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Abstract: Heart murmurs play a critical role in assessing the condition of the heart. Murmur
quality reflects the subjective human perception of heart murmurs and is an important characteristic
strongly linked to cardiovascular diseases (CVDs). This study aims to use deep neural networks
to classify the patients’ murmur quality (i.e., harsh and blowing) from phonocardiogram (PCG)
signals. The phonocardiogram recordings with murmurs used for this task are from the CirCor
DigiScope Phonocardiogram dataset, which provides the murmur quality labels. The recordings were
segmented, and a dataset of 1266 segments with average lengths of 4.1 s from 164 patients’ recordings
was obtained. Each patient usually has multiple segments. A deep neural network model based
on convolutional neural networks (CNNs) with channel attention and gated recurrent unit (GRU)
networks was first used to extract features from the log-Mel spectrograms of segments. Then, the
features of different segments from one patient were weighted by the proposed “Feature Attention”
module based on the attention mechanism. The “Feature Attention” module contains a layer of
global pooling and two fully connected layers. Through it, the different features can learn their
weight, which can help the deep learning model distinguish the importance of different features
of one patient. Finally, the detection results were produced. The cross-entropy loss function was
used to train the model, and five-fold cross-validation was employed to evaluate the performance
of the proposed methods. The accuracy of detecting the quality of patients’ murmurs is 73.6%. The
F1-scores (precision and recall) for the murmurs of harsh and blowing are 76.8% (73.0%, 83.0%) and
67.8% (76.0%, 63.3%), respectively. The proposed methods have been thoroughly evaluated and have
the potential to assist physicians with the diagnosis of cardiovascular diseases as well as explore the
relationship between murmur quality and cardiovascular diseases in depth.

Keywords: cardiovascular diseases (CVDs); computer-aided diagnosis; heart murmur quality detection;
phonocardiogram (PCG); deep learning; attention mechanism

1. Introduction

Cardiovascular diseases (CVDs) are one of the world’s most serious diseases, killing
more people each year than any other cause of death. According to World Health Organiza-
tion estimates, 17.9 million people died from CVDs in 2019, representing 32% of all global
deaths [1]. Most deaths caused by CVDs happen in low- and middle-income countries,
where the majority of the population lacks access to an integrated primary healthcare
system. Thus, the diagnosis and treatment of CVDs may be delayed, increasing the risk of
early deaths [2].

Phonocardiograms (PCGs) are heart sound signals produced by the mechanical activity
of the heart, containing information related to the heart condition [3]. Cardiac auscultation
can provide insights into the PCGs and determine at a low cost whether more expensive
testing should be ordered [4], thereby reducing deaths due to CVDs. Despite its benefits,
cardiac auscultation is a difficult skill to acquire, requiring extensive training and clinical
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experience [2], which limits its popularization in most low- and middle-income countries
that lack cardiologists [5]. Computer-aided auscultation offers a solution by significantly
decreasing the cost related to cardiac auscultation, efficiently addressing this difficulty.
Computer-aided heart sound classification and detection is a crucial part of computer-aided
auscultation. Most studies in this field now focus on determining the presence or absence
of heart murmurs and the normality or abnormality of heart sounds. An overview of
the methods used in these studies can be found in [6–8]. Notably, except for [5,9], there
has been limited research using deep learning methods to explore more detailed PCG
signal characteristics such as the grading, pitch, shape, timing, and quality of heart sounds,
though they are all important for assessing the condition of the heart.

Heart murmurs include systolic and diastolic murmurs, which occur during the
systole period and the diastolic period, respectively. According to the classification of
Leathem, systolic heart murmurs are majorly divided into the systolic ejection murmur
and the systolic regurgitant murmur. The “harsh” quality is most commonly found in the
systolic ejection murmur, and the presence of this type of murmur is usually associated
with innocent systolic flow murmurs and valvular or vascular obstruction. The qualities
of “blowing” and “harsh” are all likely to be found in the systolic regurgitant murmur,
and the presence of these murmurs is associated with mitral or tricuspid regurgitation and
ventricular septal defect [10]. So, the use of computer-aided detection of murmur quality
would provide richer and more accurate information related to the CVDs for computer-
aided auscultation. To the best of our knowledge, no studies have provided specific deep
learning models for the specific task of murmur quality detection according to clinical
criteria, and the related works can be found in Section 2 below.

The determination of murmur quality relies on human subjective judgment, which
comes from the experience of cardiologists through extensive training, rather than from a
recognized gold standard, leading to difficulties in computer detection of murmur quality.
Deep learning is an effective method to address this problem because it can mimic highly
skilled cardiologists, who possess considerable knowledge via ample training.

This work aims to detect the murmur quality (i.e., harsh and blowing) for patients
and find the contribution of other murmur characteristics in this task using deep neural
networks, which can help in the diagnosis of cardiac and the establishment of criteria for
murmur quality detection. Specifically, the study makes the following contributions:

• Designing a deep learning model to extract features from the log-Mel spectrograms
of PCG segments and proposing a new module to weight the features extracted from
one patient for murmur quality detection;

• Thoroughly evaluating the advantages and inadequacies of deep learning methods in
murmur quality classification;

• Exploring the relationship between murmur quality and other murmur characteristics
by using deep learning models.

2. Related Works

There have been numerous algorithms and models developed to classify and detect
heart sounds so far. The majority of them focus on traditional binary classification, which
involves determining whether a murmur present or not and whether a heart sound is
abnormal. For example, in the George B. Moody PhysioNet Challenge 2022 [11], the
participating teams mainly strived to tackle the above two issues, as in [12–14]. In addition,
a small portion of the work focuses on more novel classification problems, such as the
diagnosis of cardiac diseases and murmur grading. The authors of [15–17] investigated
the detection of cardiac valve disorders, whereas [5,9] graded murmurs. To the best of our
knowledge, there are no deep learning models built for this specific task for the time being.

For the research methodology, part of the current research used machine learning al-
gorithms to categorize the manually extracted features [18–20]. For example, [19] extracted
two different features from heart sounds, discrete wavelet transform (DWT) and Mel-
frequency cepstral coefficients (MFCCs), and they used three machine learning classifiers to
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categorize them. An important trend nowadays is to use deep learning algorithms for the
study. Part of the deep learning algorithms directly uses deep neural networks to extract
features from the waveforms of the PCGs (one-dimensional signals) and classify them,
e.g., [21,22], while the other part pre-extracts the time–frequency feature maps (usually two-
dimensional feature maps) and then uses the deep learning models to further extract the
high-dimensional features and categorize them, e.g., [23–25]. Furthermore, Ref. [26] used a
combination of deep learning models and traditional machine learning algorithms. All of
the above studies address supervised learning. To improve model performance, supervised
learning requires a huge amount of labeled training data, which increases the research
costs. Self-supervised and unsupervised models can address this problem better, and some
studies [27–29] have established unsupervised and self-supervised models for murmur
detection and heart sound classification with good results. For example, Ref. [29] pretrained
a wav2vec 2.0 model on the Circor DigiScope Phonocardiogram dataset [2,30]; then, they
fine-tuned it on small-scale annotated data, and the model showed strong competitiveness
and robustness.

In the field of computer-aided diagnosis of cardiovascular diseases, in addition to the
use of PCGs as the basis for diagnosis, there are many studies that use an electrocardiogram
(ECG) (e.g., [31–33]) as the main basis, and [34] conducted computer-aided diagnosis of
heart disease by the method of feature selection. It is possible that combining PCGs with
other cardiac parameters, such as ECGs, would provide a boost to the development of
computer-aided diagnosis in the future.

3. Dataset

The dataset used in this study is the publicly available set of the George B. Moody
PhysioNet Challenge 2022, namely the CirCor DigiScope Phonocardiogram dataset [2,30].
It was collected in northeast Brazil over the months of July–August 2014 and June–July
2015 [2] and contains 3163 PCG recordings from 942 patients at a sampling rate of 4000 Hz.
The majority of patients have multiple PCG recordings, with most of them from the four
auscultation locations: the aortic valve (AV), pulmonary valve (PV), tricuspid valve (TV),
and mitral valve (MV), and a few are from other auscultation locations. As shown in Table 1,
this dataset is balanced between males and females and was collected primarily from
children and infants. The average lengths (±standard deviation) of the PCG recordings are
22.9 (±7.3) s with the shortest and longest lengths of 5.2 s and 64.5 s, respectively.

The dataset provides segmentation labels (S1, systolic period, S2, and diastolic period)
for each PCG recording and murmur locations for each patient. Significantly, it is labeled
with many characteristics of murmurs including the most audible location, timing, shape,
pitch, grading, and quality manually by a cardiac physiologist [30]. Specifically, the murmur
grading is described as “I/VI”, “II/VI”, and “III/VI” based on Levine’s scale [35]; the
murmur pitch is described as “High”, “Medium”, and “Low”; the murmur timing is
described as “Early-”, “Mid-”, and “Late-” systolic; and the murmur shape is described as
“Crescendo”, “Decrescendo”, “Diamond”, and “Plateau” [2].

The murmur quality is labeled as “Blowing”, “Harsh”, and “Musical”, and all auscul-
tation locations with murmurs in a single patient correspond to only one murmur quality.
A “Harsh” murmur is described by a high-velocity blood flow from a higher to a lower
pressure gradient, and a “Blowing” murmur is a sound caused by turbulent (rough) blood
flow through the heart valves [2]. The murmur of aortic stenosis tends to be a harsh,
grating murmur, whereas that of mitral regurgitation has a gentle, blowing quality [36].
However, the “Musical” quality is extremely rare, which may be related to some innocent
murmurs [2]. Table 1 demonstrates that most murmurs are present in the systole period
with very few in the diastolic period (2.8%); the majority of systolic murmur quality is
determined as “Blowing” and “Harsh” with “Musical” murmurs being relatively rare
(2.2%). Therefore, heart sounds with a systolic murmur quality described as “Musical”
were excluded, and the study focused only on two types of heart sounds, i.e., systolic
murmur quality described as “Blowing” and “Harsh”. Also, not all heart sounds in all
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auscultation locations had murmurs for a patient diagnosed with murmurs, and the heart
sounds in those auscultation locations where murmurs were present were studied only.
After excluding the above, an analysis dataset of 174 patients with 604 recordings was
included for analysis in the research. The details of the analysis dataset are displayed in
Table 1. The average lengths (±standard deviation) of the PCG recordings in the analysis
dataset are 22.2 (±7.9) s with the shortest and longest lengths of 6.4 s and 64.5 s, respectively.

Table 1. The percentage of patients in gender, age, and murmur quality (systolic and diastolic period)
in the original dataset and analysis dataset.

Original Dataset
Analysis

Dataset * (%)Present (%) Absent and
Unknown (%) Total (%)

Gender
Male 87 (48.6) 369 (48.4) 456 (48.4) 84 (48.3)

Female 92 (51.4) 394 (51.6) 486 (51.6) 90 (51.7)
Total 179 (100.0) 763 (100.0) 942 (100.0) 174 (100.0)
Age

Adolescent 16 (8.9) 56 (7.3) 72 (7.6) 16 (9.2)
Child 132 (73.7) 532 (69.7) 664 (70.5) 127 (73.0)
Infant 25 (14.0) 101 (13.2) 126 (13.4) 25 (14.4)

Neonate 1 (0.6) 5 (0.7) 6 (0.6) 1 (0.6)
Nan 5 (2.8) 69 (9.0) 74 (7.9) 5 (2.9)
Total 179 (100.0) 763 (100.0) 942 (100.0) 174 (100.0)

Murmur quality
(systolic)
Blowing 78 (43.6) - 78 (8.3) 78 (44.8)
Harsh 96 (53.6) - 96 (10.2) 96 (55.2)

Musical 4 (2.2) - 4 (0.4) -
Nan 1 (0.6) 763 (100.0) 764 (81.1) -
Total 179 (100.0) 763 (100.0) 942 (100.0) 174 (100.0)

Murmur quality
(diastolic)
Blowing 4 (2.2) - 4 (0.4) -
Harsh 1 (0.6) - 1 (1.1) -

Musical 0 (0.0) - 0 (0.0) -
Nan 174 (97.2) 763 (100.0) 937 (99.6) -
Total 179 (100.0) 763 (100.0) 942 (100.0) -

* The obtained dataset after the processing of excluding, which is the dataset used in the following methods.

According to the segmentation labels, each recording was cut into segments that
contain about seven cardiac cycles to have equivalent information of heart sounds. The
segments have an average length (±standard deviation) of 4.1 (±0.7) s and no overlap
between them. Some patients’ PCGs could not be used due to the missing of their segmen-
tation labels. The percentage of patients in murmur quality, timing, shape, grading, and
pitch of analysis dataset after segmentation is given in Table 2. The number of segments for
segments’ murmur quality detection is 1266, with 747 labeled as “Harsh” and 519 labeled
as “Blowing”, while the number of patients for patients’ murmur quality detection is 164
with 90 labeled as “Harsh” and 74 labeled as “Blowing”.

Table 2. The percentage of patients in murmur quality, timing, shape, grading, and pitch.

Analysis Dataset after Segmentation (%)

Murmur quality
Blowing 74 (45.1)
Harsh 90 (54.9)

Murmur timing
Early-systolic 54 (32.9)
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Table 2. Cont.

Analysis Dataset after Segmentation (%)

Holosystolic 94 (57.3)
Mid-systolic 15 (9.1)
Late-systolic 1 (0.6)

Murmur shape
Crescendo 2 (1.2)

Decrescendo 32 (19.5)
Diamond 28 (17.1)
Plateau 102 (62.2)

Murmur grading
I 91 (55.5)
II 28 (17.1)
III 45 (27.4)

Murmur pitch
High 39 (23.8)
Low 82 (0.5)

Medium 43 (26.2)
Total 164 (100.0)

4. Method

The segments’ detection (the segment level) would be an intermediate step for model
evaluation; thus, the study wants to detect the murmur qualities for patients (the patient
level). As shown in Figure 1, the steps of murmur quality detection include data segmenta-
tion, log-Mel spectrogram feature extraction, deep neural network feature extraction and
detection. The analysis dataset used for the proposed method and the analysis dataset after
segmentation are defined in Section 3. The details are given below in this section.
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The dataset used is the analysis dataset defined in Section 3.

4.1. Feature Extraction

A 2D log-Mel spectrogram representation [37] was extracted for each PCG segment.
In deep learning, this representation is widely used in the preprocessing of acoustic signals,
which analyzes the spectrum of sound based on the mechanism of human hearing. Using
them as inputs to the neural network model can more successfully characterize the sound
compared to waveforms. For the extraction of log-Mel spectrograms, a frame length of
25 ms, a frame shift of 10 ms, and a window type of “Povery” were chosen, and heart
sounds were analyzed in the frequency range of 0 to 2000 Hz using 128 Mel filters. Figure 2
shows the waveforms and log-Mel spectrograms of two typical heart sound segments
(two with systolic murmurs described as “Harsh” and “Blowing”). Since the average
length of the segments is 4.1 s, the length of the log-Mel spectrogram was determined to be
400 values, and the log-Mel spectrograms were cut (zero-padded) for those longer (shorter)
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than 400 values. This preparation is necessary before inputting it into the deep neural
network. Finally, a 128 × 400 log-Mel spectrogram representation matrix was extracted
for each segment. The log-Mel spectrograms were normalized before being used as the
following method:

X =
X − mean_value

2 ∗ std_value
(1)

where X denotes each value of the log-Mel spectrogram, mean_value denotes the mean
value of the log-Mel spectrogram, and std_value denotes the standard deviation of the
log-Mel spectrogram.
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4.2. Neural Network Model for Segments’ Detection

The designed neural network model is based on two-dimensional convolutional neural
networks (2D-CNNs), channel attention, and bidirectional gated recurrent units (Bi-GRU).
The CNN-Block was used for initial image feature extraction from the log-Mel spectrograms.
Subsequently, the feature maps were flattened into a long feature sequence to be fed into the
Bi-GRU for temporal feature extraction. In particular, a Squeeze-and-Excitation (SE)-Block
was added between the CNN-Block and the Bi-GRU for giving different weights to different
channels of the feature map, since the information in different channels may have different
importance for the detection of the murmur quality (the results verified this). Figure 3
shows the structure of the designed neural network model, which included the following:

• CNN-Block: It contains three layers of 2D convolution; each layer of 2D convolution
follows an activation function (ReLU) and a batch-normalization (BN) layer. The first
layer of 2D convolution has a convolution kernel size of 5 × 5, a stride of 2, and a
padding of 2; the second and third layers of 2D convolution both have a convolution
kernel size of 3 × 3, a stride of 1, and a padding of 1. Bias is added to all convolutions,
and the padding is zero padding. Through the CNN-Block, the 1-channel log-Mel
spectrogram became a 32-channel feature map.

• SE-Block: This kind of block was proposed by Hu et al. [38]. It can model the interde-
pendencies between channels by the information of different channels of the feature
map, that is, to generate corresponding weights for each channel of the feature map,
so as to recalibrate the features by the importance of different channels. Now, the
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structure of the added SE-Block was explained. Firstly, there is global average pooling,
which can change the feature map from a C × H × W matrix to a C × 1 × 1 matrix,
which is called squeeze. Then, there are two fully connected (FC) layers (between
which is the ReLU activation function) with the output sizes of C/2 and C and the
Sigmoid activation function, which is called excitation. Finally, a C × 1 × 1 matrix was
obtained, which means that each channel received a weight, and then the different
channels were weighted by doing a channel-wise multiplication with the input feature
map (Scale).

• Bi-GRU: It is a bidirectional GRU module for extracting features from long sequences.
The size of the hidden state in this module is 64, and the module is added bias.

• Linear Prediction Head: It contains an FC layer and a Sigmoid activation function that
produces the final predicted labels for each segment.
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Figure 3. Structure of the proposed neural network model. N corresponds to the batch size. K,
S, and P correspond to the kernel size, stride, and padding, respectively, in the CNN-Block. C, H,
and W correspond to the channel, height, and width of the input feature maps, respectively, in the
CNN-Block and SE-Block. H and L in Bi-GRU correspond to the feature size and sequence length of
the input feature sequences, respectively.

When training the neural network, the Adam optimizer was used, the learning rate
was set to 3 ∗ 10−5, β1 = 0.9, β2 = 0.98, and the weight decay was 0.01. β1 refers to the
exponential decay rate of the first moment estimation, and β2 refers to the exponential
decay rate of the second moment estimation. The weight decay setting allowed for the L2
regularization to be added to the loss function, thus reducing overfitting to some extent.
The loss function used was the cross-entropy loss function. The batch size was set to 64.

4.3. Method of Feature Weighting for Patients’ Detection

The method of feature weighting is inspired by the SE-Block and based on the attention
mechanism, which is called Feature Weighting. In this method, the linear prediction head
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of the neural network was eliminated, resulting in the neural network outputting (i.e., the
output of Bi-GRU in the designed neural network model) Fn ∈ R1×128 (where n = 1, . . . , N)
for N segments of each patient. By using the attention mechanism, different weights were
assigned to the different Fn. Specifically, this was accomplished in the following way:

As shown in Figure 4a, Fn (where n = 1, . . . , N) is concatenated into a new feature
F′ ∈ RN×128, which is then fed into the Feature Attention module (Figure 4b). In the
Feature Attention module, F′ performed both global maximum pooling (MaxPool) and
global average pooling (AvgPool), which was then concatenated. The concatenated features
were passed through two fully connected layers with a ReLU activation function between
them. Finally, the weights W ∈ RN×1 were obtained from this process. The Feature
Attention module can be described as

W = FC(σ(FC(MaxPool(F′) + AvgPool(F′)))) = W1(σ(W0(F′
max + F′

avg)) (2)

where σ denotes ReLU, + denotes concatenation, W0 ∈ R16×2, W1 ∈ R1×16, and F′
max

denotes the feature after F′ performing global maximum pooling, and F′
avg denotes the

feature after F′ performing global average pooling.
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After the above processing, the feature weighting was performed, and the maximum
value of each matrix column was taken, which can be described as

F = max(F′ ⊙ W) (3)

where ⊙ denotes the Hadamard product, i.e., feature weighting by elemental multiplication,
and max denotes taking the maximum value of each matrix column.

Finally, the new feature F ∈ R1×128 was fed into the linear prediction head to obtain
the prediction label of the patient.

To investigate whether the proposed method of feature weighting is effective, the
proposed method was compared with three other methods. In these three methods, the
linear prediction head of the neural network as in Figure 3 was not eliminated, so each
segment had its own detection likelihood. These three methods are now described in detail:

1. Method of “Voting”: It is a traditional method. When a patient had only one segment,
the predicted class for that segment was considered as the predicted class for that
patient; when a patient had several segments, the predicted class for that patient was
determined by the majority of the segments.

2. Method of “Max”: It takes the maximum value of the detection likelihoods as the final

likelihoods. Specifically, for the output of each patient, i.e., pi =
{

pi,harsh, pi,blowing

}
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for i = 1, 2, . . . , N, where N is the number of segments, and pi,harsh (pi,blowing) is the
likelihood of the specific segment predicted to be “Harsh” (“Blowing”), the patient’s
detection result is

ppatient =

{
max

1≤i≤N
{pi,harsh}, max

1≤i≤N

{
pi,blowing

}}
(4)

3. Method of “Average”: It takes the average value of the detection likelihoods as the

final likelihoods. Specifically, for pi =
{

pi,harsh, pi,bowing

}
as above, the patient’s

detection result is:

ppatient =

{
1
N

N

∑
i=1

pi,harsh,
1
N

N

∑
i=1

pi,blowing

}
(5)

At the patient-level detection, the optimizer, learning rate, β1, β2, weight decay, and
loss function were the same as the segment-level detection. The batch size was set to eight
patients, since one patient may have multiple segments.

4.4. Method of Finding the Contribution of Other Murmur Characteristics

In this section, the method to find the contribution of other murmur characteristics
is given. At the segment-level, the Grading, Pitch, Timing, and Shape labels described in
Section 2 were sequentially fed into the neural network model as a priori information with
the same conditions as mentioned in Section 4.2. Since these characteristics are not easily
accessible, they can only be used to explore the connection between other characteristics
and murmur quality and were not used for patient-level detection above. As shown in
Figure 5, the labels are firstly encoded as One-Hot Encoding; then, the discrete labels are
changed into continuous embedding vectors by the Embedding layer, and finally, they
concatenate with the features (i.e., F as the output of Bi-GRU in the designed model)
extracted by the neural network model and were fed into the linear prediction head to
produce the prediction labels.
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4.5. Method of Data Augmentation

The limitations of the data volume in the analysis dataset—it only contained 1266 seg-
ments with an average length of 4.1 s, whereas the entire dataset had 7338 segments with
an average length of 4.2 s (if the same segmentation was applied) greatly hampered the
effectiveness of neural networks. Thus, data augmentation was tried in the analysis dataset.
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The data augmentation methods included speed increasing, speed decreasing, fre-
quency shifting, time and frequency masking, and speed decreasing and increasing. Specif-
ically, the method of speed increasing speeded up the original heart sounds to 1.5× and
2.0× speed. The method of speed decreasing slowed down the original heart sounds to
0.8× and 0.6× speed. The method of frequency shifting shifted the values of the log-Mel
spectrogram up by 50 (from approximately 0–900 Hz to 490–2000 Hz) and 25 (from ap-
proximately 0–1380 Hz to 220–2000 Hz) in the frequency dimension. The method of time
and frequency masking randomly masked 15% and 30% of values in both the time and
frequency dimensions [39]. Each of these methods doubled the amount of original data
(1266 segments). The method of speed decreasing and increasing contained both speed
decreasing and increasing as mentioned above, which quadrupled the amount of original
data. After performing data augmentation on the training set of each fold, the data were
fed into the neural network model for five-fold cross-validation as above in Section 4.2 to
evaluate the model performance.

4.6. Evaluation Metrics

The metrics of accuracy, precision, recall, and F1-score were used to evaluate all the
algorithms above, and the exact calculation methods are described below.

The special values were explained as follows:

• TH (True Harsh): number of correctly detected “Harsh”.
• TB (True Blowing): number of correctly detected “Blowing”.
• FH (False Harsh): number of incorrectly detected “Harsh”.
• FB (False Blowing): number of incorrectly detected “Blowing”.

In addition, H is for “Harsh” and B is for “Blowing”.
The evaluation metrics were calculated as follows:

1. Accuracy: percentage of the number of correctly detected segments (patients) to the
total number of segments (patients).

Accuracy =
TH + TB

TH + TB + FH + FB
(6)

2. Precision: percentage of the number of correctly detected “Harsh” (“Blowing”) seg-
ments (patients) to the total detected “Harsh” (“Blowing”) segments (patients).

PrecisionH =
TH

TH + FH
, PrecisionB =

TB
TB + FB

. (7)

3. Recall: percentage of the number of correctly detected “Harsh” (“Blowing”) segments
(patients) to the total real “Harsh” (“Blowing”) segments (patients).

RecallH =
TH

TH + FB
, RecallB =

TB
TB + FH

. (8)

4. F1-score: weighted average of precision and recall.

F1H = 2 ∗ PrecisionH ∗ RecallH
PrecisionH + RecallH

, F1B = 2 ∗ PrecisionB ∗ RecallB
PrecisionB + RecallB

. (9)

A comprehensive and thorough understanding of the model’s performance is given
by these metrics, as they indicate the model’s ability to correctly detect the murmur quality
(accuracy), the extent to which it produces misdetections (precision) as well as misses of the
correct class (recall), and the different performances in detecting the two classes (F1-score).

5. Results

This section gives the hyperparameters and conditions of the five-fold cross-validation;
then, it shows the results. In the tables of results in this section, the values are given as the
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mean ± standard deviation of the metrics for the five folds of the five-fold cross-validation,
and all the metrics correspond to the definition in Section 4.6. The number of segments and
patients corresponds to the description in Section 3.

5.1. Settings

As described in Section 4, when training the neural network at the segment-level,
the Adam optimizer was used, the learning rate was set to 3 ∗ 10−5, β1 = 0.9, β2 = 0.98,
the weight decay was 0.01, and the loss function was the cross-entropy loss function;
while at the training at the patient-level, the optimizer, learning rate, β1, β2, weight decay,
and loss function were the same as the segment-level. The batch size was set to eight
patients, since one patient may have multiple segments. At the five-fold cross-validation,
the separation of five folds was based on patients, so segments from one patient are not
included simultaneously in the training and validation process. The conditions for the
implementation of the five-fold cross-validation are listed in Table 3.

Table 3. Conditions.

Designation Parameters

CPU Intel(R) Xeon(R) E5-2680 v4
Memory 32 GB

GPU NVIDIA GeForce RTX 3080Ti

Software Environment Python 3.11 PyTorch 2.2.1
Cuda 12.1.1

5.2. The Results of the Ablation Analysis at the Segment-Level

In this ablation analysis, the SE-Block was removed to explore the effect of the channel
attention. Table 4 shows the results. The accuracy of the model had a significant improve-
ment of 2.4% after adding the SE-Block between the CNN-Block and Bi-GRU. Not only
that, but all other metrics (precision, recall, and F1-score) were improved. It indicated
that 32 channels of the feature map have different importance for the detection of the
murmur quality, and the SE-Block can effectively distinguish the importance, which helps
the Bi-GRU for feature extraction.

Table 4. Results of ablation analysis. “Without SE” refers to no SE-Block between the CNN-Block and
Bi-GRU, and “SE” refers to the opposite.

Model Accuracy (%)
Harsh Blowing

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Without SE 66.4 ± 6.5 70.2 ± 3.7 74.4 ± 11.7 71.9 ± 7.3 61.5 ± 9.6 54.9 ± 6.3 57.5 ± 5.7
SE 68.8 ± 5.0 72.4 ± 2.6 75.9 ± 8.9 73.9 ± 5.5 63.8 ± 7.5 58.6 ± 4.7 60.8 ± 4.4

5.3. The Results of Comparison between the Proposed Model and Other Models at the
Segment-Level

Since there is no relevant deep learning model to detect the murmur quality to the
best of our knowledge, the results of the designed model were compared with the results of
some well-known models without pretrained, such as SqueezeNet [40], ECAPA-TDNN [41],
EfficientNet B0 [42], MobileNet V3 [43], Resnet50 [44], GoogleNet [45], and DenseNet [46].
In addition, the results of all these models were obtained by five-fold cross-validation in
the same conditions following the same data preprocessing.

Table 5 demonstrates that the F1-score for the “Harsh” murmur is all higher than that
of the “Blowing” murmur (e.g., 73.9% vs. 60.8%), which indicates that all the models were
less effective at detecting “Blowing” murmurs compared to “Harsh” murmurs. This may
be due to the features of “Blowing” murmurs being less obvious than those of “Harsh”
murmurs, as in the log-Mel spectrograms in Figure 2.
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The proposed model exhibited higher performance compared to other models. Specif-
ically, the accuracy was 68.8%, the F1-score for the “Harsh” murmur was 73.9%, and the
precision for the “Blowing” murmur was 63.8%, all of which were the highest among the
models. This result highlights the advantages of the combination of the CNN and gated re-
current neural network (RNN) with the SE-block, since none of the other models employed
the structure associated with RNN. In the designed model, the CNN with the SE-block
focuses on the extraction of image features for the acoustic spectrograms, whereas GRU can
compensate for the CNN by extracting temporal features. In addition, the designed model
uses a smaller number of CNN layers and feature map channels compared to other models,
which can reduce the parameters of the model and mitigate the overfitting in this dataset.

Table 5. Performance of different models at the segment-level.

Model Accuracy (%)
Harsh Blowing

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

SqueezeNet [40] 65.9 ± 5.3 71.7 ± 3.0 70.0 ± 12.4 70.2 ± 7.1 59.6 ± 8.2 59.9 ± 8.9 59.0 ± 4.7
ECAPA-

TDNN [41] 66.9 ± 5.3 74.8 ± 6.1 66.7 ± 4.3 70.4 ± 4.5 58.3 ± 5.3 67.3 ± 9.1 62.3 ± 6.7

EfficientNet
B0 [42] 66.5 ± 5.0 71.1 ± 3.3 72.7 ± 8.7 71.7 ± 5.4 60.3 ± 7.2 57.6 ± 6.1 58.5 ± 4.8

MobileNet V3 [43] 66.7 ± 3.0 69.3 ± 2.5 78.4 ± 5.2 73.5 ± 2.8 61.9 ± 4.6 49.7 ± 6.5 54.9 ± 4.6
Resnet50 [44] 67.1 ± 3.5 73.3 ± 8.5 75.0 ± 17.4 71.8 ± 7.9 63.8 ± 7.9 55.8 ± 19.5 57.0 ± 6.6

GoogleNet [45] 67.5 ± 3.1 75.4 ± 3.2 67.3 ± 9.1 70.7 ± 4.8 59.7 ± 4.1 67.8 ± 8.9 63.0 ± 3.4
DenseNet [46] 67.5 ± 3.6 71.7 ± 3.4 74.9 ± 9 72.8 ± 4.5 61.9 ± 5.0 56.9 ± 10.1 58.5 ± 5.4

Proposed model 68.8 ± 5.0 72.4 ± 2.6 75.9 ± 8.9 73.9 ± 5.5 63.8 ± 7.5 58.6 ± 4.7 60.8 ± 4.4

5.4. The Results of the Proposed Method at the Patient-Level
5.4.1. Comparison between Different Methods

This section shows the results of comparison methods in Section 4.3. As shown in
Table 6, the method of “Feature Weighting” is the most effective (highest accuracy (73.6%)
and all other metrics). The method of “Max” follows as the second most effective, whereas
the methods of “Voting” and “Average” are found to be the least successful.

Table 6. Performance of different methods at the patient-level. The number of patients for this result
is 164 with 90 labeled as “Harsh” and 74 labeled as “Blowing”.

Model Accuracy (%)
Harsh Blowing

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Voting 69.5 ± 6.8 68.0 ± 11.2 82.7 ± 5.8 74.1 ± 8.1 71.5 ± 8.2 53.2 ± 8.6 60.5 ± 6.6
Max 72.7 ± 4.3 72.4 ± 9.9 82.2 ± 4.0 76.4 ± 5.1 72.4 ± 10.8 61.6 ± 12.1 65.6 ± 9.5

Average 68.1 ± 3.9 69.2 ± 8.1 77.4 ± 9.2 72.2 ± 3.6 67.0 ± 15.7 58.8 ± 4.3 61.6 ± 6.7
Feature

Weighting 73.6 ± 6.3 73.0 ± 9.8 83.0 ± 11.3 76.8 ± 7.1 76.0 ± 17.0 63.3 ± 7.9 67.8 ± 7.8

5.4.2. The Model’s Performance under Different Murmur Characteristics

To thoroughly evaluate the proposed algorithms at the patient-level, a statistic of
the detection accuracy across different types of PCGs was conducted. Note that the two
patients with “Crescendo” (a type of “Shape”) and the one patient with “Late-systolic”
(a type of “Timing”) were ignored in the statistics due to their small numbers. Figure 6
illustrates the accuracy of different types of PCGs (different types of “Timing”, “Shape”,
“Grading” and “Pitch”). For the types of “Timing” and “Shape”, the detection accuracy
of “Early-systolic” and “Decrescendo” was significantly lower than the other two classes
(most of the Early-systolic murmurs are Decrescendo murmurs in this dataset). For the
types of “Grading”, the PCGs of II/VI were detected significantly less accurately than
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the other two types. In addition, the accuracy of murmur quality detection of the “High”
murmur was much higher than that of the “Low” and “Medium” murmur.
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5.5. The Results after the Other Characteristics Feeding

Table 7 shows the results after feeding other characteristics to the model using the
method in Section 4.4. The results show that the accuracy of the model is improved (1.1%)
most significantly when fed with the “Timing” label, whereas there is no improvement
when the model was fed with the “Grading” or “Pitch” label. In addition, the performance
gain of the neural network model was greater for the “Blowing” murmur than for the
“Harsh” murmur when the “Timing” or “Shape” labels were fed into it.

Table 7. Model performance when other characteristic information was used.

Murmur
Characteristics

Accuracy (%)
Harsh Blowing

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Not used * 68.8 ± 5.0 72.4 ± 2.6 75.9 ± 8.9 73.9 ± 5.5 63.8 ± 7.5 58.6 ± 4.7 60.8 ± 4.4
Grading 67.1 ± 3.4 74.7 ± 3.4 67.3 ± 6.9 70.6 ± 4.2 59.0 ± 3.9 66.9 ± 7.1 62.4 ± 3.7

Pitch 68.7 ± 5.3 73.7 ± 4.1 72.9 ± 6.5 73.3 ± 5.0 62.0 ± 6.9 62.6 ± 5.9 62.2 ± 5.8
Timing 69.9 ± 4.8 75.6 ± 5.1 74.0 ± 14.3 73.6 ± 7.1 65.4 ± 8.7 64.0 ± 12.3 63.4 ± 4.1
Shape 69.1 ± 4.0 76.4 ± 3.8 69.5 ± 8.6 72.4 ± 4.9 61.6 ± 5.5 68.6 ± 7.9 64.5 ± 4.0

* “Not used” means no characteristic information was used.

5.6. The Effect of Data Augmentation

The data augmentation was tried following the method in Section 4.5; however, it
had minimal impact. The results are shown in Table 8. For the metric of accuracy, there
was only a maximum improvement of 0.5% compared to the original data with some
metrics decreased, so the data augmentation was not used for segment- and patient-level
detection above. It is evident that the traditional data augmentation method is ineffective in
mitigating the negative impact of insufficient data volume. Therefore, it is crucial to collect
more data in the future to adequately support the training of neural network models.
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Table 8. Results of data augmentation. The number of segments used for data augmentation is 1266,
with 747 labeled as “Harsh” and 519 labeled as “Blowing”.

Data Augmentation
Method

Accuracy (%)
Harsh Blowing

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

- * 68.8 ± 5.0 72.4 ± 2.6 75.9 ± 8.9 73.9 ± 5.5 63.8 ± 7.5 58.6 ± 4.7 60.8 ± 4.4
Speed decreasing 67.9 ± 4.5 78.9 ± 5.9 64.1 ± 13.7 69.3 ± 7.9 59.8 ± 6.2 73.2 ± 12.0 65.0 ± 3.9
Speed increasing 69.3 ± 4.8 75.8 ± 3.3 70.4 ± 9.6 72.7 ± 5.8 62.2 ± 6.3 67.6 ± 6.9 64.4 ± 4.2

Frequency shifting 68.9 ± 4.1 71.8 ± 2.7 78.2 ± 9.8 74.5 ± 5.0 65.2 ± 7.1 55.5 ± 8.5 59.2 ± 4.5
Frequency and time

masking [39] 68.7 ± 5.0 73.2 ± 1.8 74.2 ± 12.4 73.1 ± 6.8 64.1 ± 8.7 60.9 ± 7.1 61.6 ± 2.6

Speed decreasing and
increasing 68.4 ± 5.2 76.0 ± 3.0 68.4 ± 12.7 71.2 ± 7.4 61.6 ± 7.7 68.4 ± 8.1 64.1 ± 3.3

* “-” means no data augmentation method was used.

6. Discussion

The proposed deep neural network algorithms for the detection of murmur quality
have the potential to be employed in computer-aided auscultation devices to assist the
automatic auscultation. This section discusses the method’s ability to choose the feature
of the important segment and conducts a performance analysis under different murmur
characteristics; then, it expresses the findings about other characteristics’ effects on quality
detection and the limitations of this study.

6.1. The Significance of the Model’s Ability to Choose the Important Segment

The difficulty of detecting the murmur quality varies in different auscultation locations
and cardiac cycles (i.e., different segments) for a given patient, although the murmur quality
remains consistent for that patient. For instance, a “Harsh” murmur may be present in
patients with pulmonary valve or arterial stenosis [16], and the AV and PV are closer to
the aortic and pulmonary valves, respectively, resulting in a stronger and more easily
recognizable murmur in the AV and PV heart sounds in these patients. Similarly, both
types of murmurs may be present in patients with ventricular septal defect and mitral
or tricuspid regurgitation [16], and the MV and TV are closer to the mitral and tricuspid
valves, respectively, leading to a stronger and more readily detectable murmur in the MV
and TV heart sounds in these patients. In addition to these physiologic reasons, the possible
presence of ambient noise contamination in a patient’s segments can also lead to variations
in the difficulty of recognizing the murmur quality for different segments.

The method of “Feature Weighting” took this view into account. Differences in
the difficulty of segments from a single patient in detecting the murmur quality lead to
differences in the importance of the features extracted from the different segments. Features
of easily detectable segments outweigh features of segments that are hard to detect. This
method used “Feature Attention” to assign different weights to the features of different
segments, enabling distinction of the importance of features from different segments.

The method of “Max” considered this view as well. When a segment is easier to detect,
the greater the confidence the neural network has, and the higher the likelihood of the
correct class; and vice versa, the likelihood is relatively low, although it is correct. This
method could select the segment with the highest likelihood value from all segments of
a single patient; that is, it considered the likelihood of easily detectable segments as the
likelihood of the patient while ignoring the likelihood of segments that were hard to detect.

However, both the method of “Voting” and the method of “Average” failed to consider
this view. When using the method of “Voting”, it is possible that a patient had a greater
number of tough segments than easy segments, and the results would favor the tough
segments over the easy ones. The “Average” method just averaged the likelihood values
and did not consider the importance of the different segments.

The results in Table 4 confirmed this view and show the significance of the model’s
ability to choose the important segment. The detection result was better (73.6% and 72.7%)
using the method of “Feature Weighting” and “Max”, and it was poorer (69.5% and 68.1%)
using the method of “Voting” and “Average”, which was only comparable to the segment-level.



Appl. Sci. 2024, 14, 6825 15 of 19

The results also show that the “Feature Weighting” method outperforms the “Max”
method, which was presumably because it can distinguish the importance of different
segments at the feature level, whereas the “Max” method cannot. In summary, the “Feature
Weighting” method shows promising potential and can be used for similar problems with
any new model in the future.

6.2. Performance Analysis of the Proposed Model under Different Murmur Characteristics

Figure 6 in Section 5.4.2 shows the different performances of the proposed model
under different murmur characteristics. This section conducts a performance analysis
based on it.

The significantly low accuracy of “Early-systolic” and “Decrescendo” was attributed to
the fact that the early-systolic murmur disappears shortly before the mid-systole period [2];
thus, it has a short duration, which makes it difficult for the model to extract features.

In this dataset, grade labeling may have deviated from the original definition [2]. The
murmurs were classified as I/VI by default when not all of a patient’s auscultation locations
were recorded. So, the PCGs of I/VI may be louder while still being classified as I/VI.
Therefore, among the three grading types of PCGs, II/VI may have the highest proportion
of low-intensity PCGs in fact. Based on this fact, due to the model’s poor ability to detect
the quality of low-intensity murmurs, the PCGs of II/VI had a lower accuracy than the
other two types.

In addition, the accuracy of the “High” murmur was much higher than that of
the “Low” and “Medium” murmur. This discrepancy may indicate that the “Low” and
“Medium” murmurs are more likely to overlap with the normal heart sounds (the first (S1)
and second (S2) heart sounds) in the frequency domain (because the frequency range of
normal heart sounds is relatively low (mainly 20–150 Hz [47])), making feature extraction
and detection more challenging.

To visualize the above discussion, Figure 7 shows the waveforms and log-Mel spectro-
grams of different types of PCGs for 0–1.5 s (about 3 cardiac cycles) to succinctly present
the PCGs. Figure 7a is a correctly categorized log-Mel spectrogram of PCG, which has
the timing of “Holosystolic”, the grading of “III”, and the pitch of “High”. Figure 7b–d
shows three misclassified log-Mel spectrograms of “Early-systolic” timing, “II” grading,
and “Low” pitch, respectively. As Figure 7, the duration of the systolic murmur is shorter
in “Early-systolic” PCG compared to “Holosystolic” PCG; the color of the systolic log-
Mel spectrogram is lighter in PCG with II grading compared to PCG with III grading,
which means that the systolic murmur is less loud for the PCG with II grading; and “Low”
PCG has a lower frequency distribution than “High” PCG. This is consistent with the
discussion above.

In conclusion, the model shows inadequacy in detecting the murmur quality for
murmurs of short duration, low intensity, and low pitch. These findings can point the way
to future research.

6.3. Findings about Other Characteristics’ Effect

In this section, some findings regarding the association between other labels and
murmur quality through the result in Section 5.5 are discussed. The lower usefulness of
“Pitch” may be because the frequency-domain features reflected by “Pitch” are already
embodied in the log-Mel spectrograms and are easily extracted by the neural networks.
And the “Grading” label represents the loudness features of the murmur, which are less
relevant to the murmur quality, leading to the lower usefulness of “Grading”. However,
extracting time-domain features from log-Mel spectrograms is harder for neural networks
compared to extracting frequency-domain features, and the “Timing” label reflecting time-
domain features can make up for this, thus improving the model performance. The “Shape”
label proved to be less effective than the “Timing” label when it comes to fitting the newly
extracted features of the neural network, despite it also reflecting temporal characteristics,
resulting in little improvement of only 0.3%. Also, the greater performance gain for the
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“Blowing” murmur than for the “Harsh” murmur with “Timing” or “Shape” labels feeding
might suggest that the “Blowing” murmur is more related to time-domain features than
the “Harsh” murmur.
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grading of “II”; (d) the misclassified PCG with the pitch of “Low”. For succinctness, the PCGs only
show 0–1.5 s (about 3 cardiac cycles), not all the segments.

This phenomenon illustrated that for the murmur quality detection problem, the joint
use of different classes of labels may have a facilitating effect. It inspired us to explore
multi-label classification tasks in future work, which may help the model extract heart
sound features better than single-label detection tasks. Meanwhile, when designing the
model, correctly using both time-domain representations and spectrograms may have
better results than using only spectrograms.

6.4. Limitations of the Study

For segments’ detection, besides using the designed model, other models were used
to conduct the five-fold cross-validation, the lowest accuracy was 65.9%, and the highest
accuracy was only 68.8% (the designed model). The proposed model offered small improve-
ments over other models. For patients’ detection, although there was an improvement, the
highest accuracy was only 73.7%.

This is mainly due to three reasons. Firstly, the small sample size of the dataset
limits the performance of the deep neural network models, as mentioned above. Secondly,
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detecting murmur quality is difficult because it primarily relies on the subjective feelings
of annotators without a specific standard or a related representation. There is a lot of
uncertainty with the labeling of murmur quality. Establishing a standardized approach
for this task through deep learning models and human judgment would be meaningful in
the future. The third reason is the presence of ambient noise. The sounds were recorded
in an ambulatory environment with speaking, crying, laughing, or stethoscope rubbing
noise [30], which is a great challenge for model training.

7. Conclusions

In this study, the deep neural network algorithms for the detection of murmur quality
were proposed, which could be applied to larger datasets and employed in computer-aided
auscultation devices to assist the automatic auscultation, find the relationship between
murmur quality and CVDs in depth, and help to establish a standardized approach for
the murmur quality detection task. The use of the proposed “Feature Attention” module
significantly improves the model performance at the patient-level (73.6% vs. 69.5%). But
for short-duration, low-intensity, and low-pitch murmurs, the model is not effective, which
is an issue that needs to be worked on in future studies. At the same time, traditional
data augmentation methods do not help much in classifying, and it would be meaningful
that more data can be collected to support the training of neural network models in future
work. Moreover, the performance of the neural network can be improved to a certain extent
with other labels (e.g., “Timing”) added into the inputs of the neural network, which is
an inspiration for exploring the design of multi-input or multi-label neural networks in
the future.
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