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Abstract: As a hot technology trend, the federated learning (FL) cleverly combines data utilization
and privacy protection by processing data locally on the client and only sharing model parameters
with the server, embodying an efficient and secure collaborative learning model between clients and
aggregated Servers. During the process of uploading parameters in FL models, there is susceptibility
to unauthorized access threats, which can result in training data leakage. To ensure data security
during transmission, the Authentication and Key Agreement (AKA) protocols are proposed to
authenticate legitimate users and safeguard training data. However, existing AKA protocols for
client–server (C/S) architecture show security deficiencies, such as lack of user anonymity and
susceptibility to password guessing attacks. In this paper, we propose a robust 2FAKA-C/S protocol
based on ECC and Hash-chain technology. Our security analysis shows that the proposed protocol
ensures the session keys are semantically secure and can effectively resist various attacks. The
performance analysis indicates that the proposed protocol achieves a total running time of 62.644 ms
and requires only 800 bits of communication overhead, showing superior computational efficiency
and lower communication costs compared to existing protocols. In conclusion, the proposed protocol
securely protects the training parameters in a federated learning environment and provides a reliable
guarantee for data transmission.

Keywords: federated learning (FL); client–server; authentication; hash-chain; elliptic curve
cryptography (ECC)

1. Introduction

Federated learning (FL) is an innovative approach where multiple organizations can
collaboratively develop machine learning models while maintaining data confidentiality.
In FL, data is processed locally at each client’s site and only model updates, not the raw
data, are shared with the server. This method not only enhances privacy but also allows for
the pooling of knowledge across different entities, significantly improving model accuracy
and utility. For example, in healthcare, FL enables institutions to collaborate on refining
disease diagnosis models without exposing individual patient data, ensuring privacy and
compliance with regulations [1,2]. Similarly, in consumer technology, companies like
Google LLC and Apple Inc. employ FL to improve user experiences in keyboard prediction
and voice recognition without compromising user privacy [3].

Despite its potential in enhancing data privacy, federated learning faces significant
security challenges in practical applications, as evidenced by multiple data breach incidents
in 2023 [4]. These unauthorized accesses involved not only personal information but also
crucial federated learning data such as model parameters and gradients during client–
server (C/S) data transmission. The compromised data ranged from hundreds of GBs
to several TBs, affecting various industries including education, finance, and technology.
These unauthorized accesses directly threaten the security of data and the reliability of the
learning process, particularly in industries relying on precise data exchanges.

Appl. Sci. 2024, 14, 6664. https://doi.org/10.3390/app14156664 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14156664
https://doi.org/10.3390/app14156664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14156664
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14156664?type=check_update&version=2


Appl. Sci. 2024, 14, 6664 2 of 17

To safeguard data transmission in FL, the AKA protocols [5–9] are proposed to authen-
ticate legitimate users and safeguard training data. However, existing AKA protocols for
client–server (C/S) architecture show security deficiencies. These vulnerabilities include
inadequate protection for user anonymity and traceability [6,8], potentially allowing attack-
ers to identify and track user activities through data interactions [7]. Furthermore, these
protocols [6–8] are susceptible to replay attacks, where attackers resend valid packets to
deceive the authentication system, leading to unauthorized data access. Additionally, they
are prone to Denial-of-Service (DoS) attacks, which can drain the system by overwhelming
it with excessive requests, thereby denying service to legitimate users, among other poten-
tial security flaws. Therefore, it is crucial to design a secure and efficient authentication
protocol to protect data transmission in FL.

In this paper, we propose a robust 2FAKA-C/S protocol based on ECC and Hash-
chain technology that resists attacks from the extended Canetti–Krawczyk (eCK) adversary
model [9]. In this enhanced security protocol, ECC leverages the complexity of the discrete
logarithm problem to generate a strong yet compact encryption key, reducing computa-
tional demands and significantly enhancing the overall security, while also ensuring the
forward secrecy. Additionally, the introduction of Hash-chain technology provides further
reinforcement to the system’s security. By generating unique Hash-chain’s hash values for
each session, this technique effectively prevents replay attacks, safeguarding the unique-
ness and security of every session. The integration of these techniques significantly boosts
the security and efficiency of the authentication and key agreement process, rendering the
protocol highly suitable for C/S data transmission in FL.

Our contributions are summarized below:

1. 2FAKA-C/S Protocol Design:
Based on the technology of Hash-chain and ECC, we present a robust and effec-
tive 2FAKA-C/S protocol, overcoming the limitations of existing AKA methods by
enhancing security while maintaining computational efficiency.

2. Security Analysis:
In the formal security analysis, we prove the semantic security of the session key using
provably secure methods. Through the informal security analysis, we demonstrate
that the proposed protocol not only possesses the properties of mutual authentication
and forward security but also effectively resists replay attacks, identity impersonation
attacks, man-in-the-middle attacks, etc., as well as possesses the ability to protect
against other potential network security threats.

3. Performance Analysis:
Specifically, the proposed protocol is assessed for its performance in a C/S FL en-
vironment, with special focus on total runtime and total communication costs. By
comparing with existing protocols, 2FAKA-C/S shows significant advantages in
these two key performance metrics. Compared with existing solutions, the proposed
protocol effectively improves the operational efficiency of the system.

2. Related Work

FL is a collaborative approach that enhances data privacy by allowing multiple organi-
zations to train models without sharing raw data. Ensuring high-quality data contributions
is critical for robust model performance. Taïk et al. [10] and Yurochkin et al. [11] focus
on improving model accuracy by prioritizing clients with high-quality data and using
evaluation metrics. Deng et al. [12] and Shi et al. [13] introduce dynamic participation and
continuously monitor the data quality to optimize learning processes. Lastly, Mazzocca
et al. [14] described Trustworthy Federated Learning as a Service (TruFLaaS), a trustworthy
federated learning service. TruFLaaS emphasized the importance of robust security and
trust mechanisms to ensure data privacy and security in the federated learning process.

Considering the security threats posed by unauthorized access to this data, we need
authentication mechanisms to ensure the secure transmission of data in the FL scenario.
Since the first introduction of a 2FA protocol, a plethora of subsequent protocols have
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been designed to improve upon the deficiencies of earlier designs. Ding et al. [6] intro-
duced an innovative anonymous authentication protocol tailored for IoT devices using
ECC combined with signcryption. This protocol significantly reduces computational and
communication overheads, but it fails to fully secure user anonymity, resulting in potential
vulnerabilities for user activity tracking and device traceability.

Liu et al. [7] developed a 2FA protocol that uses ECC to enhance security in mobile com-
puting. While it effectively authenticates users and aggregated servers, it remains suscepti-
ble to Denial of Service (DoS) attacks and does not adequately address ephemeral session
linkability (ESL) attacks within the extended Canetti–Krawczyk (eCK) security model.

In the healthcare scenario, Singh et al. [15] developed a secure authentication protocol
using Kyber and AES-GCM encryption amidst the digital health records transition accel-
erated by the pandemic. This protocol enables secure transactions without physical key
exchanges and generates unique session keys. Xu et al. [16] presented a mutual authenti-
cation protocol for tele-surgery, utilizing ECC and biometrics to secure data transmission
between surgeons and robotic arms. However, both protocols exhibit performance draw-
backs, particularly in computational efficiency, which is critical in healthcare applications.

In the domain of wearable and mobile computing, Tu et al. [17] designed an EAKE-WC
protocol for wearable computing that tackles privacy and security issues using ASCON [18],
XOR operations, and hashing for user and device authentication, ensuring secure com-
munication through unique session keys. Yang et al. [8] proposed an ultra-lightweight
authentication method for mobile edge computing, protecting patient biomedical data in
IoT-driven WBANs with a two-stage modal square root technique. However, this method,
while reducing computational and communication costs, fails to ensure user anonymity
and device un-traceability.

Furthermore, Qi et al. [19] tackled the challenge of ensuring item traceability within
industrial IoT (IIoT), introducing a robust auditing mechanism capable of withstanding
manipulations by malicious cloud servers. This mechanism represents a broader trend
towards employing sophisticated auditing techniques to enhance data integrity in IIoT.

Additionally, in the IoT-Edge-Cloud ecosystem, Seifelnasr et al. [20] unveiled Mutual
Authentication Privacy-preserving protocol with Forward Secrecy (MAPFS), a mutual
authentication protocol that eliminates reliance on cloud administrators for session key
establishment and incorporates zero-knowledge proofs to enhance security and autonomy.

3. Preliminaries

This section provides the essential background information that forms the basis for
our subsequent discussion.

3.1. System Model

As shown in Figure 1, our system model contains two main entities: the user (or client)
(Ui) and the aggregation server (Sj). In Figure 1, the blue lines indicate the registration
phase, while the orange lines denote the login and mutual authentication phases.

In the registration phase, Ui sends a registration request to the aggregation server Sj.
After receiving the request, the Sj creates a smart card that contains key information, such
as the user’s identity information, the generated random number, and the aggregation
server’s public key. Finally, Sj sends the smart card to Ui to enable that Ui can perform
subsequent login and mutual authentication operations.

In the following login and mutual authentication phase, Ui and Sj run the operations
to obtain mutual authentication and then a session key will be established between entities.
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Figure 1. System model of 2FAKA-C/S protocol.

3.2. Elliptic Curve Cryptography (ECC) and Hash-Chain

Elliptic Curve Cryptography (ECC): ECC [21] is a public-key encryption technique
based on the elliptic curves’ mathematical properties. Compared to traditional crypto-
graphic methods such as RSA, ECC offers the same level of security with much smaller key
sizes, leading to increased computational efficiency and reduced storage and bandwidth
requirements.

• Elliptic Curve Overview: An elliptic curve is defined by the equation y2 = x3 + ax +
b mod q, where a and b are parameters and q is a large prime number. The set of points
on the curve, along with the point at infinity O, forms a group. For the curve to have a
valid group structure, the parameters must satisfy 4a3 + 27b3
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0 (mod q).
• Key Generation: In ECC, the private key is a randomly selected integer d. The

corresponding public key is obtained by multiplying the base point P on the curve
by the private key, resulting in Q = d·P. This multiplication is effectively repeated
addition of the point P d times.

• Group Operations: The addition of two points P and Q on the elliptic curve results in
another point R = P + Q. Scalar multiplication, denoted as k·P, involves adding the
point P to itself k times, which is fundamental to ECC operations.

• Security Foundation: The security of ECC is based on the elliptic curve discrete
logarithm problem (ECDLP). Given two points P and Q = k·P, it is computationally
infeasible to determine the scalar k, especially when q is large. This difficulty ensures
the robustness of ECC against various cryptographic attacks.

• Encryption and Decryption: ECC encryption transforms a message into a point on
the elliptic curve using the recipient’s public key. The sender selects a random integer
k and computes C1 = k·P and C2 = M + k·Q, where M is the message point and
Q is the recipient’s public key. The recipient decrypts the message by calculating
M = C2 − d·C1 using their private key dd.

• Computational Efficiency: ECC achieves high levels of security with shorter key
lengths, resulting in faster computations and lower resource usage. This makes ECC
particularly suitable for environments with limited computational power, such as
mobile devices and embedded systems.

Hash-chain: The Hash-chain involves the repeated application of a cryptographic
hash function to produce a sequence of hash values.

• Construction: A Hash-chain starts with a seed value x, and each subsequent value is
generated by hashing the previous value. For example, starting with x, the chain pro-
gresses as h(x), h(h(x)), h(h(h(x))), and so on. Originally proposed by Lamport [22],
a Hash-chain is a fundamental cryptographic method used to prevent the theft of user
passwords over public channels.

• Features: One of the key characteristics of a Hash-chain is its one-way property: it is
computationally feasible to compute the chain in the forward direction but infeasible
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to reverse the process. This means that given hN(x), it is practically impossible to
determine hN−1(x). However, given hN−1(x), it is straightforward to verify hN(x).
This property makes Hash-chain ideal for resisting replay attacks [23].

3.3. Notations

For clarity and ease of reference, Table 1 shows the notations used in our designed
protocol.

Table 1. Notations with related descriptions.

Notation Description Notation Description

Ui User/Client x Long − term key of Sj
Sj Aggregated Server A Malicious adversary

IDi Unique identity of Ui ∥ String concatenation operation
PIDi Pseudo − identity of Ui T Current timestamp
PWi Password chosen by Ui

⊕
Bitwise XOR operation

b Random numbers of Sj H(·) One-way hash function
a Random numbers of Ui SK Session key shared between Ui and Sj

DID Space of user identities. ri Random number chosen by Sj during registration
DPW Space of user passwords Ri Pre − sec ret value chosen by Ui

G Abelian group on the elliptic curve SCi Smart card issued to Ui
P Generator of group G Sum Counter for allowed login failures
n0 Random number within the range 24 to 28 tu Timestamp generated by SCi

PWnew
i New password set by Ui I Any instance if no distinction is needed

Ui ith instance of user U. Sj jth instance of server S
qh Number of hash queries made by adversary A qe Number of execute queries made by adversary A
qs Number of send queries made by adversary A l Bit length of the hash value

3.4. Adversary Model

In the adversary models outlined in [24,25], an eCK adversary A has control over
the communication channel between the parties involved, enabling them to perform mali-
cious activities such as intercepting, eavesdropping, and altering transport messages. The
adversary’s specific capabilities within AKA protocols are detailed below:

1. Through power analysis [26] or other side-channel techniques [27], adversary A can
extract the parameters stored in the user’s smart card.

2. A can intercept, eavesdrop on, and modify transmitted messages in the public channel.
3. A can list all pairs (PWi, IDi) in (DPW ,DID) in polynomial time, where DID and

DPW are the identifier and password spaces.
4. A can also sign up as a valid user.
5. A may obtain old session keys (e.g., through digital forensic techniques [24]) due to

improper erasure.
6. To evaluate forward secrecy, assume A has the server’s long-term private key.
7. A can get ephemeral secrets likes random numbers.

4. The Proposed 2FAKA-C/S Protocol

To enhance security for both mobile users and aggregated servers, our proposed
protocol integrates key methodologies, which are shown as follows:

1. Utilization of Elliptic Curve Cryptography (ECC): We harness ECC’s capability to
generate robust cryptographic keys of reduced length, significantly bolstering encryp-
tion without increasing computational demands. This is achieved by combining the
strengths of ECC with the Diffie–Hellman key exchange protocol. The Diffie–Hellman
algorithm allows two users, without a secure communication channel, to generate
a shared secret key using random numbers. The Diffie–Hellman of ECC ensures
forward secrecy.
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2. Implementation of Hash-chain: The proposed protocol incorporates Hash-chain by
applying a one-way hash function, H(·), which plays a pivotal role in safeguarding
data integrity and strengthening authentication processes. Specifically, Hash-chains
generate a unique hash value for each session, ensuring that even if data is intercepted,
it cannot be reused in subsequent sessions. This approach is crucial in mitigating risks
associated with replay attacks.

3. Mutual Authentication and Session Key Agreement: A pivotal aspect of the proposed
protocol is the mutual authentication process, where both the user and the aggregated
server authenticate each other’s identity before establishing a shared session key for
encrypted communications, ensuring both confidentiality and integrity of data.

4. Enhanced Anonymity and DoS Attacks Mitigation: The proposed protocol introduces
a pseudo-identity PIDi to preserve user anonymity and prevent traceability. Further-
more, the integration of timestamps T plays a crucial role in defending against DoS
attacks by verifying the timeliness of each session.

In the forthcoming sections, this paper gives the protocol’s system setup phase, regis-
tration phase, subsequent login and authentication phase, and finally, the password update
phase for user.

4.1. System Setup Phase

The aggregated server Sj independently chooses a random number x ∈ Z∗
p and sets

an abelian group G in the elliptic curve, where P is a generator of G. Further, Sj selects a
one-way hash function H(·). Finally, Sj publicizes the parameter H(·) and reserves a secret
long-term key x.

4.2. Registration Phase

To obtain authentication from Sj, the user Ui needs to carry out the following reg-
istration steps (R. 1–3) and then complete the operation of registration in the terminal
of Sj.

R. 1. The user Ui chooses an identity IDi and a pre-secret value Ri; by the secure channel, Ui trans-
mits {ID i, Ri} to the aggregated server Sj.

R. 2. Upon receiving {ID i, Ri}, Sj selects a random number ri ∈ Z∗
p and computes PIDi =

H(IDi ∥ x) and Vi = H(PIDi ∥ x ∥ ri). Sj then stores {PIDi, ri, Sum = 0, Ri} in its database,
where Sum indicates the number of allowed login failures before the smart card is revoked. If the number
of login failures exceeds the allowed limit, the smart card is marked as revoked in the server’s database,
and the user is notified to request a new smart card [28,29]. Finally, Sj writes {H(x), P, Vi, PIDi} to
a new smart card SCi and securely transmits SCi to Ui.

R. 3. Upon the user Ui obtaining the smart card SCi from Sj, SCi selects ai ϵZ∗
p and randomly generates

a number 24 ≤ n0 ≤ 28. Then, SCi calculates parameters: RPWi = H(IDi ∥ PWi) mod n0, Bi =
H(RPWi ∥ ai)

⊕
Vi, Ai = H(IDi ∥ PWi ∥ ai) mod n0. Finally, SCi contains the parame-

ters: {ai, Ai, Bi, X, P, n0}.

The operations are also summarized in Figure 2, to provide researchers with a quick
understanding of the registration phase.

4.3. Login and Mutual Authentication Phase

After Ui registers with Sj effectively, Ui runs the login operation (L.1) and subsequent
authentication steps (Auth.1–Auth.2) with Sj.

L. 1. Ui inputs ID′
i, PW ′

i to SCi. Then, SCi computes value A′
i = H

(
ID′

i ∥ PW ′
i ∥ ai

)
mod n0 and

checks whether A′
i = Ai. If not, SCi refuses the login request. Otherwise, SCi computes RPW ′

i =
H
(

ID′
i ∥ PW ′

i
)

mod n0 and (V i ∥ H(x)∥ Ri) = Bi ⊕ H
(

RPW ′
i ∥ ai

)
. Subsequently, SCi picks

ai ∈ Z∗
p and computes K1 = a·P, K2 = H(x)⊕ Ri. At this point, SCi generates a timestamp tu and
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computes Vii = H(Vi ∥ tu) and M2 = ERi (PID∗
i ∥ Vi ∥ Vii), where ERi (·) is a symmetric encryp-

tion algorithm (i.e., AES [30]). Finally, SCi sends {M2, K1, K2, tu} to Sj.

Auth. 1. After obtaining {M2, K1, K2, tu}, Sj first verifies the timestamp tu to ensure that
|T − tu| < ∆T, where T is the current timestamp and ∆T represents the acceptable time gap,
thereby ensuring the request falls within the designated time window to prevent DoS attacks. Sj
calculates Ri = H(x) ⊕ K2, PID∗

i ∥ V∗
i ∥ V∗

ii = DRi (M2), where DK2(·) is a symmetric
decryption algorithm. Then, Sj searches PID∗

i in its database. If PID∗
i cannot be found,

or the timestamp tu is outside the acceptable range, or V∗
ii does not match H

(
V∗

i ∥ tu
)
, this

session is aborted. Otherwise, Sj moves to the next step. Sj extracts r∗i stored in the database
and checks whether V∗

i = H
(

ID∗
i ∥ x ∥ r∗i

)
. If they are unequal, Sj gets that Ui’s smart

card has been broken. Otherwise, Sj picks b ∈ Z∗
p and computes K3 = b·P, K4 = b·K1,

M3 = H
(
K3 ∥ K∗

2 ∥ V∗
i ∥ ID∗

i ∥ K4
)
, SKs = H

(
K4 ∥ ID∗

i ∥ V∗
i
)
, Rnew

i = H(Ri) (where
Rnew

i is from the Hash-chain), PIDnew
i = H(PIDi ∥ x), Ci = PIDnew

i ⊕ Vi. Sj updates its
database by storing Rnew

i and PID′
i, replacing the previous values of Ri and PIDi, respectively.

Lastly, Sj sends the message {K3, M3, Ci} to Ui openly.

Auth. 2. On receiving the message {K3, M3, PIDi_Vi}, Ui computes K′
4 = a·K3, SKu =

H
(
K′

4 ∥ IDi ∥ Vi
)
, M′

3 = H(K3 ∥ K2 ∥ Vi ∥ IDi ∥ K4) and verifies if M′
3 = M3. If the

verification fails, the integrity of M3 may be corrupted and Ui ceases this session. Other-
wise, Ui accepts a shared session key SK = SKu = SKs. Finally, Ui performs the operation
PIDnew

i = Ci ⊕Vi to update the processed identity PIDi. Then Ui computes Rnew
i = H(Ri) and

stores Rnew
i

(
i.e., Bi = H(RPWi ∥ ai)⊕ (V i ∥ H(x)∥ Rnew

i
)
).

The operations are summarized in Figure 3 to provide researchers with a quick under-
standing of the login and authentication phase.
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User (𝑼𝒊) Secure Channel Aggregated Server (𝑺𝒋) 
Registration Phase:   
Choose 𝐼𝐷𝑖 , a preset secret 𝑅𝑖   
                  {𝐼𝐷𝑖 }             ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ Generates a random number 𝑟𝑖  𝜖𝑍𝑝∗      
  Computes: 
  𝑃𝐼𝐷𝑖 = 𝐻(𝐼𝐷𝑖 ∥ 𝑥) 
Generates a random number  𝑉𝑖 = 𝐻(𝑃𝐼𝐷𝑖 ∥ 𝑥 ∥ 𝑟𝑖 ) ai ∈ Zp∗  Store{𝑃𝐼𝐷𝑖 , 𝑟𝑖 ,S𝑢𝑚 = 0, 𝑅𝑖 } 
Input 𝑃𝑊𝑖  and computes:  in database 𝑅𝑃𝑊𝑖 = 𝐻(𝐼𝐷𝑖 ∥ 𝑃𝑊𝑖) 𝑚𝑜𝑑 𝑛0                 𝑆𝐶𝑖                   ር⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሲ New smart card: 𝐵𝑖 = 𝐻(𝑅𝑃𝑊𝑖 ∥ 𝑎𝑖 ) ⊕ (𝑉𝑖 ∥ 𝐻(𝑥) ∥ 𝑅𝑖 )  𝑆𝐶𝑖 = {𝐻(𝑥), 𝑃, 𝑉𝑖 ,𝑃𝐼𝐷𝑖 } 
Chooses an integer 24 ≤ 𝑛0 ≤ 28   𝐴𝑖 = 𝐻(𝐼𝐷𝑖 ∥  𝑃𝑊𝑖 ∥ 𝑎𝑖 ) 𝑚𝑜𝑑 𝑛0   
Update smart card:   𝑆𝐶𝑖 = {𝑎𝑖 , 𝐴𝑖 , 𝐵𝑖 , 𝑃, 𝑛0}   

Figure 2. User registration phase.

4.4. Password Update Phase

In this section, we describe the procedure for users Ui to update their password.
Initially, Ui presents their existing or commonly utilized password to the smart card. The
smart card then verifies Ui’s authenticity by comparing A′

i with Ai and retrieving Vi.
Subsequently, Ui is permitted to set a new password, PWnew

i , and accordingly adjust
the parameters: Anew

i = H(IDi ∥ PWnew
i ∥ ai) mod n0, RPWnew

i = H(IDi ∥ PWnew
i ) mod n0,

and Bnew
i = H(RPWnew

i ∥ ai)⊕ Vi. The process culminates with the smart card updating
its stored values from Ai and Bi to Anew

i and Bnew
i , respectively.
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Figure 3. Login and authentication phase.

5. Security Analysis

This section provides a formal security proof and a heuristic analysis to evaluate the
security of the proposed protocol, hereafter referred to as P .

5.1. Formal Security Proof

We start with the basic concepts needed for the security proof, then show protocol P ′s
security under the elliptic-curve computational Diffie–Hellman (ECCDH) assumption. The
ECCDH assumption [31], a variation of the Diffie–Hellman problem, states that given a
random pair (aP, bP) in group G, no probabilistic polynomial-time (PPT) adversary A can
compute abP with significant advantage.

5.1.1. Basics for Security Proof

The security of P was assessed based on the BPR2000 [32] and Bresson [33] solutions,
also drawing inspiration from the proof techniques of Wang et al. [24]. We detail these
fundamentals as follows:

Participants. The proposed P involves two participants: U and S. Each participant has
multiple instances called oracles. The ith instance of U and the jth instance of S are denoted
as Ui and Sj, respectively. If no distinction is needed, any instance can be represented as I.

Queries. In a simulated attack scenario, the interaction between participants and
adversary A occurs solely through oracle queries. A can perform the following types of
queries:

• Execute
(
Ui, Sj): This query simulates the act of eavesdropping on the protocol,

capturing all communication records exchanged between Ui and Sj as part of its
output.

• Send
(

Ii, m
)
: This query simulates active attacks by intercepting and blocking a

message; the adversary A sends an imitative message mm. A then delivers mm to Ii

and receives the response from Ii.
• Reveal (Ii): This query discloses the session key to A. If Ii recognizes the session and

generates an SK, it returns the session key SK of Ii′
s to A. Otherwise, it responds with

⊥, indicating no response.
• Corrupt (Ui): This query allows A to acquire the secret data held by the user.
• Accepted state: Once an instance I receives and validates the final protocol message,

it enters the accepted state. The ordered sequence of the exchanged messages up to
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that point is then used to form the session identifier (session ID), for instance I in that
particular session.

• Test (Ii): This query tests session key security. A coin b is flipped. If b = 0, a random
key is sent to A. If b = 1, the actual SK is sent. If no SK exists for Ii, A gets ⊥. This
query can only be used once.

Partnering. Two instances Ui and Sj are partners if: (1) both are in the accepted state
or (2) their session identifiers (sid) match, i.e., sidi

U = sidj
S.

Freshness. An instance I is fresh if: (1) it has computed an accepted session key or (2)
no reveal query about SK has been sent to A.

5.1.2. Security Proof

Theorem 1. Let AdvAKA
P ,D (A) denote the advantage of a PPT adversary A in compromising the

semantic security of P within a limited time t. Given that A makes qh hash queries, qe
execute queries, and qs send queries, we have:

AdvAKA
P ,D (A) ≤ 2C′·qs

s
′ + ∆

where ∆ =
(qs+qh+q2

h)
2l−1 + 2(qs+qe)

2

p + 2qh AdvECCDH
A (t′), where D represents the password space

that follows Zipf’s law [34] based on a probability distribution. The parameters s′ and C′ are
related to Zipf’s law, l denotes the bit length of the hash value, p is a large prime number,
and t′ ≤ t + (qs + qe + 1)Tc, where Tc is the time required for an ECC point multiplication
operation.

Proof. The detailed proof involves a sequence of games from Game0 to Game5. Let Pr[Ei]
represent the probability that A successfully guesses b in the test-query of Gamei, for
i = 0, 1, 2, 3, 4, 5.

Game E0. This game simulates a real attack in the context of a random oracle. At the
start, a bit b is chosen, thus:

AdvAKA
P ,D (A) = |2Pr[E0]− 1|

Game E1. This game models the random oracle H and a hash list ΛH. Furthermore,
this game is indistinguishable from the actual execution of the protocol, i.e., game E0, as all
oracles simulate a real attack. Thus, we have:

|Pr[E1]− Pr[E0]| = 0

Game E2. This game, like game E1, models all types of queries and terminates under
two conditions [35]: (1) a crash from the hash query output and (2) a crash from various
records ((M2, K1, K2, tu), (K3, M3)). According to the birthday paradox, we have:

|Pr[E2]− Pr[E1]| ≤
q2

h
2l+1 +

(qs + qe)
2

2p

Game E3. This game is modeled similarly to game E2, but the protocol is aborted
if A correctly guesses the authentication parameter M3 without querying the random
oracle. Additionally, this game is difficult to distinguish from game E2 unless the correct
authentication parameter is rejected by Ui or Sj. Hence, we have:

|Pr[E3]− Pr[E2]| ≤
qs

2l

Game E4. In this game, the session key SK is obtained without initiating the corre-
sponding random oracle query. Similarly, this game is hard to distinguish from game E3
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unless A queries the random oracle H on
(
K∥ID∗

i ∥V∗
i
)
, where K = ECCDH(K1, K3) =

abP [35]. Therefore, we have:

|Pr[E4]− Pr[E3]| ≤ qh AdvECCDH
A

(
t′
)
+

qh

2l

Game E5. This game is similar to game E4, with the additional execution of the test
query. If A initiates a hash H query with

(
abP∥ID∗

i ∥V∗
i
)
, game E5 is aborted. Accordingly,

SK can be obtained by A initiating the H query with a probability of q2
h

2l+1 . Alternatively,
through a smart-card-loss attack and a corrupt Ui oracle, A can try to get Ui’s password
and compromise the session key. Using “fuzzy verifier + honeywords”, A′s chance of
guessing the password correctly is no more than C′·qs

s
′ [24]. To break forward security and

obtain the session key, the chance of obtaining abP is at most (qs+qe)
2

2p . Thus, we have:

|Pr[E5]− Pr[E4]| ≤ C′ · qs′
s +

q2
h

2l+1 +
(qs + qe)

2

2p

In this game, A has no advantage in distinguishing the real SK from a session key of
the same size created by a random value if A fails to initiate an H query with the correct
input. Therefore, we have Pr[E5] =

1
2 .

Finally, according to games E0 ∼ E5 and triangular inequality, we have:

AdvAKA
P ,D (A) = 2Pr[E0]− 1
= 2(Pr[E0]− Pr[E5]) + 2Pr[E5]− 1
≤ 2|Pr[E0]− Pr[E5]|
≤ 2|Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + · · ·+ Pr[E4]− Pr[E5]|
≤ 2|Pr[E0]− Pr[E1]|+ 2|Pr[E1]− Pr[E2]|+ · · ·+ 2|Pr[E4]− Pr[E5]|
≤ 2C′·qs

s
′ + ∆

where ∆ =
(qs+qh+q2

h)
2l−1 + 2(qs+qe)

2

p + 2qh AdvECCDH
A (t′).

In conclusion, adversary A has no advantage AdvAKA
P ,D (A) in breaking SK′s semantic

security. □

5.2. Heuristic Analysis

The heuristic analysis can effectively evaluate the protocol’s security by its effective-
ness, simplicity, and directness [36,37]. This approach enables us to demonstrate that
the proposed protocol not only embodies advantageous features (e.g., mutual authentica-
tion, forward security, user anonymity) but also exhibits resilience against a spectrum of
recognized attacks (e.g., replay attacks, user impersonation attacks).

5.2.1. Mutual Authentication

Within the scope of this protocol, the aggregation server Sj authenticates the user Ui
by computing V∗

i = H(ID∗
i ∥x∥ r∗i

)
. In a reciprocal manner, Ui validates the identity of Sj

by ensuring the computation result M′
3 matches M3. Upon the completion of this mutual

authentication sequence, Sj and Ui will negotiate a shared session key SK. This illustrates
that the protocol effectively establishes a robust mutual authentication mechanism between
both entities.

5.2.2. Forward Security

The protocol’s forward secrecy ensures that all preceding session keys remain intact
and secure, even in the event that Sj’s long-term key x falls into the hands of an adversary
A. When A intercepts data packets including {{M2, K1, K2}, {K3, M3}}, he must ascertain
K4 = b·K1 = abP to deduce the prior session key SKs = H(K4 ∥ IDi ∥ Vi). Nonetheless,
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the formidable computational hurdles in determining the values of a or b, rendering the ad-
versary accurately computing SK. That means the proposed 2FAKA-C/S preserves forward
secrecy, safeguarding previous sessions against the compromise of the long-term key.

5.2.3. User Anonymity

In our development of the 2FAKA-C/S protocol, we employ a novel strategy to bolster
user anonymity. By allocating a pseudo-identity PIDi to each user and updating it peri-
odically, the proposed protocol significantly enhances both anonymity and untraceability.
This pseudo-identity is derived from the user’s actual identity PIDnew

i = H(PIDi ∥ x).
This approach effectively obstructs efforts to deduce the user’s identity from interaction
data. Moreover, we ensure that neither the smart card nor any transmitted data reveal
any details that could disclose the user’s real or pseudo-identity. Consequently, even if
an adversary manages to extract the smart card’s parameters {ai, Ai, Bi, P, n0} or intercept
communication data {M2, K1, K2, tu}, {K3, M3}, they will be unable to ascertain the user’s
true or pseudo-identity. Our design not only precludes the direct exposure of user identities
but also protects against the tracing of identities and behaviors in the face of persistent
communication threats.

5.2.4. Replay Attacks

In replay attacks, A has the capability to intercept login request data {M2, K1, K2} from
a prior session and A attempts to resend this information {M2, K1, K2} to the aggregation
server Sj; the server will find it impossible to extract any meaningful user identity ID
from the replayed data due to the session-by-session refresh of the random parameter Ri.
Likewise, if A tries to resend {K3, M3} to user Ui, the effectiveness is nullified, as M3 relies
on a session-unique dynamic parameter. Consequently, the adversary will fail to recognize
M3 messages from past sessions in the current context. This mechanism robustly shields
against replay attacks.

5.2.5. User Impersonation Attacks

To launch user impersonation attacks based on the exposure of keys, A requires the
precise value of Vi. In the proposed protocol, legitimate users may derive it utilizing
the parameter set {IDi,PWi,Bi,ai} at their disposal; And the aggregation server might
employ the acknowledged parameters ri and x for an identical computation. However, A
is bound to encounter formidable computational barriers in accessing these key parameters,
rendering the emulation of legitimate user U′

i s identity towards Sj unfeasible. Consequently,
the proposed protocol showcases robust resistance against such impersonation endeavors.

5.2.6. Server Impersonation Attacks

In these attacks, for A to convincingly mimic the aggregation server Sj, it is imperative
to accurately process {K3, M3}. The derivation of M3 depends on

{
Ri, V∗

i , ID∗
i
}

, facilitated
by a secure hashing algorithm, necessitating A′s comprehensive understanding or viable
approximation of these pivotal parameters within a realistic timeframe. Furthermore, A
is required to access key data {x, ri, ID∗

i }. The endeavor to decipher these confidential
parameters presents a substantial computational impediment to A. Thus, due to the
infeasibility of generating precise messages by A, the proposed protocol effectively thwarts
impersonation attempts targeting the aggregated server.

5.2.7. Man-in-the-Middle Attacks

Consider a scenario where A successfully intercepts both the login request {M2, K1, K2}
and challenge messages {K3, M3}, acquiring all parameters of the smart card SCi as out-
lined in the protocol. To launch an effective man-in-the-middle attack, A must either fabri-
cate new message sequences {M2, K1, K2},

{
M∗

3 , K∗
3
}

or replay previously intercepted ones.
However, as established, the proposed protocol effectively mitigates replay and imperson-
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ation attacks, rendering both the aggregated server Sj and the user Ui incapable of authenti-
cating A. Consequently, the protocol is adeptly fortified against man-in-the-middle attacks.

5.2.8. Temporary Private Key Disclosure Attacks

Within this protocol, secure communication between the user (Ui) and the aggre-
gation server (Sj) is facilitated through designated secret parameters, such as the user’s
and server’s random numbers, a and ri, respectively. These numbers are pivotal for
generating temporary private keys and other authentication parameters throughout the
session. Nonetheless, acquisition of these keys by A does not compromise security due
to the insurmountable challenge of producing valid authentication values like Vi. The
creation of these values, along with session key negotiation, depends not just on tempo-
rary keys but also on a hashed private secret key (x) shared between the user and server.
This key remains confidential, thwarting any attempts by adversaries to undermine the
authentication mechanism.

5.2.9. Privileged Insider Attacks

Privileged insider attacks denote the misuse of legitimate access by system insiders
to exfiltrate training data. During the registration phase, Ui forwards its IDi to Sj without
disclosing any password-related details. Sj then issues an updated smart card SCi to
Ui. Upon receipt, Ui activates SCi using his exclusively known password PWi. This
procedure secures the new smart card under U′

i s possession. Inspection of SC′
is stored

parameters reveals the absence of PWi in plaintext, safeguarding against privileged insider
threats effectively.

5.2.10. Denial of Service (DoS) Attacks

In the proposed protocol, an adversary might attempt to disable Sj by replaying old
messages. However, Sj initially checks if the time gap meets the condition |T − tu|> ∆T . If
this condition is met, Sj immediately ends the session. Furthermore, should the adversary
manipulate the timestamp tu to satisfy |T − tu| < ∆T, Sj still dismisses the session due to
the subsequent failure in validating the V∗

ii value, which is dependent solely on the original
timestamp. Thus, such Denial of Service (DoS) attacks are rendered ineffective.

6. Summary Comparison: Functionality and Performance

To highlight the optimal balance between availability and security of our protocol, this
section provides a comparative evaluation. We analyze functionalities, communication,
and computational overheads, comparing our 2FAKA-C/S protocol with those developed
by Ding et al. [6], Liu et al. [7], Yang et al. [8], Roy et al. [32], Hu et al. [38], and Huang
et al. [39].

6.1. Security Evaluation Criteria

A critical factor for evaluating the effectiveness of an authentication protocol’s func-
tionality is its adherence to foundational principles. Wang et al. [24] and Wang et al. [40]
have outlined security criteria specific to AKA (Authentication and Key Agreement) pro-
tocols. Building on the security analysis we have provided, Table 2 displays the security
criteria established in [24,40], followed by a description of ten evaluation criteria (C*),
where C4 encompasses prevalent attacks such as man-in-the-middle attacks, replay attacks,
and de-synchronization attacks, among others.
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Table 2. Security evaluation criteria for AKA protocols.

Notation Description Description Description

C1
Ensure user privacy and
anonymity C6

Achieve secure key
agreement

C2
Avoid using password
verifier tables C7

Ensure mutual
authentication

C3
Prevent password
leakage C8

Operate without clock
synchronization

C4
Defend against known
threats C9

Have system recovery
capabilities

C5
Protect smart card
security C10

Ensure forward secrecy
of communications

6.2. Functionality Comparison

In this section, we present a detailed functional comparison of our protocol against four
contemporary protocols [6–8,35], based on the evaluation metrics outlined in Section 5.1.

The outcomes of this comparison are summarized in Table 3, where the notation ✔

means that the protocol demonstrates the property and ✘ denotes that the protocol does
not demonstrate the property. According to Table 3, the protocol by Roy et al. does not
meet criteria C5, C8, and C10. Despite incorporating only three chaotic map operations, the
protocol in [35] is unable to ensure forward secrecy when the long-term key is compromised.
Moreover, the protocol [35] by Roy et al. stores critical authentication parameters on
the smart card and transmits identities in plaintext over public channels, rendering it
susceptible to eavesdropping and resulting in potential message desynchronization.

Table 3. Functionality comparison of relevant AKA protocols.

Protocols Ref.
Evaluation Criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Roy et al. (2018) [35] ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✘

Yang et al. (2022) [8] ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ding et al. (2022) [6] ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Liu et al. (2023) [7] ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Hu et al. (2024) [38] ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Huang et al. (2024) [39] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2FAKA-C/S [-] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

The protocols outlined in [6–8] do not satisfy criterion C1, which concerns user
anonymity and untraceability. For instance, in the protocol [8], the edge node (EN) trans-
mits the real user identity (IDen) to the access point (AP), thereby directly compromising
the user’s real identity.

In the case of [6], while the resource device RD does not directly disclose its identity
to the IC, the IC is able to ascertain RD′s identity via a static index, contradicting the
anonymity and untraceability principle that mandates different labels for each authentica-
tion attempt.

Similarly, the scheme in [7] compromises user anonymity as it requires user Ui to reveal
his real identity IDi to server Sj in every session, allowing for user tracking. Additionally,
in the aspect of C4, both [7]’s and Hu et al.’s [38] protocols exhibit vulnerability to DoS
attacks. Consequently, both protocols also fall short of meeting C4, further indicating areas
for significant improvement in their security apparatus.

Overall, Table 3 indicates that our proposed protocol achieves the outlined security
and usability objectives, proving robust against a spectrum of known attacks. While the
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protocols by Huang et al. [39] also demonstrates strong security and usability features, our
protocol remains highly effective.

6.3. Communication and Computation Cost Comparison

To accurately assess and compare the computational and communication overheads, in-
corporating benchmarks from recent work in [8] for consistent performance evaluation, we
define specific terminology for operational timings. Specifically, Tem, Tea, Th, Tme, Tmd, Tmac,
Tae, Tad, Tch, and Tf e represent the execution times for elliptic curve scalar multiplication,
elliptic curve point addition, a generic hash function operation, MSR encryption [8], MSR
decryption [8], message authentication code computation, AES encryption, AES decryption,
Chebyshev map operation, and Fuzzy extractor operation, respectively. Table 4 details
these operational runtimes alongside their respective running platforms. Furthermore, to
quantify the communication costs incurred during the login and authentication processes,
Table 5 outlines the lengths of various security parameters.

Table 4. Summarized runtime of all cryptographic operations (ms).

Tem Tea Th Tme Tmd Tmac Tae Tad Tch Tfe

Ui 27.472 0.041 0.006 0.016 0.560 0.118 0.023 0.014 21.02 27.472
Sj 3.823 0.007 0.002 0.003 0.058 0.028 0.010 0.006 21.02 3.823

Terminal Running platform

Ui Raspbian with 1.2-GHz Quad-Core CPU and 1-GB RAM
Sj Ubuntu 16.04 LTS with Intel Core i5 7600, 3.5 GHz CPU and 16 GB memory

Table 5. Length of the safety parameters.

Parameter Length/Bits

MAC (Message Authentication Code) 160
Timestamp 32
User identity 32
Random number 128
Elliptic curve point 160
The output of the hash function 160
Symmetric ciphertext 128

As depicted in Table 6, the comparative analysis incorporates seven cryptographic
protocols [6–8,35,38,39], focusing on their computational and communication costs. The
proposed 2FAKA-C/S protocol showcases its competitive edge, with a total running time
of 62.644 ms, aligning closely with the fastest protocols like Yang et al. [8] at 62.985 ms and
significantly outperforming Huang et al. [39], which has the longest duration at 172.662 ms.
This underscores the proposed protocol’s efficiency in high-speed processing scenarios.

Table 6. Communication and computation costs in the login and authentication phase.

Computation Cost
Total Communication

CostProtocols User Aggregation Server Total
Running Time

Roy et al. (2018) [35] 9 Th + 2Tch + 1Tf e 5 Th + 1Tch 90.596 ms 960 bits
Yang et al. (2022) [8] 2 Th + 1 Tme + 2 Tmac + 1 Tae 2 Th + 1 Tmd + 2 Tmac + 1 Tad 62.985 ms 608 bits
Ding et al. (2022) [6] 1Tem + 4 Th + 1 Tmac 5Tem + 2 Tea + 3 Th + 1 Tmac 46.755 ms 832 btits
Liu et al. (2023) [7] 3Tem + 6 Th 3Tem + 4 Th 93.929 ms 768 bits
Hu et al. (2024) [38] 3Tem + 3 Th 3Tem + 3 Th 93.909 ms 864 bits
Huang et al. (2024) [39] 6Tem + 25 Th 2Tem + 17 Th 172.662 ms 3328 bits
2FAKA-C/S protocol 2Tem + 7 Th 2Tem + 6 Th 62.644 ms 800 bits



Appl. Sci. 2024, 14, 6664 15 of 17

In terms of communication overhead, the proposed protocol requires only 800 bits,
which is more efficient compared to the highest overhead of 3328 bits by Huang et al. [39].
This efficiency is essential in environments where bandwidth is limited. For instance,
Roy et al. [35] requires 960 bits, which is significantly higher than our protocol. Similarly,
Hu et al. [38] requires 864 bits, which is also higher than our protocol. This comparison
underscores the proposed protocol’s suitability for bandwidth-constrained environments,
making it a particularly effective solution.

In conclusion, the proposed protocol emerges as an eminent solution for secure com-
munication, markedly enhancing processing speed and reducing the communication costs
of the proposed protocol.

7. Conclusions

In this study, we have introduced an innovative two-factor authentication protocol
(2FAKA-C/S) that can enhance the security of the model parameters transmitted in FL.
The comprehensive security analysis confirms its robust defense against a wide array of
cyber threats. Furthermore, the protocol’s design focuses on minimizing computational
demands, making it highly suitable for the resource-constrained environments prevalent
in FL. By comparing it with existing protocols, we demonstrated not only its superior
security features but also its operational efficiency. Consequently, the proposed protocol
is particularly well suited for securing the transmission of model parameters in FL. In
our ongoing research, we plan to develop protocols that address inference attacks [41],
potentially incorporating techniques like the Gaussian noise addition mechanism as a
differential privacy technology to further enhance security.
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