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Abstract: The average winding temperature of a transformer (AWTT), serving as a key indicator for
assessing the running state of the transformer, is of utmost importance in determining a transformer’s
electrical properties and the insulation longevity of the transformer. An accurate prediction of AWTT
is essential for ensuring the safe operation of the transformer. A novel method for predicting AWTT
is introduced based on the analysis of field monitoring data. Firstly, the thermal characteristics and
operational mechanisms of oil-immersed transformers are examined. Secondly, a factor analysis
model is developed to streamline the network structure, accounting for the strong correlations among
ambient temperature, load current, and top oil temperature. Thirdly, the independent temperature
factor and load factor are extracted as pivotal features, and then input into the fully connected neural
network to predict AWTT. Through a case study involving a 110 kV/10 kV oil-immersed transformer,
the results show that the proposed method reduces redundant correlation information compared to
traditional methods and improves the prediction accuracy of AWTT, establishing a foundation for
further transformer state assessments.

Keywords: oil-immersed transformer; average winding temperature of transformer (AWTT); temper-
ature prediction; state assessment

1. Introduction

Power transformers, as the key component in transmission and distribution systems,
play a significant role in power systems. The average winding temperature (AWTT) and
the winding hot-spot temperature (WHSTT) serve as critical parameters for assessing the
transformer’s state [1–4]. Elevated AWTT can accelerate the degradation of insulation
materials, escalate transformer losses, and compromise insulation strength, increasing the
risk of equipment malfunctions and accidents. Therefore, the accurate prediction of AWTT
is essential for enabling operation and maintenance personnel to promptly identify potential
issues and implement protective measures to ensure safe operation of the transformer [5–8].

Currently, the methods for predicting the AWTT and WHSTT are mainly following:
empirical thermal model method, thermal circuit model method, numerical simulation
method, and artificial intelligence method. The most used method for calculating AWTT is
the empirical thermal model, as in [9,10]. This method utilizes one or two differential equa-
tions to describe the increase in the AWTT in relation to the top oil temperature. Another
method is the thermal circuit equivalent model method. In [11], nonlinear thermal resis-
tance is introduced into the thermal path model to solve the problem of uneven heat transfer
inside the transformer, and the temperature rise of the transformer winding is predicted by
using this model, and a good calculation result is obtained, providing a new example for
studying the hot-spot temperature rise of winding by using the thermal path model. In [12],
by discussing the influence of oil viscosity and resistance on thermal resistance, the thermal
resistance is redefined, which makes the calculation of thermal resistance more practical and
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improves the lumped thermal path model. However, both the empirical thermal model and
the thermal circuit equivalent model bring challenges because parameters such as winding
index, oil index, and thermal constant are typically approximated based on the transformer
capacity and cooling methods. Therefore, the accuracy of these models in calculating the
AWTT is limited in practical applications. Considering the winding structure and loss
distribution comprehensively, numerical simulation analysis enables precise calculation of
the AWTT. In [13], the finite element method analyzed the magnetic field and transformer
loss, and the finite volume method calculated the temperature distribution, considering
material property changes. In [14,15], scholars studied the influence of parameters such
as oil passage size and baffle structure on winding temperature to provide guidance for
transformer heat dissipation design. Artificial intelligence algorithms can predict the AWTT
accurately by analyzing the operational data, environmental factors, and winding character-
istics of the transformers. In [16], a model using the kernel extreme learning machine was
created to predict the top layer oil temperature of transformers, accounting for uncertainty
and matching measured values. In [17], particle swarm optimization improved this model
by considering environmental factors, enhancing prediction accuracy.

However, due to the complex and variable operating conditions of the transformers,
the current methods for predicting AWTT have some problems. Table 1 shows the inadequa-
cies of existing research methods. The mutual influence of factors such as heat conduction,
cooling, and losses within the windings makes it difficult for traditional models to provide
accurate simulations. Generally, these models rely on oversimplified assumptions and
empirical equations, which do not simulate the complex heat conduction process within
transformers effectively. Consequently, the accuracy and reliability of current prediction
methods for AWTT are limited. Therefore, it is necessary for further research to address
these challenges.

Table 1. The inadequacies of existing research methods.

Method Inadequacy

Empirical thermal model method Lack of accuracy, dependent on specific conditions

Thermal circuit model method The solving model is relatively complex and
computationally heavy

Numerical simulation method High computing resource requirements and complex
model building

The thermal properties and operational mechanisms of oil-immersed transformers are
analyzed to address the issues in this paper. A predictive model for AWTT is introduced,
which is based on the fully connected neural network. Firstly, the thermal properties of
oil-immersed transformers are analyzed, and there is coupling among ambient temperature,
load current, and top oil temperature. Secondly, the above parameters are decoupled based
on the factor analysis, implementing the effect of reducing the input dimension. Thirdly,
the fully connected neural network is used to predict the AWTT. Finally, the analysis and
verification are conducted on real transformer data, and the results show that the proposed
method improves the prediction accuracy of the AWTT with reduced dimensions of data
processing compared to traditional methods. The method in this paper is meaningful for
attaining AWTT accurately and can offer support for further transformer state assessments.

2. Analysis of the Thermal Properties of Oil-Immersed Transformers
2.1. Internal Heat Generation Mode of Oil-Immersed Transformer

During the operation of transformers, internal heat is generated due to the copper
losses in the windings, iron losses in the core, and stray losses in the transformer compo-
nents under leakage magnetic flux. The copper loss can be expressed as follows:

P = 3I2
1Nϕ

R1.75◦C + 3I2
2Nϕ

R2.75◦C (1)
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where P is the copper loss, and I1Nϕ
and I2Nϕ

are the phase current of the primary and
secondary transformer windings, respectively. R1.75◦C and R2.75◦C are the total resistance of
the primary and secondary transformer windings converted to 75 ◦C, respectively.

The iron loss is expressed as follows:

P0 = K0GPC (2)

PC = P1/50(F/50)βB2
m (3)

where P0 is the iron loss, K0 is the loss technological coefficient and takes the value 0.9, G
is the core weight, PC is the loss per unit weight, P1/50 is the iron loss coefficient, β is the
frequency index, and Bm is the maximum magnetic flux density of the core.

Compared with the former two types of losses, the stray loss in the transformer is
generated by the leakage magnetic field in the conductive material, usually with a smaller
value [18–20].

2.2. Internal Heat Transfer Process of Oil-Immersed Transformer

The heat transfer in oil immersed transformers is mainly influenced by conduction
and convection diffusion, while radiation has a relatively small heating effect. In particular,
between conduction and convection, the former is the key to heat transfer. During operation,
some losses in the transformer result in heat within the core and windings, and part of this
heat is transferred to the insulating oil through conduction. The volume and temperature
of the insulating oil are closely linked, as heat absorption causes the oil to expand. Thus,
the oil density is reduced, and the oil flow characteristics are changed. This heat is then
dissipated to the outside in a convective manner, as illustrated in Figure 1.
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Figure 1. Internal heat transfer process of transformer. Figure 1. Internal heat transfer process of transformer.

3. Prediction of AWTT
3.1. Correlation Analysis of Original Variables

The load borne by the transformer is real-time fluctuations during the operation. The
heat transfer process includes the heat generated by load loss at the corresponding moment.
This process is continuous and uninterrupted, so the AWTT is dynamic, influenced by
ambient temperature, oil temperature, load [18], wind velocity [21], harmonics [22], insula-
tion paper [23], and solar radiation [24]. In the on-site situation, the placement of sensors
is relatively strict, and some parameters are inconvenient to measure. In addition, if the
cooling method of the transformer is ONAN, it is impossible to assign initial values to the
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oil flow velocity and fit the oil flow direction through mathematical formulas. Therefore,
ambient temperature, load current, and top oil temperature, affecting the temperature
elevation characteristics of transformers, are selected as the fundamental parameters to
predict AWTT.

Figure 2 shows the trend of data points in the scatter plot clearly among ambient
temperature, load current, and top oil temperature. The purple are data points. The orange
shows the relationship between top oil temperature and load current. The blue shows the
relationship between top oil temperature and ambient temperature. The green shows the
relationship between ambient temperature and load current. Preliminary assessments are
conducted on the correlation between these three key parameters. With the increase in one
characteristic parameter, another characteristic parameter also tends to rise, indicating a
rough positive linear correlation between any pair of the parameters within the three.
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In order to obtain more accurate and reliable results for quantitative analysis, the
Pearson correlation coefficient is adopted to further analyze the numerical correlation
among ambient temperature, load current, and top oil temperature. The Pearson correlation
coefficient can assess the correlation between two variables, and the calculated value is
within the range of −1 to 1 and can be expressed as follows:

ρX,Y =
s(X, Y)
σXσY

=

n
∑

i=1
(Xi − X)(Yi − Y)√

n
∑

i=1
(Xi − X)

2 n
∑

i=1
(Yi − Y)2

(4)

where s is covariance; σX and σY are the standard deviations of variables X and Y; X and
Y are the average values of X and Y; n is the number of samples; and Xi and Yi are the
variables, respectively.

In accordance with the correlation coefficient in Table 2, the correlation coefficients
among the ambient temperature, load current, and top oil temperature are all above 0.6.
Among them, the strongest correlation is found between the top oil temperature and the
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ambient temperature. The transformer dissipates internally generated heat to the external
environment through the heat dissipation system. Radiation and convection are driven
by temperature differences. Both are impacted by ambient temperature, changing the top
oil temperature. Furthermore, the transformer is an intercoupling thermal system. The
thermal coupling effect also results in a strong positive correlation between the load current
and the top oil temperature. When the load current passes through the winding, resistance
and eddy current loss are generated. The heat converted by the loss is transmitted to the
cooling medium transformer oil through the heat transfer mode, causing an increase in the
oil temperature. In addition, the increase in load current will lead to the accumulation of
heat inside the transformer. The heat is dissipated to the external environment, affecting
ambient temperature distribution.

Table 2. Correlation coefficient of ambient temperature, load current, and top oil temperature.

Ambient Temperature Load Current Top Oil Temperature

Ambient temperature 1 0.657 0.793
Load current 0.657 1 0.724

Top oil temperature 0.793 0.724 1

3.2. Factor Analysis Feature Dimension Reduction

A notable correlation among ambient temperature, load current, and top oil tempera-
ture is observed as mentioned above. If these three highly correlated parameter data are
directly used to predict the AWTT, there will be an abundance of superfluous information,
potentially leading to the problem of over-fitting and the complexity of prediction models.
The factor analysis algorithm can effectively decouple and improve the efficiency of the
network model. Based on retaining the main original data information, the correlation
between the data is removed, and the dimensionality of the data is reduced.

Ambient temperature x1, load current x2, and top oil temperature x3 are selected as
three evaluation indexes in this paper. When there are n samples, a data matrix of n × 3
can be expressed as

x =


x11 x12 x13
x21 x22 x23

...
...

...
xn1 xn2 xn3

 = (x1, x2, x3) (5)

The ambient temperature, load current, and top oil temperature are represented
as a linear combination of common factors and special factors, so as to establish the
factor analysis model. Then, the Kaiser–Meyer–Olkin (KMO) test and Bartlett test are
performed on the data. Following the confirmation of significant correlations, the quantity
of common factors is determined. Factor rotation is executed to minimize bias and enhance
the explication of the practical implications. Finally, the Anderson–Rubin method is used
to compute the factor scores. According to the component score coefficient matrix, the
coefficients of the factor score function are obtained, resulting in the acquisition of all
factor scores. That is, the common factor is represented as a linear combination of the
original variables. 

f1 = b11x1 + b12x2 + b13x3
f2 = b21x1 + b22x2 + b23x3
· · ·
fm = bm1x1 + bm2x2 + bm3x3

(6)

where f1, f2, · · · , fm(m < 3) is the common factor, and bij is the coefficient of the ith factor
corresponding to the jth variable.
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3.3. Constructing Fully Connected Neural Networks

With its robust expression capabilities, favorable capacity for nonlinear data fitting,
and strong generalization ability, the fully connected neural network can accurately learn
and represent the complex nonlinear mapping relationships between input features and
output parameters. It is a commonly used method to achieve accurate prediction of low
dimensional nonlinear data. Therefore, a fully connected neural network is used to predict
the AWTT. The factor score derived from the above factor analysis is the input of the
network model, and the AWTT is the output. This method constructs a prediction model
for the AWTT using the fully connected neural network, as shown in Figure 3.
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The neural network mentioned above is trained with the Bayesian regularization
optimization algorithm. This algorithm utilizes maximum a posteriori to infer estimated
model parameters, automatically determining appropriate regularization parameters. This
method helps prevent overfitting and enhances the model generalization ability.

3.4. Prediction Method for AWTT

As shown in Figure 4, the method for predicting AWTT involves the factor analysis
and the fully connected neural network. Firstly, the factor model is established among
ambient temperature, load current, and top oil temperature. Then, the above parameters
are decoupled based on the factor analysis. Next, taking the factor score as the input and
the AWTT as the output, the AWTT prediction model based on the fully connected neural
network is constructed, and the hidden layers and the number of nodes are adjusted. Finally,
the model trained with the Bayesian regularization optimization algorithm is applied to
predict the AWTT.
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4. Case Verification
4.1. Field Test

The field monitoring data of a 110 kV oil-immersed transformer in a substation are
selected as the experimental data set in this paper. The model of the transformer is SSZ11-
50000/110, and the basic parameters are shown in Table 3. These parameters are from the
nameplate of the transformer. Figure 5 shows the transformer physical diagram.

Table 3. SSZ11-50000/110 basic parameters.

Parametric Index Value Parametric Index Value

Rating capacity 50,000/50,000/50,000 kVA Connection group YNyn0d11
Rating voltage 110 ± 8 × 1.25%/36.75/10.5 kV Impedance voltage 10.3/18.73/6.81%
Rating current 262.4/785.5/2749.3 A No load current 0.09%

Frequency 50 Hz Cooling method ONAN
Number of phases 3 Oil surface temperature rise 55 K

Upper oil tank weight 6700 kg Oil weight 20,300 kg

The data set includes the ambient temperature, load current, top oil temperature, and
AWTT of the selected transformer. There are 560 groups of data samples. The on-site
temperature data in the substation are from the dedicated detection device for transformer
oil temperature and the winding thermometer, as shown in Figure 6. The oil temperature
sensor is installed inside the oil tank near the top cover to measure the top oil temperature.
The AWTT is measured with the winding thermometer. The temperature measured with the
winding thermometer is actually the temperature of the top oil layer and the temperature
rise of the coil to the oil. It is based on the oil temperature gauge and is equipped with
the current matching device and the electric heating element. The oil temperature probe is
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20–30 cm away from the top of the transformer. The current matching device is a type of
current conversion device. The current output from the current transformer is converted
into the heating current to the electric heating element, thereby simulating the AWTT. When
a certain phase does not bear power, the temperature rise of the coil to the oil is zero, and
the reading on the winding thermometer is the temperature of the transformer oil. When
the phase bears power and operates, the current of the current transformer is converted
into a heating current through the current matching device. The electric heating element is
heated and corresponding additional displacement is generated. The temperature indicated
with the winding thermometer is the sum of the top oil temperature and the temperature
rise of the coil to the oil.
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The working condition data of the transformer come from the terminal management
system of the substation operation and maintenance team. Figure 7 shows the load changes
in the transformer within a week. From the load data, the transformer operates at low
load, and the maximum load carried by the transformer fluctuates in numerical values.
However, the trend of load changes is basically the same. The peak load occurs from noon
to evening, corresponding to the peak electricity consumption period in the vicinity of the
transformer. The minimum load value occurs in the early morning, which is a low valley
for application electricity.
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4.2. Data Preprocessing

The factor analysis algorithm is used to preprocess the ambient temperature, load
current, and top oil temperature in the above data set. After the establishment of the factor
model, the KMO test and the Bartlett test are first performed. According to KMO = 0.723,
the p value of the Bartlett test is less than 0.001, so this group of data is suitable for
factor analysis.

Table 4 shows the variance and cumulative sum explained by each common factor.
From the initial eigenvalues, the variance percentage of the first common factor is 81.688. It
represents that 81.688% of the information of the original variable can be explained by the
first common factor. The percentage of variance of the second common factor is 11.775, so
the second common factor can explain 11.775% of the information in the original variable.
The cumulative variance of the first two common factor explanations is 93.463%. These two
common factors already contain most of the variability of the original data and effectively
summarize the main features of the original data set. However, the subsequent common
factors have little contribution to the interpretation of the original variables, so the first two
common factors are extracted for analysis and prediction tasks. The square sum of extracted
loads is the variance contribution information of the two common factors extracted without
rotation. The values are the same as the first two rows of initial eigenvalues. The square
sum of rotational loads is the variance contribution information of the new common factor
obtained after rotation, which helps distinguish and explain different factors. Compared
with the unrotated contribution information, the variance contribution rate of each common
factor changes, but the final cumulative variance contribution rate remains unchanged
at 93.463%.
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Table 4. Total variance explanation table.

Total Variance Interpretation

Factor

Initial Eigenvalue Extract the Sum of Squared Loads Rotating Load Sum of Squares

Total Variance
%

Accumulate
% Total Variance

%
Accumulate

% Total Variance
%

Accumulate
%

1 2.451 81.688 81.688 2.451 81.688 81.688 1.610 53.652 53.652
2 0.353 11.775 93.463 0.353 11.775 93.463 1.194 39.811 93.463
3 0.196 6.537 100.000 / / / / / /

(1) The component matrix after rotation is shown in Table 5. Obviously, the first common
factor corresponds to a larger value in terms of ambient temperature and top oil
temperature, while the second common factor is associated with a higher value of load
current compared to the other two factors, which better represents the characteristic
parameter of load current. Therefore, the first common factor is known as temperature
factor f 1, and the second common factor is known as load factor f 2. These factors
primarily represent the temperature variables and load variables that impact the
temperature rise characteristics of the transformer.

Table 5. Rotated component matrix.

Common Factor Ambient
Temperature Load Current Top Oil Temperature

1 0.913 0.376 0.796
2 0.313 0.922 0.497

Table 6 shows the component score coefficient matrix after the rotation factor. Factor
scores corresponding to temperature factor f1 and load factor f2 are obtained. They are
entered into the fully connected neural network as two new variables.{

f1 = 0.889
⌢
x1 − 0.576

⌢
x2 + 0.508

⌢
x3

f2 = −0.503
⌢
x1 + 1.267

⌢
x2 − 0.021

⌢
x3

(7)

where
⌢
x1,

⌢
x2, and

⌢
x3 are the three original variables after standardization.

Table 6. Component score coefficient matrix.

Common Factor Ambient
Temperature Load Current Top Oil Temperature

1 0.889 −0.576 0.508
2 −0.503 1.267 −0.021

4.3. Case Verification

(1) Parameter setting:

Based on the above preprocessing, two factor scores are obtained after factor analysis.
Therefore, the input layer node of the network is set to 2; the output of the network is the
AWTT predicted with the model, so the output layer node of the network is set to 1. The
number of hidden layers and the number of nodes are dynamically altered and determined
based on the actual situation. In order to guarantee the precision and effectiveness of the
network model, the number of hidden layers is 1 and the number of nodes in each layer is
6 by debugging the network model.

In the training process, 70% of the sample data constitute the model training set,
and 15% of the sample data are set aside to constitute the verification set. Adjust model
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parameters and preliminarily evaluate model capabilities. Then, 15% of the sample data
are used as a test set to evaluate the generalization ability of the final model.

In order to show the validity of the model, the root mean square error (RMSE) and
goodness of fit (R2) of the model prediction are selected as the indexes to evaluate the
accuracy of the model prediction results. RMSE is the square root of the square of the
difference between the predicted value and the actual value of the sample and the ratio of
the number of samples, which can characterize the difference between the predicted value
and the real value of the sample.

RMSE =

√√√√√ n
∑

i=1
(y − ŷ)2

n
(8)

where R2 describes how well the data fit the model and characterizes the regression fitting effect.

R2 = 1 −

n
∑

i=1
(y − ŷ)2

n
∑

i=1
(y − y)2

(9)

where y is the measured value, ŷ is the predicted value, and y is the average value.

(2) Results analysis:

Figure 8 shows the results of the AWTT curve measured in the field and predicted
with the method in this paper. It can be seen from the diagram that the predicted curve
is basically consistent with the actual curve. Further calculation shows that the RMSE
between the predicted result and the actual value of AWTT is 0.62498, the R2 is 0.9714, the
average error is 0.6037 ◦C, and the maximum error percentage is 2.23%. That is, the average
difference between the predicted result and the actual value is small, and the actual value
can be well fitted.
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The prediction results obtained with this method are basically consistent with the
actual measured AWTT change trend. Among them, the AWTT corresponding to the
daytime is higher, and the AWTT at night is reduced, which is consistent with the actual
situation. The daytime is the peak period of electricity consumption every day. Especially
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from 9:00 to 17:00, the demand for the power grid is large. The transformer will bear
a large load, and the load current will increase accordingly. The current in the primary
and secondary transformer windings increases, resulting in a large amount of copper
consumption in the coil resistor made of copper wire. The main heat sources during the
operation of the transformer are iron core loss and winding loss. The increase in copper loss
leads to more energy inside the winding to be converted into heat energy. This heat will first
be transmitted to the winding and transformer oil in the form of heat conduction, affecting
the AWTT and oil temperature. Heat is emitted from the outer wall of the fuel tank to the
air through convective heat dissipation and thermal radiation. The expression between
the heat and the temperature rise of the natural convection of the air, and the expression
between the heat radiated from the tank wall to the air and the ambient temperature, are
provided in (10) and (11).

ϕ = Sh(Tw − Th) (10)

ϕ = σES(T4
w − T4

h ) (11)

where S is the surface area, h is the convective heat transfer coefficient, Tw is the outer
surface temperature of the transformer tank, Th is the ambient temperature, σ is the Stephen–
Boltzmann constant, and E is the surface radiation coefficient.

The greater the difference between the temperature of the oil tank wall and the ambient
temperature, the more conducive it is for heat dissipation of the oil-immersed transformer to
reduce the internal temperature. In most cases, 9:00 to 17:00 is a period of high temperature
in the day. The temperature difference between the transformer tank and the surrounding
air medium is small. The heat emitted into the air can be reduced accordingly, affecting
the heat dissipation effect of the transformer. During this period, the AWTT is higher. On
the contrary, in the low-power period with smaller load, that is, late at night and early in
the morning, the corresponding heat generation is reduced, and the heat dissipation is
increased. The AWTT during this period is relatively reduced.

Figures 9 and 10 show the prediction curves when the AWTT fluctuates more gently
and more frequently. The error corresponding to different fluctuations of the AWTT is
shown in Table 7. The results show that the proposed method can achieve better temper-
ature prediction in the case of gentle, moderate, and frequent fluctuation of the AWTT.
It has good accuracy and reliability and meets the requirements for data quality in state
assessment.
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Table 7. Error results under different fluctuations of the AWTT.

Gentle Fluctuation Moderate
Fluctuation

Frequent
Fluctuation

RMSE 0.2696 0.6250 0.6441
MAE 0.399 0.6037 0.6263

MAPE 1.47% 2.31% 2.33%

(3) Comparative analysis

To further show the effectiveness and superiority of the proposed method, the results
of the thermal circuit guidelines, the results obtained with factor analysis of the origi-
nal data, and the results obtained by using the Levenberg–Marquardt (L-M) method to
train the network are compared with the actual measured values. The results are shown
in Figures 11 and 12 and Table 8. Obviously, the prediction results obtained with the pro-
posed method are optimal in terms of RMSE, mean absolute error (MAE), mean absolute
percentage error (MAPE), R2, and absolute error compared with the results of other methods
mentioned above. As a result, the proposed method can achieve more accurate prediction
of the AWTT considering that the fitting results are more accurate with the actual measured
values. Among those methods, the error result of the thermal circuit guideline method
is the largest, and the RMSE reaches 14.72164. The reason is that the method relies on
empirical values. However, the oil index and rated oil time constant values used in the
calculation process are difficult to accurately obtain. They can only be roughly estimated
based on parameters such as transformer capacity level, and the accuracy in reflecting the
existing performance of transformers and the degree of oil aging is limited. There are errors
between the actual values, resulting in significant deviations between the final results and
the measured values. Since the L-M method uses error minimization for optimization, in a
nonlinear network with multiple local minimums, it is easily trapped in the local minimum
and it may not be able to achieve the global minimum, thus affecting the generalization
ability of the network. The RMSE of the L-M algorithm increases by 0.2003 compared with
the Bayesian regularization algorithm used in this paper. By comparing the results of the
factor analysis algorithm for original variables with or without factor analysis, the accuracy
of the result is significantly improved compared with the hot path guide method, although
it is not preprocessed with factor analysis. However, when comparing the findings after
factor analysis preprocessing, there are still issues of significant inaccuracies and inaccurate
accuracy. When there is a strong correlation between input variables, the possibility of
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multicollinearity and redundant data contained in it increases. As a result, the network
may be unable to accurately confirm the independent impact of each variable on the output.
What is more, the network model becomes overly reliant on specific features and overfits
the correlation, leading to the problem of network overfitting. Specifically, the network
model is too complex to fit the correlation relationship in the training data, and cannot
flexibly adapt to the new data, thus reducing the final prediction accuracy.
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Table 8. Accuracy evaluation table corresponding to different methods.

Textual Method Hot Circuit
Guide Method

Method without
Factor Analysis L-M Method

RMSE 0.6250 14.7216 1.9175 0.8253
MAE 0.6027 3.1368 0.9761 0.6819

MAPE 2.31% 12.40% 3.79% 2.58%
R2 0.9714 0.1835 0.8474 0.9563

The absolute error results show that the maximum error between the predicted AWTT
and the field measured value occurs from 9:00 to 12:00, and the maximum absolute error
is 2.22 ◦C, 4.17 ◦C, and 2.74 ◦C, respectively, when based on the proposed method, the
method without using factor analysis, and the L-M method. This period can be like the
start-up process of the transformer. The corresponding load is stable in the late night
and early morning periods, and it is approximately considered that the AWTT and the oil
temperature are balanced and in a stable state. From 8:00 to 9:00, the load will change and
fluctuate greatly, in contrast to the previous period. In addition, the load current increases
and the AWTT rises. The external insulating oil is expanded by the heating volume, and the
upward convection is carried out. At the same time, due to the large internal temperature
difference, the winding heat dissipation accelerates and reaches the heat balance state faster.
However, the transformer fails to achieve a thermal steady state, leading to fluctuations in
its temperature. It keeps rising until it reaches the quasi-steady state. Currently, due to the
large heat capacity of the transformer, the internal heat dissipation and heat generation are
not equal, resulting in continuous temperature changes. Once the transformer reaches the
thermal steady state, its temperature will remain relatively constant. The whole process is
relatively slow and takes a long time. From 9:00 to 12:00, the winding is in a stage in which
it has not yet reached a stable state, leading to a significant prediction inaccuracy during
this period. After 12:00, the error between the predicted AWTT and the measured value
noticeably decreases, and the maximum absolute error does not exceed 0.75 ◦C, indicating
a strong agreement with the measured value.

Considering the relevant evaluation indicators and results, it can be considered that
the prediction curve obtained with the method proposed in this paper is closer to the actual
measured value, and the overall effect is better than the thermal path guideline method,
the L-M method, and the method without factor analysis preprocessing, which verifies the
effectiveness of the method proposed in this paper. In practical applications, the current
operating state of the transformer can be determined, based on the difference between the
temperature prediction value of the proposed method and the actual value of the current
AWTT feedback from the sensor. If the difference is too large, it indicates that there is a
problem with the operation of the transformer, or an abnormal value has occurred.

5. Discussion and Conclusions

A prediction model based on a fully connected neural network is proposed, which can
predict the AWTT accurately. In order to remove the coupling among the original imputs
and improve the efficiency of the network model, the factor analysis algorithm is used.
Furthermore, without reducing the prediction accuracy of the AWTT, less data are used to
reduce the dimension of data processing. The conclusions are as follows:

(1) After factor analysis is adopted, the coupling among ambient temperature, load
current, and top oil temperature can be effectively removed. Two key parameters,
the temperature factor and load factor, are proposed to reduce the complexity of the
network model, which reduces the amount of data input and improves the efficiency;

(2) The prediction model based on factor analysis and a fully connected neural network
can accurately obtain the AWTT. The RMSE between the predicted results and the
measured values of the AWTT is 0.62498, and the R2 is 0.9714, which shows the
feasibility of the proposed method;
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(3) Compared with the thermal circuit guideline method, the L-M method and the method
without factor analysis, the results show that the prediction method proposed in this
paper has higher accuracy and reliability. Combined with the predicted results, the
abnormal values can be removed and corrected to make the AWTT prediction more
accurate, which is of great significance for the prediction of the winding hot-spot
temperature and transformer state assessment.

On the basis of collecting historical state data of transformers, the proposed method
can be applied to establish a unique and accurate AWTT prediction model for each trans-
former. It helps to fully analyze and mine monitoring data, promoting the development
of the power supply system from maintenance after faults and planned maintenance to
maintenance based on transformer state. This can detect safety hazards in advance, im-
prove operation and maintenance efficiency, and reduce costs. In addition, further research
will be conducted on transformers of different voltage levels and models, to improve the
applicability of the method proposed in this paper.

Author Contributions: Conceptualization, J.F.; methodology, J.F.; software, J.F. and Z.F.; validation,
J.F., Z.F. and W.J.; formal analysis, Z.F.; investigation, G.J. and H.Z.; resources, G.Z.; data curation, J.F,
G.J. and G.Z.; writing—original draft preparation, J.F.; writing—review and editing, Z.F. and W.J.;
visualization, H.Z.; supervision, G.J. and G.Z.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the State Grid Shanxi Electric Power Company Technology
Project, grant number 5205K0230006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Authors Junjie Feng and Guojun Jiang were employed by the company State
Grid Jinzhong Electric Power Supply Company. And author Guangyong Zhang was employed by
the company State Grid UHV Transformation Co. of SXPC. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest. The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the work reported
in this paper. Authors Junjie Feng and Guojun Jiang were employed by the company State Grid
Jinzhong Electric Power Supply Company who provided funding and teachnical support for the
work. The funder had no role in the design of the study; in the collection, analysis, or interpretation
of data, in the writing of the manuscript, or in the decision to publish the results.

Abbreviations
The table below shows all symbols used in this paper.

P the copper loss
I1Nϕ

the phase current of the primary transformer windings
I2Nϕ

the phase current of the secondary transformer windings
r1.75◦C the total resistance of the primary transformer windings converted to 75 ◦C
r2.75◦C the total resistance of the secondary transformer windings converted to 75 ◦C
P0 the iron loss
K0 the loss technological coefficient
G the core weight
Pc the loss per unit weight
P1/50 the iron loss coefficient
β the frequency index
s covariance
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σX the standard deviations of variables X
σY the standard deviations of variables Y
X the average values of X
Y the average values of Y
n the number of samples
f1, f2, · · · , fm the common factor
bij the coefficient of the i th factor corresponding to the j th variable
⌢
x1,

⌢
x2,

⌢
x3 the three original variables after standardization

R2 goodness of fit
y the measured value
ŷ the predicted value
y the average value
S the surface area
h the convective heat transfer coefficient
TW the outer surface temperature of the transformer tank
TH the ambient temperature
σ the Stephen–Boltzmann constant
E the surface radiation coefficient
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