Design of an Optimized Terahertz Time-Domain Spectroscopy System Pumped by a 30 W Yb:KGW Source at a 100 kHz Repetition Rate with 245 fs Pulse Duration
Abstract
:1. Introduction
2. Conventional Approach to THz-TDS
3. Optimization of the Conversion Efficiency
4. Beamline Design
5. Cooling
6. Probe Compression
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Xu, J. Introduction to THz Wave Photonics, 1st ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An Introduction to Terahertz Time Domain Spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef]
- Mittleman, D.M. Perspective: Terahertz Science and Technology. J. Appl. Phys. 2017, 122, 230901. [Google Scholar] [CrossRef]
- Cherkasova, O.; Konnikova, M.; Kistenev, Y.; Vaks, V.; Coutaz, J.L.; Shkurinov, A. Terahertz Spectroscopy of Biological Molecules in Solid, Liquid, and Gaseous States. In Molecular and Laser Spectroscopy; Gupta, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3, pp. 433–478. [Google Scholar]
- Davies, A.G.; Burnett, A.D.; Fan, W.; Linfield, E.H.; Cunningham, J.E. Terahertz Spectroscopy of Explosives and Drugs. Mater. Today 2008, 11, 18–26. [Google Scholar] [CrossRef]
- Peiponen, K.E.; Zeitler, A.; Kuwata-Gonokami, M. (Eds.) Terahertz Spectroscopy and Imaging; Springer: Berlin/Heidelberg, Germany, 2013; Volume 171. [Google Scholar]
- Jepsen, P.; Cooke, D.; Koch, M. Terahertz Spectroscopy and Imaging—Modern Techniques and Applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Gowen, A.; O’Sullivan, C.; O’Donnell, C. Terahertz Time Domain Spectroscopy and Imaging: Emerging Techniques for Food Process Monitoring and Quality Control. Trends Food Sci. Technol. 2012, 25, 40–46. [Google Scholar] [CrossRef]
- Pereira, M.F.; Anfertev, V.; Shevchenko, Y.; Vaks, V. Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci. Rep. 2020, 10, 15950. [Google Scholar] [CrossRef] [PubMed]
- Vaks, V.; Anfertev, V.; Chernyaeva, M.; Domracheva, E.; Yablokov, A.; Maslennikova, A.; Zhelesnyak, A.; Baranov, A.; Schevchenko, Y.; Pereira, M.F. Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy. Sci. Rep. 2022, 12, 18117. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.B.; Zhong, H.; Karpowicz, N.; Chen, Y.; Zhang, X.C. Terahertz Spectroscopy and Imaging for Defense and Security Applications. Proc. IEEE 2007, 95, 1514–1527. [Google Scholar] [CrossRef]
- Beck, M.; Schäfer, H.; Klatt, G.; Demsar, J.; Winnerl, S.; Helm, M.; Dekorsy, T. Impulsive Terahertz Radiation with High Electric Fields from an Amplifier-Driven Large-Area Photoconductive Antenna. Opt. Express 2010, 18, 9251–9257. [Google Scholar] [CrossRef]
- Lu, P.K.; Turan, D.; Jarrahi, M. High-Power Terahertz Pulse Generation from Bias-Free Nanoantennas on Graded Composition InGaAs Structures. Opt. Express 2022, 30, 1584–1598. [Google Scholar] [CrossRef]
- Oh, T.I.; Yoo, Y.J.; You, Y.S.; Kim, K.Y. Generation of Strong Terahertz Fields Exceeding 8 MV/Cm at 1 kHz and Real-Time Beam Profiling. Appl. Phys. Lett. 2014, 105, 041103. [Google Scholar] [CrossRef]
- Piccoli, R.; Rovere, A.; Jeong, Y.G.; Jia, Y.; Zanotto, L.; Légaré, F.; Schmidt, B.E.; Morandotti, R.; Razzari, L. Extremely Broadband Terahertz Generation via Pulse Compression of an Ytterbium Laser Amplifier. Opt. Express 2019, 27, 32659–32665. [Google Scholar] [CrossRef] [PubMed]
- Koulouklidis, A.D.; Lanara, C.; Daskalaki, C.; Fedorov, V.Y.; Tzortzakis, S. Impact of Gas Dynamics on Laser Filamentation THz Sources at High Repetition Rates. Opt. Lett. 2020, 45, 6835–6838. [Google Scholar] [CrossRef] [PubMed]
- Hebling, J.; Stepanov, A.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz Pulse Generation by Optical Rectification of Ultrashort Laser Pulses with Tilted Pulse Fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Huang, S.W.; Granados, E.; Huang, W.R.; Hong, K.H.; Zapata, L.E.; Kärtner, F.X. High Conversion Efficiency, High Energy Terahertz Pulses by Optical Rectification in Cryogenically Cooled Lithium Niobate. Opt. Lett. 2013, 38, 796–798. [Google Scholar] [CrossRef] [PubMed]
- O Krizsán, G.; Tibai, Z.; Hebling, J.; Pálfalvi, L.; Almási, G.; Tóth, G. Lithium Niobate and Lithium Tantalate Based Scalable Terahertz Pulse Sources in Reflection Geometry. Opt. Express 2020, 28, 34320–34327. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, X.C. 7 Terahertz Broadband GaP Electro-Optic Sensor. Appl. Phys. Lett. 1997, 70, 1784–1786. [Google Scholar] [CrossRef]
- Hoffmann, M.C.; Yeh, K.L.; Hebling, J.; Nelson, K.A. Efficient Terahertz Generation by Optical Rectification at 1035 Nm. Opt. Express 2007, 15, 11706–11713. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, N.; Vogel, T.; Wang, Y.; Mansourzadeh, S.; Aslani, F.; Omar, A.; Hoffmann, M.; Meyer, F.; Saraceno, C.J. Cryogenically Cooled GaP for Optical Rectification at High Excitation Average Powers. Opt. Mater. Express 2020, 10, 2768–2782. [Google Scholar] [CrossRef]
- Negel, J.P.; Hegenbarth, R.; Steinmann, A.; Metzger, B.; Hoos, F.; Giessen, H. Compact and Cost-Effective Scheme for THz Generation via Optical Rectification in GaP and GaAs Using Novel Fs Laser Oscillators. Appl. Phys. B 2011, 103, 45–50. [Google Scholar] [CrossRef]
- McNee, I.; Tekavec, P.; Kozlov, V.; Markelz, A.; George, D.; Schunemann, P.G. Tunable Narrowband THz Generation in Orientation Patterned Gallium Phosphide for THz Anisotropy Identification. In Proceedings of the Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII Conference, San Francisco, CA, USA, 2–7 February 2019; Volume 10902. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, J.; Zhang, W.; Grischkowsky, D. Terahertz Time-Domain Spectroscopy Characterization of the Far-Infrared Absorption and Index of Refraction of High-Resistivity, Float-Zone Silicon. J. Opt. Soc. Am. B 2004, 21, 1379–1386. [Google Scholar] [CrossRef]
- Bludau, W.; Onton, A.; Heinke, W. Temperature Dependence of the Band Gap of Silicon. J. Appl. Phys. 1974, 45, 1846–1848. [Google Scholar] [CrossRef]
- Sulzer, P.; Oguchi, K.; Huster, J.; Kizmann, M.; Guedes, T.L.M.; Liehl, A.; Beckh, C.; Moskalenko, A.S.; Burkard, G.; Seletskiy, D.V.; et al. Determination of the Electric Field and Its Hilbert Transform in Femtosecond Electro-Optic Sampling. Phys. Rev. A 2020, 101, 033821. [Google Scholar] [CrossRef]
- Mansell, J.D.; Hennawi, J.; Gustafson, E.K.; Fejer, M.M.; Byer, R.L.; Clubley, D.; Yoshida, S.; Reitze, D.H. Evaluating the Effect of Transmissive Optic Thermal Lensing on Laser Beam Quality with a Shack–Hartmann Wave-Front Sensor. Appl. Opt. 2001, 40, 366–374. [Google Scholar] [CrossRef]
- Petersen, E.B.; Shi, W.; Chavez-Pirson, A.; Peyghambarian, N.; Cooney, A.T. Efficient Parametric Terahertz Generation in Quasi-Phase-Matched GaP through Cavity Enhanced Difference-Frequency Generation. Appl. Phys. Lett. 2011, 98, 121119. [Google Scholar] [CrossRef]
- Chang, G.; Divin, C.J.; Liu, C.H.; Williamson, S.L.; Galvanauskas, A.; Norris, T.B. Power Scalable Compact THz System Based on an Ultrafast Yb-doped Fiber Amplifier. Opt. Express 2006, 14, 7909–7913. [Google Scholar] [CrossRef]
- Li, J.; Chai, L.; Shi, J.; Liu, F.; Liu, B.; Xu, B.; Hu, M.; Li, Y.; Xing, Q.; Wang, C.; et al. Generation of 0.3 mW High-Power Broadband Terahertz Pulses from GaP Crystal Pumped by Negatively Chirped Femtosecond Laser Pulses. Laser Phys. Lett. 2013, 10, 125404. [Google Scholar] [CrossRef]
- Meyer, F.; Hekmat, N.; Vogel, T.; Omar, A.; Mansourzadeh, S.; Fobbe, F.; Hoffmann, M.; Wang, Y.; Saraceno, C.J. Milliwatt-Class Broadband THz Source Driven by a 112 W, Sub-100 Fs Thin-Disk Laser. Opt. Express 2019, 27, 30340–30349. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Globisch, B.; Hofer, C.; Lilienfein, N.; Butler, T.; Karpowicz, N.; Pupeza, I. Three-Octave Terahertz Pulses from Optical Rectification of 20 Fs, 1 μM, 78 MHz Pulses GaP. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 154002. [Google Scholar] [CrossRef]
- Ding, Y. Quasi-Single-Cycle Terahertz Pulses Based on Broadband-Phase-Matched Difference-Frequency Generation in Second-Order Nonlinear Medium: High Output Powers and Conversion Efficiencies. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1171–1179. [Google Scholar] [CrossRef]
- Meyer, F.; Hekmat, N.; Mansourzadeh, S.; Fobbe, F.; Aslani, F.; Hoffmann, M.; Saraceno, C.J. Optical Rectification of a 100 W Average Power Mode-Locked Thin-Disk Oscillator. Opt. Lett. 2018, 43, 5909–5912. [Google Scholar] [CrossRef]
- Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts. Phys. Rev. Appl. 2017, 7, 064019. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Xing, Q.; Chai, L.; Hu, M.; Wang, C.; Deng, Y.; Sun, Q.; Wang, C. Three-Photon Absorption and Kerr Nonlinearity in Undoped Bulk GaP Excited by a Femtosecond Laser at 1040 Nm. J. Opt. 2010, 12, 095201. [Google Scholar] [CrossRef]
- Pyshkin, S.L.; Ferdman, N.A.; Radautsan, S.I.; Kovarsky, V.A.; Vitiu, E.V. Many-Quantum Absorption in Gallium Phosphide. Opto-electronics 1970, 2, 245–249. [Google Scholar] [CrossRef]
- Nathan, V.; Mitra, S.S.; Guenther, A.H. Review of Multiphoton Absorption in Crystalline Solids. J. Opt. Soc. Am. B 1985, 2, 294–316. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Gao, Y.; Li, G.; Huang, Z.; Chu, J.; Andreev, Y. High Efficient Terahertz Generation from Cryogenic Gallium Phosphide Based on Collinear Difference Frequency. In Proceedings of the Fifth International Symposium on Laser Interaction with Matter Conference, Changsha, China, 11–14 November 2018; Volume 11046, p. 76. [Google Scholar] [CrossRef]
- Wulf, M.S.F.; Meyer, G.; Saraceno, C.J.; Kärtner, F.X. Novel High Power THz Sources Driven by Mode-Locked Thin-Disk Lasers. Doctoral Thesis, Ruhr-Universitat Bochum, Bochum, Germany, 2020. [Google Scholar]
- Naftaly, M.; Dudley, R. Methodologies for Determining the Dynamic Ranges and Signal-to-Noise Ratios of Terahertz Time-Domain Spectrometers. Opt. Lett. 2009, 34, 1213–1215. [Google Scholar] [CrossRef]
- Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A.C.; Busacca, A.C.; Peccianti, M.; Morandotti, R. Wideband THz Time Domain Spectroscopy Based on Optical Rectification and Electro-Optic Sampling. Sci. Rep. 2013, 3, 3116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirsch, L.; Adamou, D.; Faccio, D.; Peccianti, M.; Clerici, M. Design of an Optimized Terahertz Time-Domain Spectroscopy System Pumped by a 30 W Yb:KGW Source at a 100 kHz Repetition Rate with 245 fs Pulse Duration. Appl. Sci. 2024, 14, 6688. https://doi.org/10.3390/app14156688
Hirsch L, Adamou D, Faccio D, Peccianti M, Clerici M. Design of an Optimized Terahertz Time-Domain Spectroscopy System Pumped by a 30 W Yb:KGW Source at a 100 kHz Repetition Rate with 245 fs Pulse Duration. Applied Sciences. 2024; 14(15):6688. https://doi.org/10.3390/app14156688
Chicago/Turabian StyleHirsch, Lennart, Dionysis Adamou, Daniele Faccio, Marco Peccianti, and Matteo Clerici. 2024. "Design of an Optimized Terahertz Time-Domain Spectroscopy System Pumped by a 30 W Yb:KGW Source at a 100 kHz Repetition Rate with 245 fs Pulse Duration" Applied Sciences 14, no. 15: 6688. https://doi.org/10.3390/app14156688
APA StyleHirsch, L., Adamou, D., Faccio, D., Peccianti, M., & Clerici, M. (2024). Design of an Optimized Terahertz Time-Domain Spectroscopy System Pumped by a 30 W Yb:KGW Source at a 100 kHz Repetition Rate with 245 fs Pulse Duration. Applied Sciences, 14(15), 6688. https://doi.org/10.3390/app14156688