a novel structural graph clustering algorithm, ADPSCAN, is proposed,
based on the adaptive selection of density peaks. To tackle the high dependency of tra-
ditional methods on external parameters, the generalized extreme value distribution is
utilized to adaptively pinpoint potential clustering centers. Preliminary experiments have
confirmed the validity of this method. Additionally, considering the potential misclas-
sification of nodes as noise in existing algorithms, a distance-based structural similarity
strategy has been devised. This strategy precisely measures the average distance scores
between noise points and clusters, effectively reassigning noise nodes to their appro-
priate clusters. Comprehensive experiments on both real-world and synthetic network
datasets demonstrate the effectiveness of the ADPSCAN algorithm. The results highlight
its broad application potential in fields such as social network analysis, collaborative net-
work research, and metabolic network functional module identification. Despite its robust
performance, ADPSCAN’s complexity is relatively high, with a worst-case time complexity
of O(n²), where n represents the number of nodes in the network. This high complexity
makes it unsuitable for ultra-large networks, such as the UK-2002 dataset from the Web
Algorithmics Laboratory. The primary computational cost stems from calculating distance-
based structural similarity. Future research could address scalability and speed issues by
incorporating indexing and caching mechanisms, or by leveraging parallel computing and
distributed systems.
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