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Abstract: The inverse system identification toolbox named INVSID 1.0 for MATLAB, which is
used to identify the inversion of single-input single-output systems, is developed. The complete
process from theoretical derivation to toolbox creation of developing the toolbox is demonstrated.
Afterwards, numerical examples are illustrated to describe how the toolbox can be used to solve
inverse identification problems. Simulation results demonstrate the effectiveness of the toolbox.
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1. Introduction

Nowadays, in many motion control systems, there are requirements of high perfor-
mance, such as short motion times and small settling times. To fulfill these demands,
combining feedback with feedforward control is normally implemented [1]. Figure 1 dis-
plays how a feedforward controller can be involved in feedback control systems. In total,
there are two kinds of modes. The feedback controller guarantees stability and improves
disturbance rejection, while the feedforward controller enhances tracking performance
such that the feedforward controller should be designed as F = G† (in the first mode)
and F = G†

c (in the second mode), where the symbol “†” denotes the Moore–Penrose
pseudo-inverse [2]. So system inversion is the key to the problem of feedforward control.
Actually, in addition to applications in control systems, system inversion is frequently used
in the areas of sensor calibration, loudspeaker linearization, digital predistortion for radio
frequency communications, and so on [3]. So system inversion plays an important role in
various research areas.

Figure 1. Inverse model-based feedforward–feedback control (r: reference signal; F: feedfor-
ward controller; C: feedback controller; G: plant model; Gc: closed-loop system model; e: error;
f : feedforward controller output; y: control system output).

System inversion can be conducted by direct inversion and indirect inversion [4].
There exist several kinds of intrinsic limitations of direct inversion approaches; here, an
example is used to illustrate this, denoting the transfer function of a finite-dimensional,
discrete-time, single-input single-output, linear, constant dynamical system as
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G(z) = C(zIn − A)−1B + D :=
[

A B
C D

]
, (1)

where A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, D ∈ R, In denotes an n-dimensional identity matrix,
and (A, B, C, D) is a state-space realization of G(z). Based on (1), the inversion of G(z) can
be represented as [5]

G†(z) :=
[

A − BD†C −BD†

D†C D†

]
. (2)

There are at least two challenges in the direct inversion (2). (i) When D† does not exist,
the direct inversion cannot be conducted; (ii) when there exist nonminimum-phase zeros
(For discrete-time systems, nonminimum-phase zeros are zeros that lie outside the unit
disk) in G(z), the inversion G†(z) will be unstable.

Due to the limitations of direct inversion approaches, various indirect inversion
approaches have thus been proposed. A possible classification of existing indirect system
inversion approaches consists in distinguishing between preview-based and non-preview-
based approaches [4,6]:

(a) Preview-based inversion approaches can be further categorized into infinite preview-
based approaches and finite preview-based approaches. Infinite preview-based ap-
proaches admit an exact stable inversion solution; however, such a solution may
require an infinite pre-actuation [7–10]. Because the length of the pre-actuation is
proportional to the length of the desired output preview, infinite preview-based ap-
proaches are not applicable from a practical point of view. To handle the problem of
applicability, finite preview-based approaches have been proposed [11–18].

(b) Non-preview-based inversion approaches are preferred in practice. A family of ap-
proaches called pseudo-inversion, which can be conducted without preview, has been
proposed [19,20]. However, such approaches will encounter other problems such as
the difficulty of choosing a suitable basis function. Direct system identification-based
inversion approaches use the input–output data from the system to be inverted to
identify the inverse system directly; however, the system identification cannot be
conducted when the system to be inverted is not stable [3]. For signal modeling-based
inversion approaches, the input signal, which is to be reconstructed, must be a periodic
signal under stationary operating conditions [21,22].

It should be noted that guaranteeing the stability of obtained solutions is a priority of
both direct and indirect inversion approaches. So for some indirect inversion approaches,
stability is ensured, but infinite or finite pre-actuation is needed, which cannot be applied
well in practice because sometimes the desired output in unknown.

In this paper, an entirely different system inversion approach by combining time-
domain observer design and frequency-domain subspace identification is proposed. The
presented approach can guarantee the stability of obtained system inversion, and simultane-
ously the proposed approach does not need any pre-actuation. Moreover, the approach can
be applied to stable or unstable systems/minimum-phase or nonminimum-phase systems
to be inverted, and there is also no requirement for the type of input and output signals.
Furthermore, it does not suffer from non-convex or input noise problems.

Even though the proposed approach has the above advantages by comparing with
other approaches, the current version of the proposed approach can just used for solving
the system inversion problem of systems of which the inputs do not have overlapping
frequency ranges. In this paper, only single-input single-output systems are considered.

To facilitate the use of the proposed system inversion approach by third parties, a
MATLAB toolbox implementing the approach is created in this paper after theoretical
derivation of the approach. The full name of the MATLAB toolbox is INVerse System
IDentification, with the first version abbreviated as INVSID 1.0.

The remainder of the paper is organized as follows. In Section 2, the inversion
approach is first proposed, and then the corresponding MATLAB codes are generated,
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based on which the toolbox NIVSID 1.0 is created, followed by Section 3, in which the
usage of the toolbox NIVSID 1.0 is validated by both simulation and practical examples.
Finally, conclusions and perspectives are given in Section 4.

2. Creation of INVSID 1.0

This section is illustrated by using three subsections with a progressive relationship.
The proposed inverse identification approach is first presented, then on the basis of which
the corresponding MATLAB codes and the toolbox INVSID 1.0 are finally created. It
should be noted that the toolbox INVSID 1.0 is only used for the inverse identification of
single-input single-out systems.

2.1. Inverse Identification Approach

A finite-dimensional, discrete-time, single-input single-output, linear, constant dy-
namical system Gd which is minimal-realized (The system is minimal-realized if and only
if it is both controllable and observable) and proper (The system is proper when the degree
of the numerator does not exceed the degree of the denominator of its transfer function;
otherwise, the system is improper) is given, and the given system Gd can be either stable or
unstable, and the sampling period of system Gd is Ts in seconds.

Figure 2 is used to demonstrate the basic idea behind the proposed inverse system
identification approach, based on which the inverse model of the nominal model Gd can be
derived. As can be seen in Figure 2, the proposed approach mainly consists of five steps:

(a) Obtain a state-space representation of the nominal system Gd.
(b) Generate a number of sine signals um(k), m = 1, 2, . . . , N, corresponding to a number

of N specified frequencies, model them in state-space representation such that N
signal models Gm, m = 1, 2, . . . , N, can be obtained.

(c) By combining the signal models Gm for m = 1, 2, . . . , N with the model Gd, respectively,
the augmented models Ga,m, m = 1, 2, . . . , N, can be obtained. Then, based on using
the observers for the augmented models Ga,m, m = 1, 2, . . . , N, inverse models Ginv,m
with m = 1, 2, . . . , N, which can be used for reconstructing the input signals um(k),
m = 1, 2, . . . , N, can be obtained.

(d) Use frequency-domain system identification approaches to identify the inverse model
of Gd based on the frequency response function values of the models Ginv,m with
m = 1, 2, . . . , N at specified frequencies.

(e) Choose the best inverse model by validating the identified inverse models.

The above steps are discussed in detail as follows.

Step 1: If the transfer function of the system Gd is denoted as Gd(z), and (Ad, Bd, Cd, Dd)
represents a minimal realization of Gd(z), the corresponding state-space model of
the system Gd can be represented as{

xd(k + 1) = Adxd(k) + Bdu(k),

y(k) = Cdxd(k) + Ddu(k),
(3)

where xd(k) ∈ Rnd is the state vector of the model (3), and u(k) ∈ R and y(k) ∈ R
are the input and output of the system Gd, respectively.
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Figure 2. Flowchart of the proposed inverse system identification approach. (The symbol “ˆ” denotes
the reconstructed or the estimated value).

Step 2: A set S containing N discrete-time sine signals is given as:

S = {um(k), m = 1, 2, . . . , N}, (4)

where
um(k) = sin(2π fmkTs), (5)

where fm denotes the frequency in Hz, and the sequence ( fm)N
m=1 is an arithmetic

sequence, each sine wave in the set S can be represented as the output of a state-
space model Gm, i.e., {

xm(k + 1) = Amxm(k),

um(k) = Cmxm(k),
(6)



Appl. Sci. 2024, 14, 6838 5 of 20

where xm(k) ∈ R2 denotes the state vector of the model (6), and the matrices Am
and Cm can be denoted as

Am =

(
cos(2π fmTs) sin(2π fmTs)
− sin(2π fmTs) cos(2π fmTs)

)
(7)

and
Cm =

(
1 0

)
, (8)

respectively.

Remark 1. The frequencies of the signals um(k) for m = 1, 2, . . . , N in the set S can be
specified by the following rule:

fm = fb + (m − 1)d, (9)

where fb is a non-negative value, and d is a positive value.
The rule in Equation (9) is not the only way to specify the frequencies.
The values of fm for m = 1, 2, . . . , N belong to the range (0, fs

2 ) with fs =
1
Ts

.

Step 3: If the signal um(k) is used as the input signal of the model (3), we can obtain{
xd(k + 1) = Adxd(k) + Bdum(k),

ym(k) = Cdxd(k) + Ddum(k),
(10)

where ym(k) denotes the output of the model (3) when the input signal is um(k).

By augmenting the model (10) with the state vector of the model (6), an augmented
model Ga,m can be obtained, and it can be represented as{

xa,m(k + 1) = Aa,mxa,m(k),

ym(k) = Ca,mxa,m(k),
(11)

where the state vector xa,m(k) can be denoted as

xa,m(k) =
(

xd(k)
xm(k)

)
, (12)

and the matrices Aa,m and Ca,m can be denoted as

Aa,m =

(
Ad BdCm
0 Am

)
(13)

and
Ca,m =

(
Cd DdCm

)
, (14)

respectively.

Based on the state-space model representation (11) for the augmented models Ga,m,
m = 1, 2, . . . , N, we can totally build N full-order observers corresponding to the
augmented models Ga,m, m = 1, 2, . . . , N, and we denote the m-th observer for the
m-th augmented model Ga,m as Ea,m, which can be described by

x̂a,m(k + 1) = (Aa,m − La,mCa,m)x̂a,m(k) + La,mym(k), (15)

where La,m denotes the observer gain, and x̂a,m(k) denotes the reconstructed value
of xa,m(k) using the observer.
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With the reconstructed value x̂a,m(k), we can obtain the reconstructed value of
um(k), which can be calculated by the following equation:

ûm(k) = Cr,m x̂a,m(k), (16)

where
Cr,m =

(
0 × Cd Cm

)
. (17)

By combining (15) with (16), we can obtain a state-space model{
x̂a,m(k + 1) = (Aa,m − La,mCa,m)x̂a,m(k) + La,mym(k),

ûm(k) = Cr,m x̂a,m(k),
(18)

which can be regarded as a reconstructor of the input um(k) of the model (10).

Let the model (18) be denoted as Ginv,m, and the value of the frequency response
function of the model Ginv,m at the frequency fm can then be represented as
Ginv,m(e−jΩmTs) where Ωm = 2π fm.

Step 4: Let the inverse model of the model Gd be denoted as Ginv, and with the frequency
response function values Ginv,m(e−jΩmTs), m = 1, 2, . . . , N, the inverse model Ginv
in state-space representation can be identified by using the subspace-based system
identification method in the frequency domain [23]. After system identification, the
identified inverse model is denoted as Ĝinv.

Remark 2. The effective frequency range of the inverse model Ginv can be specified by
selecting the range of the frequencies of the signals um(k), m = 1, 2, . . . , N, in the set S.

Step 5: Connect the models Gd and Ĝinv in series, and the resulting model can be repre-
sented as

Gs = ĜinvGd (19)

of which the frequency response function is written as

Gs(e−jΩTs) = |Gs(e−jΩTs)|ej∠Gs(e−jΩTs ), (20)

where Ω = 2π f with f the ordinary frequency in Hz, so if the identified inverse
model Ĝinv is perfect, the frequency response of the model Gs should satisfy:

(a) |Gs(e−jΩTs)| = 1.
(b) ∠Gs(e−jΩTs) ∈ {θ | θ = 2kπ with k = 0, 1, 2, . . .}.

By observing whether the frequency response function of the model Gs within
the frequency range specified by inverse system identification satisfies the above
conditions (a) and (b) and to what extent it satisfies them, the goodness of the
identified inverse model Ĝinv can be validated.

2.2. MATLAB Codes

The corresponding MATLAB (R2020b) commands to realize the above mentioned
inverse identification approach are illustrated step by step.

Step 1: Firstly the transfer function of a nominal model Gd is given, then a state-space
realization of the transfer function is made, afterwards the Bode plot is plotted. The
process can be realized by following MATLAB codes.

» systf=tf(numerator,denominator,Ts);

» sysss=ss(systf);

» figure;
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» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(sysss,opts);

Step 2: According to the bandwidth of the nominal model Gd, specify the frequencies fm,
m = 1, 2, . . . , N, by using the rule stated in Remarks 1 and 2, and then stack all the
frequencies into the vector FN , i.e.,

FN =


f1
f2
...

fN

. (21)

Based on Equations (7) and (8), create the matrices Am and Cm for m = 1, 2, . . . , N
in the models of the N discrete-time sine signals in the set S, and then stack them
into the matrices AN and CN , respectively, i.e.,

AN =


A1
A2
...

AN

, (22)

and

CN =


C1
C2
...

CN

. (23)

We can obtain the following MATLAB codes for the above.

» dim=N;

» FN=zeros(dim,1);

» for m=1:dim
FN(m,:)=fb+(m-1)*d;

end

» AN=zeros(2*dim,2);

» for m=1:dim
AN(((2*m-1):2*m),:)=[cos(2*pi*FN(m,:)*Ts) sin(2*pi*FN(m,:)*Ts)

-sin(2*pi*FN(m,:)*Ts) cos(2*pi*FN(m,:)*Ts)];
end

» CN=zeros(dim,2);

» for m=1:dim
CN(m,:)=[1 0];

end

Step 3: With the created matrices Am and Cm for m = 1, 2, . . . , N, create the matrices
Aa,m, Ca,m, and Cr,m for m = 1, 2, . . . , N by using Equation (13), Equation (14), and
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Equation (17), respectively. Then stack the matrices Aa,m and Ca,m, m = 1, 2, . . . , N,
into the matrices Aa

N , Ca
N , and Cr

N , respectively, i.e.,

Aa
N =


Aa,1
Aa,2

...
Aa,N

, (24)

Ca
N =


Ca,1
Ca,2

...
Ca,N

, (25)

and

Cr
N =


Cr,1
Cr,2

...
Cr,N

. (26)

Based on the expression of the model (18), calculate the transfer function of the
reconstructors Ginv,m by using

Ginv,m(z) = Cr,m[zI − (Aa,m − La,mCa,m)]
−1La,m, (27)

where the observer gain La,m can be chosen in a linear least-squares sense for
stochastic systems, i.e., the observer gain La,m can be obtained as the gain of
the steady-state Kalman filter for the model (11) with process noise and mea-
surement noise or can be obtained in a minimum mean-integral squared error
sense [24]. Denote the process noise and measurement noise as w(k) ∈ Rna with
na = nd + 2 and v(k) ∈ R, respectively, and assume that both {w(k), k = 1, 2, . . .}
and {v(k), k = 1, 2, . . .} are white Gaussian sequences, w(k) ∼ N(0, Q) with Q > 0,
v(k) ∼ N(0, R) with R > 0, and assume that the distribution of xa,m(0) is Gaussian,
and assume that {w(k), k = 1, 2, . . .} and {v(k), k = 1, 2, . . .} are uncorrelated with
xa,m(0) and with each other. Then, derive the gain of the steady-state Kalman filter
for the model (11) by using the following equation [25]:

La,m = Aa,mPmCT
a,m(Ca,mPmCT

a,m + R)−1, (28)

where the value of Pm can be derived as the unique solution of the following
algebraic Riccati equation:

Pm = Aa,m[Pm − PmCT
a,m(Ca,mPmCT

a,m + R)−1Ca,mPm]AT
a,m + Q, (29)

under the following conditions:

(a) (Aa,m, Ca,m) is detectable. (A system is detectable if all the unobservable states
are stable)

(b) (Aa,m, Q) is controllable.

Then, stack all the calculated observer gains La,m for m = 1, 2, . . . , N into the matrix
LN , i.e.,

LN =
(

La,1 La,2 . . . La,N
)
. (30)
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After calculating the reconstructor transfer functions Ginv,m(z) for m = 1, 2, . . . , N
based on (27), stack all the obtained transfer functions into the vector function EN ,
which can be denoted as

EN =


Ginv,1(z)
Ginv,2(z)

...
Ginv,N(z)

. (31)

Obtain the frequency response function values Ginv,m(e−jΩmTs) for m = 1, 2, . . . , N
by replacing z in Equation (27) with e−jΩmTs for m = 1, 2, . . . , N, then stack all the
frequency response function values into the vector GN , i.e.,

GN =


Ginv,1(e−jΩ1Ts)
Ginv,2(e−jΩ2Ts)

...
Ginv,N(e−jΩN Ts)

. (32)

The above process can be realized by the following MATLAB codes.

» r1=size(sysss.a,1)+2;

» AaN=zeros(r1*dim,r1);

» for m=1:dim
r2=1+(m-1)*r1;
AaN(r2:r1*m,:)=[sysss.a sysss.b*CN(m,:)

zeros(2,size(sysss.a,1)) AN(((2*m-1):2*m),:)];
end

» CaN=zeros(dim,r1);

» for m=1:dim
CaN(m,:)=[sysss.c sysss.d*CN(m,:)];

end

» CrN=zeros(dim,r1);

» for m=1:dim
CrN(m,:)=[zeros(1,size(sysss.a,1)) CN(m,:)];

end

» LN=zeros(r1,dim);

» for m=1:dim
Q=pc*eye(r1);
R=mc;
r2=1+(m-1)*r1;
LN(:,m)=dlqr(AaN(r2:r1*m,:)’,CaN(m,:)’,Q,R)’;

end

» g=cell(dim,1);

» GN=zeros(dim,1);

» for m=1:dim
r2=1+(m-1)*r1;
sysr=ss(AaN(r2:r1*m,:)-LN(:,m)*CaN(m,:),LN(:,m),CrN(m,:),0,Ts);
if isstable(sysr)==1
g{m,:}=sysr;
GN(m,:)=frd(g{m,:},FN(m,:),’Hz’).ResponseData;

else
break

end
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Remark 3. The values of Q and R can be tuned by changing the values of pc and mc.

Step 4: With the calculated frequency response function values Ginv,m(e−jΩmTs), m =
1, 2, . . . , N, the inverse model Ginv in state-space representation can be identified
by using the MATLAB function n4sid, then the Bode plot of the identified inverse
model can be obtained.

» fdata=idfrd(GN,2*pi*FN,Ts);

» opt=n4sidOptions("EnforceStability",1);

» Ginv=n4sid(fdata,nx,’Ts’,Ts,opt);

» figure;

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(Ginv,opts);

Remark 4. The values of nx denote the inverse model order which can be specified.

Step 5: The following MATLAB command can be used for the series connection of the
models Gd and Ĝinv.

» Gs=series(sysss,Ginv);

Then, the Bode plot of the combined model can be displayed using the following
codes.

» figure;

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(Gs,opts);

2.3. Inverse System Identification Toolbox Creation

Building the inverse system identification toolbox consists of two parts.

Part 1: Based on the MATLAB codes of inverse identification obtained in Section 2.2, a
MATLAB function file, which is an m-file, can be created. The specific content of the
m-file is given in Listing 1.

Listing 1. MATLAB function of inverse system identification.

1 function Ginv = INVSIDToolbox(numerator ,denominator ,Ts,fb,
d,N,pc,mc,nx)

2 % numerator and denominator: The numerator and denominator
coefficients of the transfer function of the nomial

model G_d.
3 % Ts: The sampling period of the nominal model G_d.
4 % fb: The smallest frequency among the frequency

components for inverse system identification.
5 % d: The common difference.
6 % N: The number of the frequency components for inverse

system identification.
7 % pc: The covariance of the process noise.
8 % mc: The covariance of the measurement noise.
9 % nx: Vector of model orders to scan.

10 % Ginv: The identified inverse model.
11
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12 %% Step I
13 systf=tf(numerator ,denominator ,Ts);
14 sysss=ss(systf);
15 figure;
16 opts=bodeoptions;
17 opts.FreqUnits='Hz';
18 bode(sysss ,opts);
19
20 %% Step II
21 dim=N;
22 FN=zeros(dim ,1);
23 for m=1: dim
24 FN(m,:)=fb+(m-1)*d;
25 end
26 AN=zeros (2*dim ,2);
27 for m=1: dim
28 AN(((2*m-1):2*m) ,:)=[cos (2*pi*FN(m,:)*Ts) sin (2*pi*FN(m,:)

*Ts)
29 -sin (2*pi*FN(m,:)*Ts) cos (2*pi*FN(m,:)*Ts)];
30 end
31 CN=zeros(dim ,2);
32 for m=1: dim
33 CN(m,:)=[1 0];
34 end
35
36 %% Step III
37 r1=size(sysss.a,1)+2;
38 AaN=zeros(r1*dim ,r1);
39 for m=1: dim
40 r2=1+(m-1)*r1;
41 AaN(r2:r1*m,:)=[sysss.a sysss.b*CN(m,:)
42 zeros(2,size(sysss.a,1)) AN (((2*m-1) :2*m) ,:)];
43 end
44 CaN=zeros(dim ,r1);
45 for m=1: dim
46 CaN(m,:)=[sysss.c sysss.d*CN(m,:)];
47 end
48 CrN=zeros(dim ,r1);
49 for m=1: dim
50 CrN(m,:)=[zeros(1,size(sysss.a,1)) CN(m,:)];
51 end
52 LN=zeros(r1,dim);
53 for m=1: dim
54 Q=pc*eye(r1);
55 R=mc;
56 r2=1+(m-1)*r1;
57 LN(:,m)=dlqr(AaN(r2:r1*m,:) ',CaN(m,:) ',Q,R) ';
58 end
59 g=cell(dim ,1);
60 GN=zeros(dim ,1);
61 for m=1: dim
62 r2=1+(m-1)*r1;
63 sysr=ss(AaN(r2:r1*m,:)-LN(:,m)*CaN(m,:),LN(:,m),CrN(m,:)

,0,Ts);
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64 if isstable(sysr)==1
65 g{m,:}= sysr;
66 GN(m,:)=frd(g{m,:},FN(m,:),'Hz').ResponseData;
67 else
68 break
69 end
70 end
71
72 %% Step IV
73 fdata=idfrd(GN ,2*pi*FN,Ts);
74 opt=ssestOptions (" EnforceStability ",1);
75 Ginv=ssest(fdata ,nx ,'Ts',Ts,opt);
76 figure
77 opts=bodeoptions;
78 opts.FreqUnits='Hz';
79 bode(Ginv ,opts);
80
81 %% Step V
82 Gs=series(sysss ,Ginv);
83 figure;
84 opts=bodeoptions;
85 opts.FreqUnits='Hz';
86 bode(Gs,opts);
87 end

Part 2: With the MATLAB m-file created in the first part, the inverse system identifica-
tion toolbox INVSID 1.0 can be installed. The complete installation procedure
contains five steps, from the first step about the selection of the item Package
Toolbox from the Add-Ons menu to the end step about saving the created toolbox
(Installation procedure of MATLAB toolboxes can be referred to the following link:
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-
matlab-toolboxes.html).

3. Numerical Studies
3.1. Pure Simulation Examples

In this section, two simulation examples are used to validate the effectiveness of the
toolbox INVSID 1.0, i.e., check the effectiveness of the proposed inverse system identifica-
tion approach.

Firstly, consider a discrete-time, single-input single-output, linear, constant dynamical
system Gd, of which the transfer function is described by

Gd(z) =
z

z2 − 1.5z + 0.7
(33)

with the sampling period Ts = 1 × 10−5 seconds.
The Bode plot of the system Gd is displayed in Figure 3.

https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
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Figure 3. Bode plot of Gd.

According to the transfer function (33), the following observations can be made:

(a) Gd is stable.
(b) Gd is proper.
(c) Gd is minimal-realized.
(d) Gd has one nonminimum-phase zero.

According to the above observations, it can be known that the direct inversion of the
system G is a challenging problem. So we now turn to using the proposed toolbox INVSID
1.0 to identify the inverse model of the system G. The proposed inverse identification
approach can specify the frequency range of interest, i.e., by selecting the values of fb,
m, and d in Equation (9), the frequency range to be identified can be determined. The
parameters shown in Table 1 are used as the inputs of the inverse identification toolbox.

Table 1. Parameters for inverse identification.

Parameter Value in MATLAB

numerator [0, 1, 0]
denominator [1,−1.5, 0.7]
Ts 1 × 10−5

fb 10
d 10
N 50
pc 1 × 10−3

mc 1 × 10−3

nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the
identified inverse model which is the best model corresponding to the recommended
singular value. The model order of the identified inverse model Ĝinv is recommended to be
4. The frequency response properties of the model Ĝinv with fourth order are demonstrated
in Figure 4.

In addition, the inversion Ĝinv is identified using the MATLAB function n4sid with
stability enforcement, so the identified model Ĝinv is stable and causal.
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Figure 4. Bode plot of Ĝinv.

By connecting the model Gd and the model Ĝinv in series using Equation (19), the
model Gs can be obtained. The obtained model Gs can then be used for validating the
goodness of the identified inverse model Ĝinv in the frequency range of interest. The
frequency response of the obtained model Ĝinv is shown in Figure 5; in the specified
frequency range from 10 Hz to 500 Hz, the magnitude is nearly a constant near 0 dB, and
the phase is nearly a constant around 0 degrees. The values of magnitude and phase can
indicate the effectiveness of the proposed inverse identification toolbox for stable systems
to be inverted.
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Figure 5. Bode plot of Gs.

In practice, unstable systems are also frequently encountered. So the second numerical
example is about using the toolbox INVSID 1.0 to solve the system inversion problem of an
unstable system.
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Consider a discrete-time, single-input single-output, linear, constant dynamical system
G∗

d, of which the transfer function is described by

G∗
d(z) =

z
z2 − 5z + 6

(34)

with the sampling period Ts = 1 × 10−5 s.
The Bode plot of the system G∗

d is displayed in Figure 6.
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Figure 6. Bode plot of G∗
d.

According to the transfer function (34), the following observations can be made:

(a) G∗
d is unstable.

(b) G∗
d is proper.

(c) G∗
d is minimal-realized.

(d) G∗
d has one nonminimum-phase zero.

The parameters shown in Table 2 are used as the inputs of the inverse identification
toolbox.
Table 2. Parameters for inverse identification.

Parameter Value in MATLAB

numerator [0, 1, 0]
denominator [1,−5, 6]
Ts 1 × 10−5

fb 10
d 10
N 50
pc 1 × 10−3

mc 1 × 10−3

nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the
identified inverse model which is the best model corresponding to the recommended
singular value. The model order of the identified inverse model Ĝ∗

inv is recommended to be
4. The frequency response properties of the model Ĝ∗

inv with fourth order are demonstrated
in Figure 7.
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inv.

In addition, the inversion Ĝ∗
inv is identified using the MATLAB function n4sid with

stability enforcement, so the identified model Ĝ∗
inv is stable and causal.

By connecting the model G∗
d and the model Ĝ∗

inv in series using Equation (19), the
model G∗

s can be obtained. The frequency response of the obtained model Ĝ∗
inv is shown in

Figure 8; in the specified frequency range from 10 Hz to 500 Hz, the magnitude is nearly
a constant near 0 dB, and the phase is nearly a constant around 0 degrees. The values of
magnitude and phase can indicate the effectiveness of the proposed inverse identification
toolbox for unstable systems to be inverted.
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Figure 8. Bode plot of G∗
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3.2. Practical Hard Disk Drive System

Figure 9 shows a block diagram to illustrate the goal of the system inversion design,
where r(k) ∈ R, u(k) ∈ R, and y(k) ∈ R represent the discrete-time reference, the input,
and the output signals, respectively. Note that F can be implemented as a block in the
feedforward controller design. In Figure 9, the overall transfer function from the reference
signal r(k) to the output signal y(k) is

Y(z)
R(z)

= F(z)G(z) = Ĝinv(z)G(z) = Gs(z), (35)

where F(z) = Ĝinv denotes the inversion of the system G(z). Equation (35) can reflect the
accuracy of the inversion F(z).

Figure 9. Block diagram to illustrate the goal of the system inversion design. Note that F can be
implemented as a feedforward controller.

We take the hard disk drive system as an illustrative example [26,27]. The transfer
function of the system with a sampling frequency of 26.4 kHz is

G(z) = z−3 1.447663(z + 0.050852)(z + 2.494311)
z2 − 1.978354z + 0.978808

. (36)

The Bode plot of the system G is shown in Figure 10.
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Figure 10. Bode plot of G.

Based on the transfer function (36), the following observations can be made for the
system G:

(a) G is stable.
(b) G is proper.
(c) G is minimal-realized.
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(d) G has one nonminimum-phase zero at around −2.5.

The parameters shown in Table 3 are used as the inputs of the inverse identification
toolbox.

Table 3. Parameters for inverse identification.

Parameter Value in MATLAB

numerator [0, 0, 0, 1.4477, 3.6845, 0.1836]
denominator [1,−1.9784, 0.9788, 0, 0, 0]
Ts 1/26, 400
fb 0.1
d 0.1
N 7000
pc 1 × 10−3

mc 1 × 10−3

nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the
identified inverse model, of which the model order is chosen as 10. The frequency response
properties of the model Ĝinv with tenth order are demonstrated in Figure 11.
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Figure 11. Bode plot of Ĝinv.

The inversion Ĝinv is identified using the MATLAB function n4sid with stability
enforcement, so the identified model Ĝinv is stable and causal.

As shown in Figure 9, by connecting the model G and the model Ĝinv in series using
Equation (19), the model Gs can be obtained. The frequency response of the obtained
model Ĝ∗

inv is shown in Figure 12; in the specified frequency range from 0.1 Hz to 700 Hz,
the magnitude is nearly a constant near 0 dB, and the phase is nearly a constant around
0 degrees. The above results can indicate that the proposed system inversion approach is
effective in the practical application in the feedforward controller design of the hard disk
drive system.
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Figure 12. Bode plot of Gs. ZPETC: zero phase error tracking algorithm.

Furthermore, the well-known zero phase error tracking algorithm [11] is also imple-
mented into the feedforward controller design, and according to the comparison between
INVSID 1.0 and zero phase error tracking algorithm. For this example, it can be concluded
that within the specified frequency range, INVSID 1.0 performs better than the zero phase
error tracking algorithm in terms of phase, and in addition, INVSID 1.0 can be implemented
without any preview.

4. Conclusions and Perspectives

In this paper, an alternative system inversion approach is proposed, based on which
the toolbox named INVSID 1.0 is developed. The advantages of the toolbox INVSID 1.0
can be concluded as follows:

(a) The proposed inverse identification toolbox can be used for stable or unstable systems,
minimum-phase or nonminimum-phase systems.

(b) Preview is not needed, i.e., the causality of the identified inverse model can be guaranteed.
(c) Stability of the identified inverse model can be guaranteed.
(d) The frequency range of interest can be specified.
(e) Subspace identification is used such that there is no non-convex problem.

Furthermore, according to the theoretical derivation of the proposed system inversion
approach, it can be indicated that the proposed approach can be used for systems with
noise, because an observer is involved in the approach.

Currently, the inverse identification toolbox INVSID 1.0 is used for single-input single-
output systems, while in the future, the proposed inverse system identification approach
will be extended to identify the inverse models of general multiple-input multiple-output
systems such that more advanced versions of the INVSID toolbox can be created, and
squaring down approaches [28] have a potential to solve the extension problem.
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