Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective
Abstract
:1. Introduction
2. Research Methodology
2.1. Collecting Relevant Data
2.2. Data Selection
2.3. Comprehensive Analysis
3. Results Analysis
3.1. Full Life Cycle Stage Division
3.2. The Whole Life Cycle Stage Process of the Assembled MEP System
3.3. Policy Overview
3.3.1. Foreign Policies
3.3.2. Domestic Policies
Planning and Design Stage
Prefabrication and Machining Stage
Operation and Maintenance Stage
Dismantling and Reuse Stage
3.4. Summary
3.5. Keywords Analysis
3.6. Planning and Design Stage
3.6.1. Specific Analysis of the Planning and Design Stage
3.6.2. Summary
3.7. Prefabrication Processing Stage
3.7.1. Specific Analysis of the Prefabrication and Processing Stage
3.7.2. Summary
3.8. Installation Construction Stage
3.8.1. Specific Analysis of the Installation Construction Stage
3.8.2. Summary
3.9. Operation and Maintenance Stage
3.9.1. Specific Analysis of the Operation and Maintenance Stage
3.9.2. Summary
3.10. Dismantling and Recycling Stage
3.10.1. Specific Analysis of the Dismantling and Recycling Stage
3.10.2. Summary
4. Discussion and Analysis
4.1. Differences between Assembled M&E Systems and Conventional M&E Systems
4.2. Challenges and Prospects
5. Conclusions
5.1. Summary and Contribution
5.2. Outlook and Shortcomings
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, D.N.; Zhang, X.; Gao, C.C.; Yang, M.; Li, Q.; Li, M. Cost management system of electric power engineering project based on project management theory. J. Intell. Fuzzy Syst. 2018, 34, 975–984. [Google Scholar] [CrossRef]
- Shen, H.; Peng, Y.; Guo, C.X. Analysis of the Evolution Game of Construction and Demolition Waste Recycling Behavior Based on Prospect Theory under Environmental Regulation. Int. J. Environ. Res. Public Health 2018, 15, 1518. [Google Scholar] [CrossRef]
- Tserng, H.P.; Yin, Y.L.; Jaselskis, E.J.; Hung, W.C.; Lin, Y.C. Modularization and assembly algorithm for efficient MEP construction. Autom. Constr. 2011, 20, 837–863. [Google Scholar] [CrossRef]
- Xue, S.; Na, J.; Wang, L.; Wang, S.; Xu, X. The outlook of green building development in China during the “fourteenth five-year plan” period. Int. J. Environ. Res. Public Health 2023, 20, 5122. [Google Scholar] [CrossRef]
- Statistical Analysis of the Development of the Construction Industry 2022. Available online: https://m.sxjzy.org/h-nd-30940.html (accessed on 6 July 2024).
- Hu, Z.Z.; Tian, P.L.; Li, S.W.; Zhang, J.P. BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase. Adv. Eng. Softw. 2018, 115, 1–16. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Wiendahl, H.-P.; Reichardt, J.; Nyhuis, P. Handbook Factory Planning and Design; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Li, X.; Shen, G.Q.; Wu, P.; Yue, T. Integrating building information modeling and prefabrication housing production. Autom. Constr. 2019, 100, 46–60. [Google Scholar] [CrossRef]
- Yan, G.W.; Yang, Y.H.; Zhang, H.Z.; Li, Z.W.; Chen, S.; Zhao, X.F.; Sun, Z.; Fan, X.T.; Zhang, M.; Huang, L.L.; et al. A Review of Life Cycle Construction Process and Cutting-Edge Technology in Prefabricated MEP Installation Engineering. Buildings 2024, 14, 630. [Google Scholar] [CrossRef]
- Cui, J.R.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater. 2003, 99, 243–263. [Google Scholar] [CrossRef]
- Khalili, A.; Chua, D.K. Integrated Prefabrication Configuration and Component Grouping for Resource Optimization of Precast Production. J. Constr. Eng. Manag. 2014, 140, 12. [Google Scholar] [CrossRef]
- Baek, J.; Kim, D.; Choi, B. Deep learning-based automated productivity monitoring for on-site module installation in off-site construction. Dev. Built Environ. 2024, 18, 14. [Google Scholar] [CrossRef]
- NFPA. NFPA241. Available online: https://www.nfpa.org/codes-and-standards/nfpa-241-standard-development/241 (accessed on 6 July 2024).
- Facilities Standards (P100). Available online: https://www.gsa.gov/real-estate/design-and-construction/engineering/facilities-standards-for-the-public-buildings-service (accessed on 6 July 2024).
- FEMP. Available online: https://www.energy.gov/femp/federal-energy-management-program (accessed on 6 July 2024).
- FBS Factory-Built Structures Regulations. Available online: https://www.legis.iowa.gov/docs/iac/rule/07-02-2008.661.16.610.pdf (accessed on 6 July 2024).
- Ferko, E.; Bucaioni, A.; Pelliccione, P.; Behnam, M. Standardisation in digital twin architectures in manufacturing. In Proceedings of the 2023 IEEE 20th International Conference on Software Architecture (ICSA), L’Aquila, Italy, 13–17 March 2023; pp. 70–81. [Google Scholar]
- LEED. Available online: https://www.usgbc.org/leed (accessed on 6 July 2024).
- Parrott, B.C.; Bomba, M.B. Integrated project delivery and building information modeling. PCI J. 2010, 55, 147–153. [Google Scholar] [CrossRef]
- Harman, D.K. The Revised AISC Code of Standard Practice for Steel Buildings and Bridges: A Structural Engineer’s View. In Advanced Technology in Structural Engineering; American Society of Civil Engineers: Reston, VA, USA, 2000; pp. 1–3. [Google Scholar]
- Modular Building Codes. Available online: https://www.modular.org/building-codes-contacts/ (accessed on 6 July 2024).
- American National Standards. Available online: https://www.ansi.org/ (accessed on 6 July 2024).
- JSA Group. JIS A 5372. Available online: https://webdesk.jsa.or.jp/books/W11M0090/index/?bunsyo_id=JIS%20A%205372:2016 (accessed on 6 July 2024).
- Better Living. Available online: https://www.cbl.or.jp/blsys/blnintei/rireki.html (accessed on 6 July 2024).
- EnEv. Available online: https://www.inventer.eu/know-how/ventilation-market/enev/ (accessed on 6 July 2024).
- DIN. DIN EN 13369. Available online: https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+13369&submit-btn=Submit (accessed on 6 July 2024).
- Cauchard, L. Les Collèges D’experts et la Fabrique de la Normalisation Technique. Hybridation Normative et Performation de la Haute Qualité Environnementale (HQE) des Bâtiments en France; Université Paris-Est: Champs-sur-Marne, France, 2010. [Google Scholar]
- NF EN 13369. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-13369/common-rules-for-precast-concrete-products/fa164869/42463 (accessed on 6 July 2024).
- BR18. Available online: https://www.iea.org/search?q=BR (accessed on 6 July 2024).
- DS/EN 13369. Available online: https://webshop.ds.dk/standard?Search=13369 (accessed on 6 July 2024).
- Bundgaard, A.M.; Mosgaard, M.A.; Remmen, A. From energy efficiency towards resource efficiency within the Ecodesign Directive. J. Clean. Prod. 2017, 144, 358–374. [Google Scholar] [CrossRef]
- Burman, E.; Mumovic, D.; Kimpian, J. Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings. Energy 2014, 77, 153–163. [Google Scholar] [CrossRef]
- Several Opinions on Further Strengthening the Management of Urban Planning and Construction. Available online: https://www.gov.cn/gongbao/content/2016/content_5051277.htm (accessed on 5 July 2024).
- Guiding Opinions of the General Office of the State Council on Vigorously Developing Assembled Buildings. Available online: https://www.gov.cn/gongbao/content/2016/content_5120699.htm (accessed on 5 July 2024).
- Shanghai Housing Development “13th Five-Year” Plan. Available online: https://www.shanghai.gov.cn/shssswzxgh/20200820/0001-22403_53000.html (accessed on 6 July 2024).
- Guidance on Promoting the Synergistic Development of Intelligent Construction and Building Industrialization. Available online: https://www.mohurd.gov.cn/ (accessed on 5 July 2024).
- China’s 14th Five-Year Plan for National Development. Available online: https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (accessed on 5 July 2024).
- Circular on the Issuance of the “Twelfth Five-Year Plan” for the Development of Green Buildings and Green Ecological Urban Areas. Available online: https://www.gov.cn/gongbao/content/2013/content_2441025.htm (accessed on 5 July 2024).
- Evaluation Criteria for Assembly Building. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201801/20180122_234899.html (accessed on 5 July 2024).
- New Infrastructure Plan for Shanxi Province under the Fourteenth Five-Year Plan. Available online: https://www.shanxi.gov.cn/zfxxgk/zfxxgkzl/fdzdgknr/lzyj/szfwj/202205/t20220513_5976506.shtml (accessed on 5 July 2024).
- Chongqing Urban Renewal and Upgrading “14th Five-Year Plan” Action Plan. Available online: https://www.cq.gov.cn/zwgk/zfxxgkml/wlzcxx/hmlm/whszf/202208/t20220808_10984271.html (accessed on 5 July 2024).
- Circular on the Transmission of the Green Building Action Program of the Ministry of Housing and Urban-Rural Development of the Development and Reform Commission. Available online: https://www.gov.cn/gongbao/content/2013/content_2313187.htm (accessed on 5 July 2024).
- Opinions on Promoting the Sustainable and Healthy Development of the Construction Industry. Available online: https://www.gov.cn/zhengce/zhengceku/2017-02/24/content_5170625.htm (accessed on 5 July 2024).
- Notice on the Issuance of the 13th Five-Year Plan for Building Energy Efficiency and Green Building Development. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201703/20170314_230978.html (accessed on 5 July 2024).
- Notice on the Issuance of the “13th Five-Year” Energy Conservation and Emission Reduction Comprehensive Work Program. Available online: https://www.gov.cn/gongbao/content/2017/content_5163448.htm (accessed on 5 July 2024).
- Green Building Creation Action Program. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202007/20200724_246492.html (accessed on 5 July 2024).
- Shanghai Assembly Building “14th Five-Year” Plan. Available online: https://zjw.sh.gov.cn/ghjh/20211109/f5ed3fe865b447b7b064fc695cae1351.html (accessed on 6 July 2024).
- Law of the People’s Republic of China on Prevention and Control of Environmental Pollution by Solid Wastes. Available online: https://www.gov.cn/xinwen/2020-04/30/content_5507561.htm (accessed on 5 July 2024).
- Guidance on Promoting Construction Waste Minimization. Available online: https://www.gov.cn/gongbao/content/2020/content_5530365.htm (accessed on 5 July 2024).
- Guidance Manual for the Minimization of Construction Waste on Construction Sites. Available online: https://www.gov.cn/zhengce/zhengceku/2020-05/19/content_5512914.htm (accessed on 5 July 2024).
- Xu, Z.; Zayed, T.; Niu, Y.M. Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore. J. Clean Prod. 2020, 245, 118861. [Google Scholar] [CrossRef]
- Xiao, Y.W.; Bhola, J. Design and optimization of prefabricated building system based on BIM technology. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 111–120. [Google Scholar] [CrossRef]
- Cheng, D.; Ma, J. Research on the restrictive factors of the development of Chinese prefabricated buildings. IOP Conf. Ser. Earth Environ. Sci. 2020, 531, 012044. [Google Scholar] [CrossRef]
- Li, X.D.; Li, Z.F.; Wu, G.D. Modular and Offsite Construction of Piping: Current Barriers and Route. Appl. Sci. 2017, 7, 547. [Google Scholar] [CrossRef]
- Guo, S.J. Identification and resolution of work space conflicts in building construction. J. Constr. Eng. Manag. 2002, 128, 287–295. [Google Scholar] [CrossRef]
- Zouein, P.P.; Tommelein, I.D. Improvement algorithm for limited space scheduling. J. Constr. Eng. Manag. 2001, 127, 116–124. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Z.; Mei, T.; Li, Q.; Li, P. Labor crew workspace analysis for prefabricated assemblies’ installation: A 4D-BIM-based approach. Eng. Constr. Archit. Manag. 2018, 25, 374–411. [Google Scholar] [CrossRef]
- Bataglin, F.S.; Viana, D.D.; Formoso, C.T.; Bulhoes, I.R. Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems: Exploring synergies between Lean and BIM. Can. J. Civ. Eng. 2020, 47, 165–177. [Google Scholar] [CrossRef]
- Said, H. Modeling and Likelihood Prediction of Prefabrication Feasibility for Electrical Construction Firms. J. Constr. Eng. Manag. 2016, 142, 13. [Google Scholar] [CrossRef]
- Samarasinghe, T.; Gunawardena, T.; Mendis, P.; Sofi, M.; Aye, L. Dependency Structure Matrix and Hierarchical Clustering based algorithm for optimum module identification in MEP systems. Autom. Constr. 2019, 104, 153–178. [Google Scholar] [CrossRef]
- Korman, T.M.; Tatum, C. Prototype tool for mechanical, electrical, and plumbing coordination. J. Comput. Civ. Eng. 2006, 20, 38–48. [Google Scholar] [CrossRef]
- Gallaher, M.P.; O’Connor, A.C.; Dettbarn, J.L., Jr.; Gilday, L.T. Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004; pp. 223–253. [Google Scholar]
- Korman, T.M.; Fischer, M.A.; Tatum, C.B. Knowledge and reasoning for MEP coordination. J. Constr. Eng. Manag. 2003, 129, 627–634. [Google Scholar] [CrossRef]
- Khanzode, A.; Fischer, M.; Reed, D. Benefits and lessons learned of implementing building virtual design and construction (VDC) technologies for coordination of mechanical, electrical, and plumbing (MEP) systems on a large healthcare project. J. Inf. Technol. Constr. 2008, 13, 324–342. [Google Scholar]
- He, T.; Lin, J.; Hu, Z.; Zhang, J.; Jia, W.; Su, J. BIM-based plan modeling system at preliminary stage for residential real estate projects. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 488–495. [Google Scholar]
- Xie, H.; Tramel, J.M.; Shi, W. Building information modeling and simulation for the mechanical, electrical, and plumbing systems. In Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; pp. 77–80. [Google Scholar]
- Zhong, C.L.; Zhang, M.Q.; Cui, X.; Liu, Z. Comprehensive Evaluation of China’s Prefabricated Decoration Cost Based on Analytic Hierarchy Process. Adv. Civ. Eng. 2020, 2020, 1583748. [Google Scholar] [CrossRef]
- Baek, S.; Won, J.; Jang, S. Economic Integrated Structural Framing for BIM-Based Prefabricated Mechanical, Electrical, and Plumbing Racks. Appl. Sci. 2023, 13, 3677. [Google Scholar] [CrossRef]
- Riley, D.R.; Varadan, P.; James, J.S.; Thomas, H.R. Benefit-cost metrics for design coordination of mechanical, electrical, and plumbing systems in multistory buildings. J. Constr. Eng. Manag. 2005, 131, 877–889. [Google Scholar] [CrossRef]
- Zhou, F.; Ning, Y.B.; Guo, X.R.; Guo, S.D. Analyze Differences in Carbon Emissions from Traditional and Prefabricated Buildings Combining the Life Cycle. Buildings 2023, 13, 874. [Google Scholar] [CrossRef]
- Bi, X.Q.; Luo, Y.B. Analysis on the Hot Spot and Trend of the Foreign Assembly Building Research. In Proceedings of the International Conference on Advances in Materials, Machinery, Electronics (AMME), Wuhan, China, 25–26 February 2017. [Google Scholar]
- Lavikka, R.H.; Chauhan, K.; Peltokorpi, A.; Seppänen, O. Fostering prefabrication in construction projects-case MEP in Finland. In Proceedings of the 12th European Conference on Product and Process Modelling (ECPPM), Copenhagen, Denmark, 12–14 September 2018; pp. 273–280. [Google Scholar]
- Shahi, A.; Aryan, A.; West, J.S.; Haas, C.T.; Haas, R.C.G. Deterioration of UWB positioning during construction. Autom. Constr. 2012, 24, 72–80. [Google Scholar] [CrossRef]
- O’Connor, J.T.; O’Brien, W.J.; Choi, J.O. Standardization Strategy for Modular Industrial Plants. J. Constr. Eng. Manag. 2015, 141, 10. [Google Scholar] [CrossRef]
- Wang, P.; Mohamed, Y.; Abourizk, S.M.; Rawa, A.R.T. Flow Production of Pipe Spool Fabrication: Simulation to Support Implementation of Lean Technique. J. Constr. Eng. Manag. 2009, 135, 1027–1038. [Google Scholar] [CrossRef]
- Akinci, B.; Boukamp, F.; Gordon, C.; Huber, D.; Lyons, C.; Park, K. A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 2006, 15, 124–138. [Google Scholar] [CrossRef]
- Safa, M.; Shahi, A.; Nahangi, M.; Haas, C.; Noori, H. Automating measurement process to improve quality management for piping fabrication. Structures 2015, 3, 71–80. [Google Scholar] [CrossRef]
- Chi, S.; Caldas, C.H. Image-Based Safety Assessment: Automated Spatial Safety Risk Identification of Earthmoving and Surface Mining Activities. J. Constr. Eng. Manag. 2012, 138, 341–351. [Google Scholar] [CrossRef]
- Korman, T.M.; Lu, N. Innovation and improvements of mechanical, electrical, and plumbing systems for modular construction using building information modeling. In AEI 2011: Building Integration Solutions; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 448–455. [Google Scholar]
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar] [CrossRef]
- Lee, G.; Kim, J. Parallel vs. Sequential Cascading MEP Coordination Strategies: A Pharmaceutical Building Case Study. Autom. Constr. 2014, 43, 170–179. [Google Scholar] [CrossRef]
- Bhandari, S.; Riggio, M.; Jahedi, S.; Fischer, E.C.; Muszynski, L.; Luo, Z.X. A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas. J. Build. Eng. 2023, 63, 21. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K.; Milani, A.S. Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Build. Environ. 2018, 138, 21–41. [Google Scholar] [CrossRef]
- Lacey, A.W.; Chen, W.S.; Hao, H.; Bi, K.M. Structural response of modular buildings—An overview. J. Build. Eng. 2018, 16, 45–56. [Google Scholar] [CrossRef]
- Park, K.S.; Moon, J.; Lee, S.S.; Bae, K.W.; Roeder, C.W. Embedded steel column-to-foundation connection for a modular structural system. Eng. Struct. 2016, 110, 244–257. [Google Scholar] [CrossRef]
- Tabesh, A.R.; Staub-French, S. Modeling and coordinating building systems in three dimensions: A case study. Can. J. Civ. Eng. 2006, 33, 1490–1504. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, M.; Pan, W.; Zhang, Z.Q. Sources of Uncertainties in Offsite Logistics of Modular Construction for High-Rise Building Projects. J. Manag. Eng. 2021, 37, 14. [Google Scholar] [CrossRef]
- Kendall, D. Building the future with FRP composites. Reinf. Plast. 2007, 51, 26–29+31–33. [Google Scholar] [CrossRef]
- Manalo, A.; Aravinthan, T.; Fam, A.; Benmokrane, B. State-of-the-Art Review on FRP Sandwich Systems for Lightweight Civil Infrastructure. J. Compos. Constr. 2017, 21, 16. [Google Scholar] [CrossRef]
- Song, J.; Fagerlund, W.R.; Haas, C.T.; Tatum, C.B.; Vanegas, J.A. Considering prework on industrial projects. J. Constr. Eng. Manag. 2005, 131, 723–733. [Google Scholar] [CrossRef]
- Defazio, T.L.; Edsall, A.C.; Gustavson, R.E.; Hernandez, J.; Hutchins, P.M.; Leung, H.W.; Luby, S.C.; Metzinger, R.W.; Nevins, J.L.; Tung, K.; et al. A prototype of feature-based design for assembly. J. Mech. Des. 1993, 115, 723–734. [Google Scholar] [CrossRef]
- Kim, K.S.; Paulson, B.C. Multi-agent distributed coordination of project schedule changes. Comput.-Aided Civil. Infrastruct. Eng. 2003, 18, 412–425. [Google Scholar] [CrossRef]
- Guo, Z.L.; Gao, S.; Liu, J.E. Application of BIM Technology in Prefabricated Buildings. In Proceedings of the 2nd International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE), Zhuhai, China, 28–30 April 2017. [Google Scholar]
- Sweany, J.; Goodrum, P.; Miller, J. Analysis of empirical data on the effects of the format of engineering deliverables on craft performance. Autom. Constr. 2016, 69, 59–67. [Google Scholar] [CrossRef]
- Goodrum, P.M.; Miller, J.; Sweany, J.; Alruwaythi, O. Influence of the Format of Engineering Information and Spatial Cognition on Craft-Worker Performance. J. Constr. Eng. Manag. 2016, 142, 10. [Google Scholar] [CrossRef]
- Sundin, E.; Elo, K.; Mien Lee, H.J. Design for automatic end-of-life processes. Assem. Autom. 2012, 32, 389–398. [Google Scholar] [CrossRef]
- Court, P.F.; Pasquire, C.L.; Gibb, G.F.; Bower, D. Modular Assembly with Postponement to Improve Health, Safety, and Productivity in Construction. Pract. Period. Struct. Des. Constr. 2009, 14, 81–89. [Google Scholar] [CrossRef]
- Suárez, J.L.; Gosselin, L.; Lehoux, N. Optimizing Modularity of Prefabricated Residential Plumbing Systems for Construction in Remote Communities. J. Constr. Eng. Manag. 2023, 149, 16. [Google Scholar] [CrossRef]
- van Winden, C.; Dekker, R. Rationalisation of building maintenance by Markov decision models: A pilot case study. J. Oper. Res. Soc. 1998, 49, 928–935. [Google Scholar] [CrossRef]
- Shohet, I.M.; Rosenfeld, Y.; Puterman, M.; Gilboa, E. Deterioration patterns for maintenance management—A methodological approach. In Proceedings of the 8th International Conference on Durability of Building Materials and Components (8dbmc), Vancouver, BC, Canada, 30 May–3 June 1999; pp. 1666–1678. [Google Scholar]
- Lee, S.-K.; An, H.-K.; Yu, J.-H. An extension of the technology acceptance model for BIM-based FM. In Construction Research Congress 2012: Construction Challenges in a Flat World; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 602–611. [Google Scholar]
- Horner, R.M.W.; El-Haram, M.; Munns, A. Building maintenance strategy: A new management approach. J. Qual. Maint. Eng. 1997, 3, 273–280. [Google Scholar] [CrossRef]
- El-Ammari, K.H. Visualization, Data Sharing and Interoperability Issues in Model-Based Facilities Management Systems. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2006. [Google Scholar]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. A guide to building information modeling for owners, managers, designers, engineers and contractors. BIM Handb. 2011, 2, 147–150. [Google Scholar]
- Hu, Z.Z.; Zhang, J.P.; Yu, F.Q.; Tian, P.L.; Xiang, X.S. Construction and facility management of large MEP projects using a multi-Scale building information model. Adv. Eng. Softw. 2016, 100, 215–230. [Google Scholar] [CrossRef]
- Akçamete Güngör, A.; Garrett, J.H. Potential Utilization of Building Information Models for Planning Maintenance Activities. In Proceedings of the International Conference on Computing in Civil and Building Engineering, Nottingham, UK, 30 June–2 July 2010. [Google Scholar]
- Ghodoosi, F.; Abu-Samra, S.; Zeynalian, M.; Zayed, T. Maintenance Cost Optimization for Bridge Structures Using System Reliability Analysis and Genetic Algorithms. J. Constr. Eng. Manag. 2018, 144, 04017116. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, Y. Analyzing the Long-Term Service Life of MEP Using the Probabilistic Approach in Residential Buildings. Sustainability 2018, 10, 15. [Google Scholar] [CrossRef]
- Frangopol, D.M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: Accomplishments and challenges. Struct. Infrastruct. Eng. 2011, 7, 389–413. [Google Scholar] [CrossRef]
- Mejri, M.; Cazuguel, M.; Cognard, J.Y. A time-variant reliability approach for ageing marine structures with non-linear behaviour. Comput. Struct. 2011, 89, 1743–1753. [Google Scholar] [CrossRef]
- Dias, J.L.; Silva, A.; Chai, C.; Gaspar, P.L.; de Brito, J. Neural networks applied to service life prediction of exterior painted surfaces. Build. Res. Inform. 2014, 42, 371–380. [Google Scholar] [CrossRef]
- Chai, C.; de Brito, J.; Gaspar, P.L.; Silva, A. Predicting the Service Life of Exterior Wall Painting: Techno-Economic Analysis of Alternative Maintenance Strategies. J. Constr. Eng. Manag. 2014, 140, 13. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.M.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: Terrestrial laser scanning. Comput.-Aided Civil. Infrastruct. Eng. 2007, 22, 19–30. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Brilakis, I. Machine Vision-Based Concrete Surface Quality Assessment. J. Constr. Eng. Manag. 2010, 136, 210–218. [Google Scholar] [CrossRef]
- Koch, C.; Brilakis, I. Pothole detection in asphalt pavement images. Adv. Eng. Inform. 2011, 25, 507–515. [Google Scholar] [CrossRef]
- Marzouk, M.; Abdelaty, A. Monitoring thermal comfort in subways using building information modeling. Energy Build. 2014, 84, 252–257. [Google Scholar] [CrossRef]
- Yu, K.; Froese, T.; Grobler, F. A development framework for data models for computer-integrated facilities management. Autom. Constr. 2000, 9, 145–167. [Google Scholar] [CrossRef]
- East, E.W. Construction operations building information exchange (Cobie): Requirements definition and pilot implementation standard. 2007. [Google Scholar]
- Aghasizadeh, S.; Tabadkani, A.; Hajirasouli, A.; Banihashemi, S. Environmental and economic performance of prefabricated construction: A review. Environ. Impact Assess. Rev. 2022, 97, 18. [Google Scholar] [CrossRef]
- Whittle, A.J.; Pesudovs, D. Collection and recycling of plastics pipes in demolition and construction waste stream. Plast. Rubber Compos. 2007, 36, 190–193. [Google Scholar] [CrossRef]
- Badi, S.; Murtagh, N. Green supply chain management in construction: A systematic literature review and future research agenda. J. Clean. Prod. 2019, 223, 312–322. [Google Scholar] [CrossRef]
- Sassi, P. Designing for Dismantling, Re-Use and Recycling; Greenspec: London, UK, 2019. [Google Scholar]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between circular economy and climate change mitigation in the built environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- da Rocha, C.G.; Sattler, M.A. A discussion on the reuse of building components in Brazil: An analysis of major social, economical and legal factors. Resour. Conserv. Recycl. 2009, 54, 104–112. [Google Scholar] [CrossRef]
- Favi, C.; Marconi, M.; Germani, M.; Mandolini, M. A design for disassembly tool oriented to mechatronic product de-manufacturing and recycling. Adv. Eng. Inform. 2019, 39, 62–79. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J. Measuring the recyclability of e-waste: An innovative method and its implications. J. Clean. Prod. 2016, 131, 156–162. [Google Scholar] [CrossRef]
- Hart, J.; Adams, K.; Giesekam, J.; Tingley, D.D.; Pomponi, F. Barriers and drivers in a circular economy: The case of the built environment. Procedia CIRP 2019, 80, 619–624. [Google Scholar] [CrossRef]
- Rausch, C.; Sanchez, B.; Haas, C. Spatial parameterization of non-semantic CAD elements for supporting automated disassembly planning. In Proceedings of the Modular and Offsite Construction (MOC) Summit, Banff, AB, Canada, 21–24 May 2019; pp. 108–115. [Google Scholar]
- Sanchez, B.; Haas, C. A novel selective disassembly sequence planning method for adaptive reuse of buildings. J. Clean. Prod. 2018, 183, 998–1010. [Google Scholar] [CrossRef]
- Pongiglione, M.; Calderini, C.; D’Aniello, M.; Landolfo, R. Novel reversible seismic-resistant joint for sustainable and deconstructable steel structures. J. Build. Eng. 2021, 35, 101989. [Google Scholar] [CrossRef]
- Sanchez, B.; Bindal-Gutsche, C.; Hartmann, T.; Haas, C. A building information modeling approach for adaptive reuse building projects. In Proceedings of the Construction Research Congress 2020, Tempe, Arizona, 8–10 May 2020; pp. 552–561. [Google Scholar]
- Farghaly, K.; Abanda, F.H.; Vidalakis, C.; Wood, G. Taxonomy for BIM and asset management semantic interoperability. J. Manag. Eng. 2018, 34, 04018012. [Google Scholar] [CrossRef]
- Won, J.; Cheng, J.C. Identifying potential opportunities of building information modeling for construction and demolition waste management and minimization. Autom. Constr. 2017, 79, 3–18. [Google Scholar] [CrossRef]
- Sanchez, B.; Rausch, C.; Haas, C.; Saari, R. A selective disassembly multi-objective optimization approach for adaptive reuse of building components. Resour. Conserv. Recycl. 2020, 154, 104605. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, F.; Liu, J.; Huang, J.; Su, S.; Ji, C.; Pham, D.T.; Xu, W.; Liu, Q.; Zhou, Z. Interlocking problems in disassembly sequence planning. Int. J. Prod. Res. 2021, 59, 4723–4735. [Google Scholar] [CrossRef]
- Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen, X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renew. Sustain. Energy Rev. 2017, 68, 587–595. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F.; Bragança, L. Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. J. Clean. Prod. 2020, 260, 121134. [Google Scholar] [CrossRef]
- Sanchez, B.; Rausch, C.; Haas, C. Deconstruction programming for adaptive reuse of buildings. Autom. Constr. 2019, 107, 102921. [Google Scholar] [CrossRef]
- Denis, F.; Vandervaeren, C.; De Temmerman, N. Using Network Analysis and BIM to Quantify the Impact of Design for Disassembly. Buildings 2018, 8, 113. [Google Scholar] [CrossRef]
- Motahar, M.M.; Nourzad, S.H.H. A hybrid method for optimizing selective disassembly sequence planning in adaptive reuse of buildings. Eng. Constr. Arch. Manag. 2022, 29, 307–332. [Google Scholar] [CrossRef]
- Wan, H.; Gonnuru, V.K. Disassembly planning and sequencing for end-of-life products with RFID enriched information. Robot. Comput.-Integr. Manuf. 2013, 29, 112–118. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future trends. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1450–1471. [Google Scholar] [CrossRef]
- Alrufaifi, H.; Kumar, B.; Rickli, J.L. Automated Contact and Non-Contact Constraint Generation for Disassembly Feasibility and Planning. Procedia CIRP 2019, 80, 548–553. [Google Scholar] [CrossRef]
- Smith, S.; Hung, P.-Y. A novel selective parallel disassembly planning method for green design. J. Eng. Des. 2015, 26, 283–301. [Google Scholar] [CrossRef]
- Vongbunyong, S.; Chen, W. General Disassembly Process, Disassembly Automation: Automated Systems with Cognitive Abilities; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- ElSayed, A.; Kongar, E.; Gupta, S.M.; Sobh, T. A Robotic-Driven Disassembly Sequence Generator for End-of-Life Electronic Products. J. Intell. Robot. Syst. 2012, 68, 43–52. [Google Scholar] [CrossRef]
- Dalrymple, I.; Wright, N.; Kellner, R.; Bains, N.; Geraghty, K.; Goosey, M.; Lightfoot, L. An integrated approach to electronic waste (WEEE) recycling. Circuit World 2007, 33, 52–58. [Google Scholar] [CrossRef]
- Kuo, T.C. The construction of a collaborative-design platform to support waste electrical and electronic equipment recycling. Robot. Comput.-Integr. Manuf. 2010, 26, 100–108. [Google Scholar] [CrossRef]
- Hannan, M.; Al Mamun, A.; Hussain, A.; Basri, H.; Begum, R. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges. Waste Manag. 2015, 43, 509–523. [Google Scholar] [CrossRef]
- Thoroe, L.; Melski, A.; Schumann, M. Item-level RFID: Curse or blessing for recycling and waste management? In Proceedings of the 2009 42nd Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 5–8 January 2009; pp. 1–10. [Google Scholar]
- Ondemir, O.; Gupta, S.M. Quality management in product recovery using the Internet of Things: An optimization approach. Comput. Ind. 2014, 65, 491–504. [Google Scholar] [CrossRef]
- Elo, K.; Sundin, E. Process concepts for semi-automatic dismantling of LCD televisions. Procedia CIRP 2014, 23, 270–275. [Google Scholar] [CrossRef]
- Qiao, C.Z.; Pan, Q.; Zhang, Z.; Hu, P.H. Research on Component Recycling Based on Steel Structure Prefabricated Building. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 022079. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Brown, C.; Troup, L.N.; Wang, L.; Webster, M.D.; Hajjar, J.F. Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings. J. Affect. Disord. 2018, 143, 421–430. [Google Scholar] [CrossRef]
- Luttropp, C.; Johansson, J.J. Improved recycling with life cycle information tagged to the product. J. Clean. Prod. 2010, 18, 346–354. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef]
- Zairul, M. The recent trends on prefabricated buildings with circular economy (CE) approach. Clean. Eng. Technol. 2021, 4, 100239. [Google Scholar] [CrossRef]
FEMP | Federal Energy Management Program |
NFPA | National Fire Protection Association |
E202 | AIAE202TM BIM Protocal Exhibit |
SBBC | Code of Standard Practice for Steel Buildings and Bridges |
MBC | Modular Building Codes |
FBS | Factory-Built Structures Regulations |
BHSMA | Building Height and Safety Measures Act |
ED | Ecodesign Directive |
EPBD | Energy Performance of Buildings Directive |
HQE | High-Quality Environment |
BHC | Building and Housing codes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Ouyang, P.; Liu, X.; Zou, Z.; Wang, Y.; Wang, R. Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective. Appl. Sci. 2024, 14, 6818. https://doi.org/10.3390/app14156818
Wang C, Ouyang P, Liu X, Zou Z, Wang Y, Wang R. Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective. Applied Sciences. 2024; 14(15):6818. https://doi.org/10.3390/app14156818
Chicago/Turabian StyleWang, Chun, Peng Ouyang, Xiaodong Liu, Zhihua Zou, Yuanping Wang, and Ruiling Wang. 2024. "Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective" Applied Sciences 14, no. 15: 6818. https://doi.org/10.3390/app14156818
APA StyleWang, C., Ouyang, P., Liu, X., Zou, Z., Wang, Y., & Wang, R. (2024). Future Prospects of the Assembly Model for MEP Systems in Chinese Buildings: A Whole Life Cycle Perspective. Applied Sciences, 14(15), 6818. https://doi.org/10.3390/app14156818