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Abstract: As one of the most critical components of the power grid system, transformer mainte-
nance strategy planning significantly influences the safe, economical, and sustainable operation
of the power system. Periodic imperfect maintenance strategies have become a research focus in
preventive maintenance strategies for large power equipment due to their ease of implementation
and better alignment with engineering realities. However, power transformers are characterized by
long lifespans, high reliability, and limited defect samples. Existing maintenance methods have not
accounted for the dynamic changes in maintenance costs over a transformer’s operational lifetime.
Therefore, we propose a maintenance interval optimization method that considers imperfect mainte-
nance and dynamic maintenance costs. Utilizing defect and maintenance cost data from 400 220 KV
oil-immersed transformers in northern China, we employed Bayesian estimation for the first time
to address the distribution fitting of defect data under small sample conditions. Subsequently, we
introduced imperfect maintenance improvement factors to influence the number of defects occurring
in each maintenance cycle, resulting in more realistic maintenance cost estimations. Finally, we estab-
lished an optimization model for transformer maintenance cycles, aiming to minimize maintenance
costs throughout the transformer’s entire lifespan while maintaining reliability constraints. Taking
a transformer’s strong oil circulation cooling system as an example, our method demonstrates that
while meeting the reliability threshold recognized by the power grid company, the system’s mainte-
nance cost can be reduced by 41.443% over the transformer’s entire life cycle. Through parameter
analysis of the optimization model, we conclude that as the maintenance cycle increases, the factors
dominating maintenance costs shift from corrective maintenance to preventive maintenance.

Keywords: imperfect maintenance; maintenance interval optimization; improvement factors

1. Introduction

Power transformers are critical and high-value equipment in the power system, ac-
counting for 60% of the total power investment [1]. Any faults or hidden defects in power
transformers can lead to operational issues and system shutdowns, resulting in significant
economic and resource losses. Therefore, effective maintenance methods are crucial to
ensure the normal and safe operation of power transformers.

In terms of maintenance timing, the power system employs various maintenance
methods, including corrective maintenance (CM), preventive maintenance (PM), and pre-
dictive maintenance (PdM). For power transformers, the main maintenance strategies are
corrective maintenance and preventive maintenance. Due to the high cost associated with
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corrective maintenance, which can be comparable to the cost of replacing the entire unit,
many power transformers currently adopt a preventive maintenance strategy.

Maintenance can be categorized into minimal maintenance, imperfect maintenance,
and complete maintenance/replacement based on the extent of repair. Due to the technical
complexity and high cost of major repairs/replacements, power transformers often undergo
imperfect maintenance as their primary maintenance approach [2].

Imperfect maintenance can be further divided into sequential maintenance, fault
control maintenance, maintenance restriction strategies, and periodic maintenance with
fixed intervals. Due to the high cost and complexity of organizing maintenance inspections,
periodic imperfect maintenance strategies are widely adopted for power transformers [3].

Compared to other maintenance strategies, periodic imperfect maintenance is closer
to engineering practice and offers simplicity in operation and maintenance management,
making it a popular choice in both research and practical applications [4]. Consequently,
scholars and industry professionals have focused on the research of periodic imperfect
maintenance strategies. In the context of wind turbine units under periodic maintenance,
Wang proposed a multi-objective fixed-cycle dynamic imperfect maintenance decision
to address the issues of over-maintenance and under-maintenance [5]. Moghadam et al.
introduced an extended mixed-integer linear programming model that utilized information
gap decision theory to optimize power grid maintenance costs and enhance network
reliability. They applied this model to an actual distribution network in Iran [6]. Li et al.
developed a more accurate meta-action unit periodic preventive maintenance strategy
using the generalized geometric process method [7]. Zhao et al. established a transformer
condition-based maintenance strategy by incorporating the proportional intensity model,
which considered both operating time and maintenance activities [8]. Lin et al. proposed a
preventive opportunity maintenance method based on the Weibull distribution to minimize
power outage time in railway traction power supply systems [9]. Balushi et al. employed
Markov processes to analyze the maintenance parameters of power transformers, taking
into account various component combinations and multiple maintenance personnel [10].

To address the optimization of periodic imperfect maintenance for power transformers,
previous studies have identified common issues [2]:

1. Limited research on power transformers: The current research on periodic imperfect
maintenance for power systems primarily focuses on hydropower stations and wind
power, with limited studies on the optimization of periodic imperfect maintenance
strategies for power transformers.

2. Limited maintenance history data: Data on power transformers is often scarce, and the
same fault mode rarely repeats in the same equipment. This limitation makes it chal-
lenging to develop complex periodic maintenance strategies. Additionally, optimized
maintenance strategies usually apply to more common and simple maintenance tasks.
For example, there is an abundance of data available for common defects such as
indicator lights not working or minor oil leakage, while severe defects like fan motor
failures have limited or no data.

3. Static maintenance costs and benefits: Previous studies often assume constant costs
for maintenance tasks and pay less attention to how these costs change over time.

To address these issues, this paper considers the dynamic changes in maintenance
costs over time and introduces an imperfect maintenance improvement factor that accounts
for these changes with operating time. A maintenance interval optimization model is estab-
lished with reliability as a constraint. The sequential least squares programming method is
employed to solve the model. This paper proposes a transformer maintenance interval opti-
mization method that considers imperfect maintenance and dynamic costs. It dynamically
considers the maintenance cycle cost with limited maintenance data and optimizes the
maintenance interval for power transformers under different defect patterns. This method,
along with the findings of this paper, can be applied to the optimization of maintenance
strategies for power transformers owned by power companies of different scales.
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The structure of this paper is as follows: Section 2 discusses the relevant work on
periodic maintenance and imperfect maintenance. Section 3 introduces the dataset used in
this research. Section 4 presents the theoretical framework and steps of the transformer
maintenance interval optimization method based on imperfect maintenance factors and
considering reliability. Section 5 verifies the effectiveness of the method through a compari-
son of maintenance cases in a power grid in Inner Mongolia and draws relevant conclusions
based on the case results.

2. Related Works

Periodic imperfect maintenance is a widely adopted maintenance method that involves
performing imperfect maintenance at fixed time intervals. It can be categorized into two
main approaches: maximizing availability and minimizing maintenance costs.

2.1. Periodic Imperfect Maintenance to Maximize Availability

In the context of maximizing availability, Moghadam et al. proposed an extended
mixed-integer linear programming model that utilized information gap decision theory
(IGDT) to optimize the annual cost of power grid maintenance, reduce interruptions, and
improve network reliability. They applied this model to an actual distribution network in
Markazi Province, Iran [6].

Li et al. developed a more accurate meta-action unit periodic preventive maintenance
strategy using the generalized geometric process (GGP) method [7].

Zhao et al. incorporated imperfect maintenance issues into transformer condition-
based maintenance strategies and established a maintenance strategy based on the propor-
tional intensity model (PIM), considering both operating time and maintenance activities [8].

Lin et al. proposed a preventive opportunity maintenance (POM) method based on
the Weibull distribution to minimize power outage time in railway traction power supply
systems [9].

Balushi et al. analyzed the mean time between failures (MTBFs), availability in-
dex, and expected busy cycle of maintenance personnel for power transformers using
Markov processes, considering various component combinations and multiple mainte-
nance personnel [10].

Pereira et al. introduced an innovative preventive maintenance optimization approach
that considered the intervention level of maintenance activities as an independent variable,
aiming to minimize the total maintenance cost over a user-defined planning horizon [11].

2.2. Periodic Imperfect Maintenance to Minimize Maintenance Costs

With an increasing number of power transformers being put into use, periodic imper-
fect maintenance, aiming to minimize maintenance costs while ensuring the availability
specified by the industry, has become the main direction for optimizing maintenance
strategies for power transformers [12].

In the context of minimizing maintenance costs, Tsai et al. established and optimized
a periodic preventive maintenance model for critical components in electromechanical
systems using genetic algorithms (GAs) to maximize the unit cost life of the system while
maintaining its availability and avoiding unexpected failures [13].

Liu et al. proposed an optimal replacement strategy for multi-state systems under
periodic imperfect maintenance, using a non-homogeneous continuous-time Markov model
and a general generating function method to determine the optimal number of failures to
maximize long-term expected profit [14].

Melcher-Hernández et al. developed a fault occupancy rate (ROCOF) function based
on a two-parameter Weibull distribution to evaluate the impact of inadequate maintenance
measures on equipment reliability and determine the optimal maintenance interval and
frequency by minimizing the cost function [15].
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Zhang et al. developed a maintenance decision-making model based on life cycle
cost analysis for power transformers, aiming to select the best maintenance strategy that
balances reliability and economy [16].

Murugan et al. conducted a failure analysis of power transformers to identify root
causes and propose effective maintenance planning in electric utilities, using statistical
analysis and root cause analysis (RCA) [17].

Trappey et al. developed an intelligent engineering asset management system for
power transformer maintenance using principal component analysis (PCA) and a back-
propagation artificial neural network (BP-ANN) for real-time monitoring and fault predic-
tion [18].

Soodbakhsh et al. presented a robust reliability-based maintenance planning method
for power systems, prioritizing distribution network components using a weighted reliabil-
ity index and optimizing maintenance using an optimal bat algorithm method [19].

Xu et al. investigated the impact of imperfect repair on short-term power system
maintenance scheduling and proposed a condition-based maintenance optimization model
focusing on equipment deterioration failure [20].

Murugan et al. evaluated the health condition of in-service power transformers using
a Health Index (HI) approach, incorporating three key stages: input for health index
assessment, health index estimation, and output health index for the maintenance decision
process [21].

Kim et al. proposed a method based on a weighted reliability index for prioritizing
distribution network components and developed a lifetime efficiency index model and an
optimal bat algorithm method for power transformers, aiming to balance reliability and
maintenance costs [22].

Liang et al. optimized the periodic inspection of power transformers using a continu-
ous time Markov chain (CTMC) model, considering different types of failure rates [23].

Wei et al. proposed a preventive maintenance and replacement strategy for pho-
tovoltaic power systems based on reliability constraints, using an off-cycle incomplete
replacement maintenance model to minimize maintenance costs [24].

Wang et al. developed a dynamic imperfect preventive maintenance decision model
based on a general updating process, aiming to minimize maintenance costs while ensuring
the availability of wind turbines [25].

Dong et al. optimized maintenance strategies by maximizing expected profit within
each updating period, considering variable user demands and realistic component lifetimes
and repair times [26].

Wang et al. proposed an opportunistic conditional maintenance strategy for electri-
cal distribution systems (EDSs) based on the structural dependency problem of power
equipment, aiming to maximize the reliability of EDSs while reducing maintenance and
troubleshooting costs [27].

Li et al. optimized power system maintenance strategies through a genetic algorithm,
solving the trade-off problem between system maintenance risk and potential system fault
risk [28].

Yu et al. designed an optimal preventive maintenance algorithm based on the up-
date reward theorem, optimizing the maintenance plan of wind turbines and reducing
maintenance costs [29].

Bian et al. introduced variable weights based on lifecycle cost and retirement age to
select the optimal maintenance strategy for power transformers [30].

Wang et al. proposed a dynamic group maintenance strategy based on imperfect
maintenance models, considering the economic dependence between wind turbines in
wind farms [31].

Murugan et al. proposed a transformer maintenance method based on health index
assessment, helping maintenance personnel conduct early fault diagnosis and reduce
maintenance costs [32].



Appl. Sci. 2024, 14, 6845 5 of 22

Wang et al. introduced a two-stage framework for alternative planning, optimizing
asset intervention planning using a Monte Carlo program based on the probabilistic health
index (HI) method [33].

Zcan et al. developed an optimization model of maintenance strategy for large-scale
hydropower stations, considering multi-objective and multi-standard structures of complex
equipment [34].

Gong et al. proposed a dynamic preventive maintenance strategy for subway vehicle
traction systems, incorporating service age-decreasing factors and failure rate-increasing
factors into a new dynamic reliability model [35].

Our comprehensive analysis of recent literature on periodic imperfect maintenance
planning in the power industry reveals several trends and opportunities for improvement.
We evaluated these studies based on three critical aspects: consideration of small sample
scenarios, dynamic maintenance factors, and dynamic maintenance costs. The results of
this analysis are presented in Table 1.

Table 1. The comparison between different methods over the past 3 years.

Item Wei et al. [24] Pereira et al. [11] Murugan et al. [21] Soodbakhsh et al. [21] Kim et al. [22]

Case study object Photovoltaic
Power heat exchangers power transformer power network Substations

Small sample
data × × × × ×

Incomplete
maintenance
factor

√ √
×

√ √

Dynamic
maintenance cost × ×

√
×

√

Calculation and
optimization
method

Mixed fault
function

Maximum
Likelihood
Estimation
Genetic Algorithm

Weighted Health
Index

Optimal Bat
Algorithm
Particle Swarm
Optimization

Cox Proportional
Hazard Model
Least Absolute
Shrinkage
Selection
Operator
Regression

As evidenced by Table 1, while current research in periodic imperfect maintenance
often focuses on precise descriptions of effective age, there remain significant areas for
enhancement. We have identified three key aspects that warrant further investigation:

1. Dynamic increase in maintenance costs: Most studies prioritize optimizing lifespan
extension and maintenance intervals through factors like effective age, overlooking
the temporal variability of maintenance costs. For power transformers, the escalat-
ing failure rates with each maintenance cycle inevitably lead to increased costs in
subsequent maintenance periods. This dynamic cost structure is often neglected in
current models.

2. Limited maintenance history data: The scarcity of defect samples in long-lifespan
products like power transformers poses a significant challenge. Many studies fail to
address the practical difficulties engineers face when planning maintenance for such
equipment with limited high-quality historical data.

3. Variability of imperfect maintenance improvement factor: Current research often
assumes a constant degree of imperfect maintenance or focuses on minimal mainte-
nance scenarios. However, for power transformers, the efficacy of each maintenance
task varies over the equipment’s lifespan, a nuance that is frequently overlooked in
existing models.
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To address these gaps, we propose a novel approach that incorporates the dynamic
nature of maintenance costs over time and introduces an imperfect maintenance improve-
ment factor that accounts for varying maintenance effects. Our model aims to optimize
maintenance intervals by minimizing costs while maintaining reliability constraints. We
employ integer programming to solve this complex optimization problem.

In essence, we present a sophisticated transformer maintenance interval optimization
method that integrates imperfect maintenance considerations with dynamic cost structures.
This approach represents a significant advancement in maintenance planning for power
transformers, offering a more realistic and adaptable framework for industry practitioners
and researchers alike.

3. Data

Our study is based on an extensive dataset comprising defect records of 400 220 KV
oil-immersed main transformers operating in northern China from 1994 to September 2023.
This comprehensive dataset encompasses 86 distinct defect patterns, totaling 7202 records.
It is crucial to note that these transformers have been consistently operating under low-load
conditions, typically between 20% and 30% of their capacity, due to regulatory policies. Con-
sequently, the recorded data predominantly reflect defects rather than operational failures.

Each defect record in our dataset is rich in detail, containing information such as the
defective component, defect mode, defect number, converter number and model, defect
discovery time, equipment debugging time, and defect severity. We consider the time of
defect discovery as a close approximation of the actual defect occurrence time.

To complement this defect data, we have also compiled a comprehensive cost database.
This includes various maintenance and replacement costs for the main components and
their subcomponents, encompassing labor costs, material costs, mechanical costs, and
spare parts costs for the main body, cooling system, and other major components. These
costs have been adjusted for inflation to reflect current maintenance costs, allowing us to
calculate accurate preventive maintenance, corrective maintenance, and overhaul costs.

In our analysis, we observed that for the same defective component, the cost of
corrective maintenance remains relatively constant across different defect modes. To align
with the actual maintenance policies and requirements of power grid companies, we have
integrated different defect modes for each defective component. Furthermore, recognizing
the significant impact of defect severity on maintenance costs, we have further categorized
and statistically analyzed these integrated defect patterns based on the severity of each
defective component. This severity classification follows a three-tier system: “normal”,
“severe”, and “critical” [36]. This refined approach to data analysis and categorization
allows for a more nuanced and practical application of our maintenance optimization
model, taking into account both the technical aspects of defects and the economic realities
of maintenance operations.

While our analysis is based on data from power transformers in northern China, it is
important to emphasize that this approach serves primarily to validate the effectiveness
of our method and provide a more intuitive description of the calculation steps. The data
we have utilized represents the fundamental information typically collected by power
companies of various scales across different countries. Therefore, the methods and findings
presented in this paper have broad applicability for optimizing maintenance strategies of
power transformers globally.

4. Methods

We present a maintenance interval optimization model that considers equipment
reliability and imperfect maintenance. The overall framework of our method is illustrated
in Figure 1 and consists of the following key steps:

1. Distribution selection and parameter estimation: Based on our investigation, we
determined that the two-parameter Weibull distribution is most suitable for modeling
transformer defects. Given that some defect patterns in the dataset have limited
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samples, we employ small sample parameter estimation methods to fit the failure rate
function accurately.

2. Imperfect maintenance modeling: We make necessary assumptions and design a
time-varying imperfect maintenance improvement factor. This factor is incorporated
into the maintenance cost calculation, allowing the cost to dynamically change as the
maintenance cycle progresses. This approach forms the foundation for our periodic
imperfect maintenance strategy.

3. Optimization model development: We establish an optimization model with the
primary objective of minimizing maintenance costs while maintaining the failure rate
within acceptable constraints. To solve this model, we utilize the SLSQP (Sequential
Least Squares Programming) method, a robust optimization algorithm well-suited for
this type of problem.

4. Results and analysis: Through this process, we obtain the optimal maintenance
intervals for each defect pattern. We then conduct further analysis of these results to
derive insights and recommendations for practical implementation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 23 
 

1. Summary of Transformer Defect Data and Maintenance Cost Data

Defect modes integration 
by defective components 

Defective samples 
division by the severity of

 defects 

Maintenance cost data 
organization

2. Fitting and testing of defect distribution

Sampling algorithm based on Gibbs and Metropolis 
Hastings Parameter estimation of Weibull distribution

Q-Q plot goodness 
of fit test

3. Periodic Imperfect maintenance strategy and improvement factors

Dynamically changing with 
maintenance cycle

Incomplete maintenance 
improvement factor

Each dynamically changing over 
time 

The number of defects that occur 
during the maintenance cycle

4. Optimization model for maintenance intervals considering transformer reliability 
and imperfect maintenance

5. Case verification - Optimization of maintenance cycle for transformer strong oil 
circulation cooling system

Decomposition of defective 
components 

and fitting of defect distribution

Maintenance cycle 
optimization

Comparative analysis of 
maintenance costs

1 1

0 0

( ) ( )
si i

i i

i

jsT T js s m
i i sT T

t T
mn t dt dt
t t

δ
λ

+ +

− −

= −

 − ⋅ 
 = =
 
 
 


 ( )pm bi

i
pr

c
a
c

δ = ⋅

Periodic imperfect 
maintenance strategy

Minimize the lifespan
Total maintenance cost 

per unit time

The failure rate threshold of defective components 
within each maintenance cycle

is lower than the acceptable threshold of the customer

min  pm cm prC C C
NT

+ +

1 3

1 1
( 1) ( )

min  

N
s s

pm cm i pr
i s

NN c c n c
k

NT

−

= =

 − + ⋅ + ⋅  


Objective function Constraint condition

0

0

( , , )

     

     

1,2,

 

,

 

i
i i

i N

t T
TT
N

N N

λ δ λ

+

=

 ≤

 =


…

∈

0
0 0

( ) ( )min{ }i i if T f T
R R

λ
− +

= ， 1 1

0 0

( , , ) ( )

i

j
j m

i i

t T
mt T
t t

δ
λ δ = −

− ⋅
=



Correlation analysis 
between parameters and 

variables

λ(t)

λ0

Time(t)1h 2h 3h (N-2)h (N-1)h...

Failure
Imperfect maintenance
Overhaul

 
Figure 1. Overall framework. 

4.1. Modeling of Transformer Fault Distribution 
In order to establish transformer reliability constraints in the maintenance interval 

optimization model, it is necessary to obtain the distribution of transformer faults. The 
first failure time t of the transformer is a random variable. According to the law of large 
numbers in statistics, the more samples there are, the closer the statistical measures (sam-
ple mean, sample variance, etc.) and empirical distribution function ( )nF t  of the sample 
are to the characteristic parameters (expected value, variance, etc.) and probability distri-
bution function ( )F t  of the random quantity t. Furthermore, to obtain the most intuitive 
probability distribution of the defect mode in the transformer, it is necessary to obtain the 
accurate characteristic parameters and probability distribution function of t through pa-
rameter estimation. 

4.1.1. Determine The Type of Probability Distribution Function for Transformer Faults 
In the analysis of the distribution pattern of power equipment failure rate and life, 

commonly used statistical probability distribution functions include two-parameter 
Weibull distribution, three-parameter Weibull distribution, Gamma distribution, normal 
distribution, lognormal distribution, etc. Among them, the Weibull distribution has a 

Figure 1. Overall framework.

This comprehensive approach allows for a more realistic and dynamic representation
of maintenance processes, taking into account the complexities of equipment reliability
and the imperfect nature of maintenance activities. By considering these factors, our
model provides a more accurate and practical tool for optimizing maintenance intervals in
transformer systems.
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4.1. Modeling of Transformer Fault Distribution

In order to establish transformer reliability constraints in the maintenance interval
optimization model, it is necessary to obtain the distribution of transformer faults. The
first failure time t of the transformer is a random variable. According to the law of large
numbers in statistics, the more samples there are, the closer the statistical measures (sample
mean, sample variance, etc.) and empirical distribution function Fn(t) of the sample are
to the characteristic parameters (expected value, variance, etc.) and probability distribu-
tion function F(t) of the random quantity t. Furthermore, to obtain the most intuitive
probability distribution of the defect mode in the transformer, it is necessary to obtain
the accurate characteristic parameters and probability distribution function of t through
parameter estimation.

4.1.1. Determine the Type of Probability Distribution Function for Transformer Faults

In the analysis of the distribution pattern of power equipment failure rate and life,
commonly used statistical probability distribution functions include two-parameter Weibull
distribution, three-parameter Weibull distribution, Gamma distribution, normal distribu-
tion, lognormal distribution, etc. Among them, the Weibull distribution has a good fitting
performance for modeling transformer fault time, and the Weibull function model has
achieved good results in the cost analysis of transformers [37,38].

The cumulative fault probability distribution function of the dual parameter Weibull
distribution is shown in Equation (1), the fault probability density distribution function is
shown in Equation (2), and the fault rate function is shown in Equation (3).

F(t) = 1 − exp(−(
t
t0
)

m
) (1)

f (t) =
m
tm
0

tm−1 exp(−(
t
t0
)

m
) (2)

λ(t) =
f (t)

1 − F(t)
=

m
t0
(

t
t0
)

m−1
, t ≥ 0, m ≥ 0, t0 ≥ 0 (3)

In the formula, m is the shape parameter; t0 is the scale parameter; t is the running
time before the equipment malfunctions.

4.1.2. Distribution Fitting

In response to the problem of a small sample size of defects caused by the high relia-
bility of transformers, the Bayesian estimation method is used to estimate the small sample
parameters of the distribution function of the concerned defect modes, and Gibbs and
Metropolis-Hastings sampling algorithms are used to estimate the parameter values [39–41].
Here, taking the cooling components of the strong oil circulation cooling system in power
transformers as an example, the specific steps of distribution fitting calculation are given.

Step 1: Provide an initial parameter value m(0) and t(0)0

1. Based on the existing historical data shown in the table, provide an initial parameter

value m(0) and t(0)0 using expert experience
2. Based on the existing historical data shown in Table 2, provide an initial parameter

value using expert experience. Taking the oil leakage and leakage defect mode of the
cooler components in the strong oil circulation cooling system of power transformers
as an example, this type of fault is usually a general fault mode, and the total number
of occurrences of this fault is 128 according to statistics. Based on expert experience,
we can set m(0) = 50 and t(0)0 = 200.
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Table 2. Fault times of the coolers in the forced oil circulation cooling system.

NO. Fault Time (Days)

01–10 86 193 587 674 871 907 908 949 962 1282
11–20 1483 1587 1624 1638 1650 1747 1793 2022 2609 2626
21–30 2663 2672 2689 2692 2735 2748 2748 2748 2799 2924
31–40 2926 2969 2971 3058 3124 3124 3174 3229 3283 3283
41–50 3363 3380 3401 3454 3470 3521 3528 3560 3645 3678
51–60 3747 3815 3836 3855 3864 3876 3890 3906 3911 3970
61–70 4013 4034 4165 4184 4192 4275 4378 4454 4458 4514
71–80 4562 4569 4605 4639 4680 4754 4873 4878 4928 4936
81–90 4971 4989 5082 5089 5105 5181 5250 5264 5265 5355

91–100 5389 5405 5430 5440 5445 5534 5609 5623 5643 5700
101–110 5708 5738 5813 5842 5870 5887 5957 5988 6036 6075
111–120 6193 6212 6235 6235 6244 6254 6281 6315 6378 6426
121–128 6500 7965 8653 9710 10,446 11,053 11,345 11,402

Step 2: Sample parameter m(0) based on the given initial value of the parameter.

1. Based on the information of m, choose the recommended density function
m(1) ∼ N

(
µ1, σ2

1
)

2. Calculate the acceptance probability r of the M-H algorithm based on a posterior
distribution [42]:

r =
p
(

m(1) | x
)

J
(

m(0) | m(1)
)

J
(
m(1) | m(0)

)
p
(
m(0) | x

) (4)

where p(• | •) is a posterior distribution, and J(• | •) is the suggested density function.
3. Randomly select u ∼ uni f

(
0, 1

)
, if r > u, accept m(1), otherwise m(1) = m(0).

Step 3: Sample parameter t0 based on the given initial value of the parameter m(1), t(0)0 .

1. Based on the information of t0, choose the recommended density function
t0 ∼ N

(
µ2, σ2

2
)

2. Calculate the acceptance probability r of the M-H algorithm based on a posterior
distribution:

r =
p
(

t(1)0 | x
)

J
(

t(0)0 | t(1)0

)
J
(

t(1)0 | t(0)0

)
p
(

t(0)0 | x
) (5)

3. Randomly select u ∼ uni f
(
0, 1

)
, if r > u, accept t(1)0 , otherwise t(1)0 = t(0)0 .

Step 4: Iteratively calculate parameter estimates.

1. Use the extracted parameter values as the new initial sampling values and repeat Step
2 and Step 3 for 10,000 times.

2. Taking the initial value of the cooling component situation in Step 1, in the calculation
process of Steps 2 and Step 3, the acceptable probability r > u of the scale parameter
m appeared a total of 4667 times, while the acceptable probability r > u of the shape
parameter t0 appeared a total of 4345 times. After iteration in Steps 2 and Step 3, the
estimated parameters can be obtained, which are 2.2826 and 5227.6844, respectively.
The trajectory map and autocorrelation map are shown in Figures 2 and 3.
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Step 5: Goodness of fit test.

1. Perform goodness of fit tests on the estimated values m and t0 of the fitted parameters
and evaluate the fitting results using Q-Q plots [43].

2. Continuing the valuation obtained from the fourth case in step, the p-value of the
goodness of fit test is 0.0539. At a confidence level of 0.05, the goodness of fit test
did not reject the original hypothesis. As shown in Figure 4, except for a very small
number of samples, the fitted Weibull distribution and sample distribution tend to fall
on a straight line, indicating a good fit between the data and the Weibull distribution.
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4.2. Assumption of Maintenance Interval Optimization Model

Based on the actual work regulations and requirements of power grid maintenance,
establish the following model assumptions.

1. Corrective maintenance is carried out at each maintenance node (i.e., between two
maintenance cycles). Any defects/malfunctions that occur during the current mainte-
nance cycle are repaired at the next maintenance node, but corrective maintenance
does not change the failure rate and reliability;

2. Preventive maintenance is carried out at each maintenance node, and each preventive
maintenance is an imperfect repair. After preventive maintenance, the performance
of the equipment recovers to a younger time, but it is not the initial brand-new state
when the equipment is put into use;

3. Perform a major overhaul after every k maintenance cycle, and repair as new after
the overhaul;

4. The components have aging characteristics, and the failure rate increases with age,
while the reliability decreases with age;

5. The total lifespan of the transformer T0 = N · T, N is the number of maintenance
cycles within the lifespan, and T is the duration of each maintenance interval;

6. Because the shutdown caused by maintenance of the transformer does not affect the
power supply, the shutdown cost is 0;

7. Customers have an acceptable minimum level of unreliability Fj
0 under different

failure modes, and each failure mode is independent of each other.

4.3. Imperfect Maintenance Improvement Factor

This article uses the imperfect maintenance improvement factor to measure the effec-
tiveness of imperfect maintenance, and the effectiveness of each imperfect maintenance
varies. Specifically, this article introduces different imperfect maintenance improvement
factors in each maintenance cycle, thereby affecting the number of defect occurrences
within each maintenance cycle. The dynamically changing number of defect occurrences
affects the cost of corrective maintenance for each maintenance cycle, thereby dynamically
affecting the total maintenance cost [44–46].

According to the theory of imperfect equipment maintenance, if the total number of s-
level severity (s = 1 represents “average”, s = 2 represents “severe”, s = 3 represents “critical”)
defects that occur in a defective component of a transformer during the i-th maintenance
cycle is ns

i , which needs to be rounded up after calculation, Then the calculation formula is:

ns
i =


∫ T+

i

T−
i

λs
i (t)dt =

∫ T+
i

T−
i

ms

ts
0


t −

i
∑

j=1
δj · T

t0


ms−1

dt


, s = 1, 2, 3 ; i = 1, 2, . . . , N (6)

Among them, λs
i (t) represents the failure rate function of the s-level severe defect

of the defective component in the i-th maintenance cycle, T−
i is the start time of the i-th

maintenance cycle, T+
i is the end time of the i-th maintenance cycle, δi is the imperfect

maintenance improvement factor of the i-th maintenance cycle [47], and its expression is
as follows:

δi = (a ·
cpm

cpr
)

bi
(7)

In the above equation, a is the maintenance cost adjustment coefficient, 1 ≤ a ≤ cpr
cpm

, cpr

is the cost of a single major overhaul, and cpm is the cost of single preventive maintenance
of the component; b is an adjustment parameter for the frequency of imperfect preventive
maintenance, where 0 < b < 1.
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It should be noted that since a major overhaul after every k maintenance cycle can
repair the components associated with the defect mode as new, the failure rate function λi(t)
and its integral for the severity of the defect need to be updated after every k maintenance
cycle. If h =

⌊
N
k

⌋
, the following relationship exists during the calculation:

T−
1 = T−

k+1 = T−
2k+1 = ... = T−

hk+1 (8)

T+
1 = T+

k+1 = T+
2k+1 = ... = T+

hk+1 (9)

δ1 = δk+1 = δ2k+1 = ... = δhk+1 (10)

In summary, the schematic diagram of the imperfect maintenance strategy model
established in this article is shown in Figure 5.
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4.4. Optimization Model for Maintenance Interval Considering Transformer Reliability and
Imperfect Maintenance
4.4.1. The Total Maintenance Cost of a Transformer for a Defective Component

The total maintenance cost of a defective component in a transformer is composed of
the following equation:

Ctotal = Cpm + Ccm + Cpr (11)

Among them, Ctotal is the total maintenance cost of the transformer for the defective
component, Cpm is the total preventive maintenance cost for the defective component, Ccm
is the total corrective maintenance cost for the defective component, and Cpr is the total
overhaul cost for the defective component.

4.4.2. Preventive Maintenance Costs

The total preventive maintenance cost for a defective component of a transformer is
as follows:

Cpm = (N − 1)cpm (12)

cpm is the cost of a single preventive maintenance for the defective component.

4.4.3. Corrective Maintenance Costs

The total cost of corrective maintenance for a defective component of a transformer is
as follows [48]:

Ccm =
N−1

∑
i=1

3

∑
s=1

(cs
cm · ns

i ), i = 1, 2, . . . , N − 1 ; s = 1, 2, 3 (13)

Due to the significant difference in repair costs for transformer defects with differ-
ent severity levels, the repair maintenance cost under this defect mode is divided into
c1

cm (“general” defect single repair maintenance cost), c2
cm (“serious” defect single repair

maintenance cost), and c3
cm (“critical” defect single repair maintenance cost);
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4.4.4. Overhaul Cost

The total overhaul/replacement cost for a certain defect mode of the transformer is
as follows:

Cpr =

⌊
N
k

⌋
· cpr (14)

If a major overhaul/replacement is carried out after every k maintenance cycle, the
number of major overhauls within the lifespan of the transformer is

⌊
N
k

⌋
.

4.4.5. Maintenance Interval Optimization Model

The objective function is to minimize the maintenance cost per unit of time within
the lifespan of transformers, which is expressed in the following equation. The corrective
maintenance cost in the total maintenance cost takes into account the imperfect maintenance
improvement factor, which can provide a more accurate estimation of the number of
occurrences of defects of each severity in each maintenance cycle, making the results of the
optimization model more convincing [45].

min
Cpm + Ccm + Cpr

NT
(15)

and

min
(N − 1)cpm +

N−1
∑

i=1

3
∑

s=1
(cs

cm · ns
i ) +

⌊
N
k

⌋
· cpr

NT
(16)

The main constraint is that the unreliability of the defective component of the trans-
former during each maintenance cycle should be lower than a certain threshold F0.

Since the threshold provided by the power grid company is the unreliable threshold Fj
0

for each defect mode of the transformer, it is assumed that each defect mode is independent
of each other. By adding up the unreliable thresholds of all defect modes contained in the
target defect component, the unreliable threshold F0 for that defect component is obtained
as follows:

F0 =
n

∑
j=1

Fj
0 (17)

where n is the number of all possible defect modes that may occur in the defective com-
ponent. Also, due to R0 = 1 − F0 and the fact that the minimum value of the Weibull
distribution fault probability density function in any interval can only appear at both ends

of the interval, the constraint condition for λi
0 = min

{
f (T−

i )
R0

, f (T+
i )

R0

}
is as follows:


λi(t, δi, T) ≤ λi

0
T = T0

N
N ∈ N+

i = 1, 2, . . . , N (18)

Among them, λi(t, δi, T) = m
t0

 t−
i

∑
j=1

δj ·T

t0


m−1

represents the failure rate function of

the defective component in the i-th maintenance cycle.

5. Case Study
5.1. Case Calculation and Analysis

The forced oil circulation cooling system, a critical element of power transformers,
comprises five main components: fan, control box, cooler, heat sink (tube), and submersible
pump. Due to the negligible occurrence of defects in the heat sink (tube) over the nearly
30-year record period—with only one general defect that can be fully addressed during
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overhauls—we exclude this component from our analysis. Our optimization efforts focus
on the maintenance intervals for the fan, control box, cooler, and submersible pump.

Based on the user-provided data for the forced oil circulation cooling system and its
acceptable level of unreliability, we conducted a comprehensive analysis involving data
collation and failure rate conversion. The results of this analysis are presented in Table 3.
Currently, the system operates on a uniform maintenance interval of 720 h (equivalent to
30 days). Our analysis reveals significant discrepancies in component reliability under this
maintenance regime:

1. Some components, such as the control box with serious defects, exhibit failure
rates substantially below the acceptable threshold. This suggests potential over-
maintenance, leading to unnecessary resource expenditure.

2. Conversely, other components, notably the fan with serious defects, demonstrate
failure rates exceeding the acceptable limits. This indicates insufficient maintenance
under the current interval, potentially compromising system reliability and failing to
meet industry standards.

These findings highlight a critical imbalance in the current maintenance strategy. The
720-h uniform interval approach fails to account for the diverse reliability characteristics
of individual components, resulting in both over-maintenance and under-maintenance
scenarios within the same system.

Consequently, we conclude that there exists substantial room for optimization in
the maintenance planning of the forced oil circulation cooling system. A more nuanced,
component-specific approach to maintenance intervals could significantly enhance over-
all system reliability while potentially reducing unnecessary maintenance activities and
associated costs. This optimization opportunity underscores the need for a more sophisti-
cated, data-driven maintenance strategy that aligns more closely with the specific reliability
profiles of each component within the system.

Utilizing the systematically organized data from the forced oil circulation cooling
system, we first estimated the severity of defects for each component using Weibull distri-
bution parameters. The results of this fitting and testing process are presented in Table 4,
with the corresponding probability density distributions (PDFs) of faults illustrated in
Figure 6. Analysis of the distributions in Figure 6 reveals several key insights:

1. Component similarity: The majority of components exhibit remarkably similar distri-
butions across different severity levels. This similarity suggests that these components
share comparable temporal failure characteristics, with a propensity for failures to
occur in the early stages of operation. This finding has significant implications for
maintenance cycle planning, as it allows for the potential coordination of maintenance
activities across multiple components, thereby reducing unnecessary interventions
and optimizing resource allocation.

2. Anomalous behavior: Despite the general trend, a small subset of components, no-
tably the cooler (as depicted in Figure 6c), demonstrates significant deviations in
their distribution patterns under critical conditions. These deviations are particu-
larly pronounced when compared to the distributions observed for common and
severe defects.

3. Cooler-specific insights: The distribution curve for critical defects in the cooler exhibits
a distinct right-skew, approximating a normal distribution. This characteristic sug-
gests that critical defects in the cooler tend to manifest later in the operational lifecycle.
Consequently, maintenance strategies for the cooler should emphasize prevention
and inspection protocols during the later stages of operation.
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Table 3. Probability of component failures and maintenance costs during the original maintenance interval of a strong oil circulation cooling system.

Defective
System

Defective
Components

Total
Number of
Defects W

Severity
j

First Failure
Time (days)

Number of
Defects wj

Defect
Probability
Proportion

Pj

Acceptable
Failure

Probability
F0

Acceptable
Failure Rate

λi
0

Actual Failure
Rate λ

Cpm(¥) Ccm(¥)

Cooling
system (strong
oil circulation)

Fan 711
serious 237 275 0.386779 0.0225 0.00075 0.004219 941.29 100,000

commonly 292 436 0.613221 0.1725 0.00575 0.003425 20.32 50,000

Control box 243
serious 2653 20 0.082305 0.2750 0.000917 0.000377 1877.22 100,000

commonly 347 223 0.917695 0.2975 0.005333 0.002882 455.47 50,000

cooler 183

critical 3063 1 0.005464 0.0125 0.000417 0.000326 3765.15 100,000

serious 653 54 0.295082 0.025 0.000833 0.001531 3765.15 50,000

commonly 86 128 0.699454 0.25 0.008333 0.011628 3765.15 30,000

Submersible
oil pump 278

critical 3918 6 0.021583 0.0075 0.00025 0.000255 100,000 200,000

serious 822 22 0.079137 0.0425 0.001417 0.001217 638.38 100,000

commonly 278 252 0.906475 0.08 0.002667 0.003597 13.7 50,000
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Table 4. Parameter estimation table for the defect mode distribution of each component.

Defective
System

Defective
Components Severity Fit Value m Fit Value t0 Fit Value p

Cooling
system

(strong oil
circulation)

Fan
serious 2.5015 3574.2238 0.0902

commonly 2.6389 4967.3247 0.0613

Control box
serious 2.4655 5485.2396 0.5002

commonly 2.5912 5712.4332 0.1327

cooler
critical 3.8266 7961.4850 0.7721

serious 2.2119 5221.8332 0.1170

commonly 2.2826 5227.6844 0.0539

Submersible
oil pump

critical 4.6117 6287.6012 0.3421

serious 2.3529 4906.7916 0.5605

commonly 3.8059 4717.6453 0.0801

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 23 
 

for maintenance cycle planning, as it allows for the potential coordination of mainte-
nance activities across multiple components, thereby reducing unnecessary interven-
tions and optimizing resource allocation. 

2. Anomalous behavior: Despite the general trend, a small subset of components, nota-
bly the cooler (as depicted in Figure 6c), demonstrates significant deviations in their 
distribution patterns under critical conditions. These deviations are particularly pro-
nounced when compared to the distributions observed for common and severe de-
fects. 

3. Cooler-specific insights: The distribution curve for critical defects in the cooler exhib-
its a distinct right-skew, approximating a normal distribution. This characteristic 
suggests that critical defects in the cooler tend to manifest later in the operational 
lifecycle. Consequently, maintenance strategies for the cooler should emphasize pre-
vention and inspection protocols during the later stages of operation. 
These findings underscore the importance of a nuanced, component-specific ap-

proach to maintenance cycle planning. While the similarity in distribution patterns for 
most components allows for some degree of standardization in maintenance schedules, 
the unique behavior of components like the cooler necessitates tailored strategies. By in-
corporating these insights into maintenance planning, it becomes possible to optimize re-
source allocation, enhance system reliability, and potentially extend the operational 
lifespan of the cooling system as a whole. 

Table 4. Parameter estimation table for the defect mode distribution of each component. 

Defective System Defective Components Severity Fit Value m Fit Value t0 Fit Value p 

Cooling system (strong oil 
circulation) 

Fan 
serious 2.5015 3574.2238 0.0902 

commonly 2.6389 4967.3247 0.0613 

Control box 
serious 2.4655 5485.2396 0.5002 

commonly 2.5912 5712.4332 0.1327 

cooler 
critical 3.8266 7961.4850 0.7721 
serious 2.2119 5221.8332 0.1170 

commonly 2.2826 5227.6844 0.0539 

Submersible oil pump 
critical 4.6117 6287.6012 0.3421 
serious 2.3529 4906.7916 0.5605 

commonly 3.8059 4717.6453 0.0801 
 

  
(a) (b) 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 23 
 

  
(c) (d) 

Figure 6. The probability density function of the failure of various components in a strong oil 
circulation cooling system: (a) PDF of the fan; (b) PDF of the control box; (c) PDF of the cooler; (d) 
PDF of the submersible oil pump. 

Based on the parameters derived from the fitted Weibull distribution and taking into 
account the dynamic imperfect maintenance optimization factors, the aforementioned 
maintenance interval optimization model was formulated. Employing the Sequential 
Least Squares Programming (SLSQP) algorithm [49,50], and comparing it with the actual 
maintenance interval plan of 720 h, a maintenance schedule spanning 9 years after opera-
tion (within a single major overhaul cycle) was devised, as depicted in Figure 7. This 
schedule comprises a total of 5 preventive maintenance plans, which are categorized as 
follows: (a) actual scenario, (b) fan, (c) control box, (d) cooler, and (e) submersible pump. 
It is observed that, by incorporating the aspects of imperfect maintenance enhancement, 
the overall number of maintenance plans within a single overhaul cycle is reduced, and 
the frequency progressively increases over time, thereby aligning more effectively with 
the aging characteristics of long-life products such as power transformers. Furthermore, 
due to the shape parameter m and scale parameter t0 of the control box being virtually 
identical to those of the cooler under both normal and severe conditions, after applying 
the rounding-up procedure as per Formula 6, we found that the maintenance interval 
plans for (c) and (d) in Figure 7 are found to be the same. 

 
(a) 

 
(b) 
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These findings underscore the importance of a nuanced, component-specific approach
to maintenance cycle planning. While the similarity in distribution patterns for most com-
ponents allows for some degree of standardization in maintenance schedules, the unique
behavior of components like the cooler necessitates tailored strategies. By incorporating
these insights into maintenance planning, it becomes possible to optimize resource allo-
cation, enhance system reliability, and potentially extend the operational lifespan of the
cooling system as a whole.
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Based on the parameters derived from the fitted Weibull distribution and taking into
account the dynamic imperfect maintenance optimization factors, the aforementioned
maintenance interval optimization model was formulated. Employing the Sequential
Least Squares Programming (SLSQP) algorithm [49,50], and comparing it with the actual
maintenance interval plan of 720 h, a maintenance schedule spanning 9 years after operation
(within a single major overhaul cycle) was devised, as depicted in Figure 7. This schedule
comprises a total of 5 preventive maintenance plans, which are categorized as follows:
(a) actual scenario, (b) fan, (c) control box, (d) cooler, and (e) submersible pump. It is
observed that, by incorporating the aspects of imperfect maintenance enhancement, the
overall number of maintenance plans within a single overhaul cycle is reduced, and
the frequency progressively increases over time, thereby aligning more effectively with
the aging characteristics of long-life products such as power transformers. Furthermore,
due to the shape parameter m and scale parameter t0 of the control box being virtually
identical to those of the cooler under both normal and severe conditions, after applying the
rounding-up procedure as per Formula 6, we found that the maintenance interval plans for
(c) and (d) in Figure 7 are found to be the same.

1 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

1 
 

 
(a) 
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(c) 

 
(d) 

 
(e) 

 
Figure 7. Comparison of maintenance interval planning for cooling system components under a
single overhaul cycle: (a) actual cooling system maintenance interval under a single overhaul cycle;
(b) maintenance interval of fan components under a single overhaul cycle; (c) maintenance interval of
control box components under a single overhaul cycle; (d) maintenance interval of cooler components
under a single overhaul cycle; (e) maintenance interval of submersible oil pump components under a
single overhaul cycle.
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The cost comparison before and after the optimization of the maintenance cycle is
presented in Table 5. Compared to the actual maintenance plan cost under the 720-h cycle, it
is evident that the maintenance cost for the strong oil circulation cooling system of a single
power transformer has been reduced from the original CNY 1,980,689 to CNY 1,159,816 over
one major overhaul cycle. This represents a significant reduction of 41.443%. Importantly,
this cost reduction has been achieved while ensuring that the failure rates for defect modes
across all severity levels remain within acceptable ranges.

Table 5. Comparison of maintenance costs before and after optimization of the maintenance cycle.

Defective
System

Defective
Components

Number of
Maintenance

Intervals

Average
Interval

Time (Days)

Maintenance Cost before
Optimization (¥)

Optimized Maintenance
Cost (¥)

Reparative
Maintenance

Costs

Preventive
Maintenance

Costs

Reparative
Maintenance

Costs

Preventive
Maintenance

Costs

Cooling
system

(strong oil
circulation)

Fan 7 52.14 123,250 24,525 112,500 11,605

Control box 9 40.56 32,875 299,751 28,750 18,312

Cooler 9 40.56 16,600 519,385 15,400 228,049

Submersible
oil pump 10 36.5 40,000 410,385 32,875 198,407

Overhaul cost 513,918

Total maintenance cost 1,980,689

5.2. Parameter Analysis

We analyzed the relationships between maintenance cost and maintenance cycle, as
well as between acceptable failure rate and maintenance cycle, in the maintenance interval
optimization model. As illustrated in Figure 8, the initial growth rate of maintenance costs
was relatively high. However, as the number of maintenance cycles increased, the growth
rate of maintenance costs decelerated and began to increase uniformly with the maintenance
cycle. Figure 9 demonstrates that as the number of maintenance cycles increased, the failure
rate continuously decreased, with the rate of decrease gradually declining.
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By examining the cost changes in Figure 8 and correlating them with the failure
efficiency curve in Figure 9, we can draw the following conclusions: Initially, the total
maintenance cost increased rapidly due to a higher acceptable failure rate λ, longer intervals
for imperfect maintenance, and a predominance of corrective maintenance. This resulted
in faster growth of total maintenance costs. Subsequently, as the acceptable failure rate λ

gradually decreased, the tolerance for product failure diminished. Consequently, imperfect
maintenance intervals continued to shorten, and corrective maintenance decreased while
preventive maintenance became dominant. This shift led to a slower and more constant
growth rate in total maintenance costs.
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6. Conclusions

We propose an optimization method for maintenance intervals constrained by failure
rate, taking into account imperfect maintenance factors. This approach addresses the
lack of maintenance historical data and non-dynamic maintenance costs in current power
industry maintenance planning. The method begins by modeling the fault distribution of
power transformers using a two-parameter Weibull distribution. Bayesian methods based
on Gibbs and M-H sampling are employed to fit the distribution parameters of power
transformers, largely solving the problem of Weibull distribution parameter estimation
under small sample fault data of transformers. The estimated parameters are evaluated
using Q-Q diagrams and other methods, with results indicating a good fitting effect suitable
for calculating the number of failures in subsequent maintenance interval optimization.

In the maintenance interval optimization model, an imperfect maintenance improve-
ment factor that dynamically changes as the maintenance cycle progresses is introduced.
This allows for dynamic consideration of maintenance costs as the number of repairs in-
creases, more accurately reflecting the maintenance interval of long-life products such as
power transformers under imperfect maintenance conditions. The objective function aims
to minimize the maintenance cost per unit time during the transformer’s life cycle. When
constructing the objective function, the change in the severity of defect modes on the cost
of corrective maintenance is considered, and a maintenance interval optimization model is
established with fault rate as a constraint.

The method was validated on the strong oil circulation cooling system of a 220 KV
oil-immersed main transformer in the northern power grid of China. The maintenance cost
of a single power transformer’s strong oil circulation cooling system was reduced from
CNY 1,980,689 to CNY 1,159,816.

As shown in Table 6, we compared our approach with selected publications from the
past three years. This comparison demonstrates that our method not only integrates the
relationship between dynamic maintenance costs and imperfect maintenance factors but
also accounts for parameter identification in small sample sizes. This allows engineers to
develop economically viable plans even with limited sample data.

Our method establishes a more scientific maintenance cycle for transformers at the
subsystem level, significantly reducing maintenance labor and costs throughout the lifespan
of transformers. The data required for this method is fundamental information that should
be routinely recorded in the power industry’s maintenance practices, including defect
time, defect type, repair cost, and unreliability. Consequently, this approach applies to
optimizing the maintenance cycle of power transformers in various countries and regions.
The cases presented in studies [51,52] serve as examples of this applicability.

The method’s effectiveness in reflecting the dynamic nature of maintenance costs
is primarily based on the number of defects occurring during the maintenance cycle.
However, it is important to note that additional factors, such as inflation of maintenance
and replacement costs over time, should also be taken into consideration for a more
comprehensive analysis.
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Table 6. The comparison between different kinds of literature and ours.

Item This
Paper Wei et al. [24] Pereira et al.

[11]
Murugan et al.

[21]
Soodbakhsh

et al. [19] Kim et al. [22]

Case study
object

Power
transformer

Photovoltaic
Power heat exchangers power

transformer power network Substations

few-sample
data

√
× × × × ×

dynamic
imperfect
maintenance
factions

√ √ √
×

√ √

dynamic
maintenance
cost

√
× ×

√
×

√

Calculation and
optimization
method

Bayes
Metropolis-
Hastings
Improvement
Factor
SLSQP

Mixed fault
function

Maximum
Likelihood
Estimation
Genetic
Algorithm

Weighted
Health Index

Optimal Bat
Algorithm
Particle Swarm
Optimization

Cox
Proportional
Hazard Model
Least Absolute
Shrinkage
Selection
Operator
Regression

This approach can be particularly valuable for power utilities and maintenance plan-
ners worldwide, as it offers a robust framework for optimizing maintenance schedules
while accounting for the specific operational conditions and economic factors of different
regions. By implementing this method, organizations can potentially achieve substantial
cost savings and improved reliability in their transformer maintenance programs.

Future research could focus on incorporating additional economic factors and re-
fining the model to account for regional variations in maintenance practices and cost
structures. This would further enhance the method’s applicability and accuracy across
diverse global contexts.
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planning using probabilistic health indices. Int. J. Electr. Power Energy Syst. 2024, 157, 109854. [CrossRef]

34. Polat, O.; Kalayci, C.B.; Mutlu, Z.; Gupta, S.M. A two-phase variable neighbourhood search algorithm for assembly line worker
assignment and balancing problem type-II: An industrial case study. Int. J. Prod. Res. 2016, 54, 722–741. [CrossRef]

35. Gong, Q.; Yang, L.; Li, Y.; Xue, B. Dynamic Preventive Maintenance Optimization of Subway Vehicle Traction System Considering
Stages. Appl. Sci. 2022, 12, 8617. [CrossRef]

36. Rezaei, A.; Shafei, A.P.; Abedi, S.M.; Akhavein, A.; Allahyari, M. A Study on Transformer Aging Evaluation Function, Mode
of Insulation Inadequacy, and the Formation of a Corresponding Markov Model. In Proceedings of the 2024 28th International
Electrical Power Distribution Conference (EPDC), Zanjan, Iran, 23–25 April 2024.

37. Attanayake, A.M.S.R.H.; Ratnayake, R.M.C. Digitalization of Distribution Transformer Failure Probability Using Weibull Ap-
proach towards Digital Transformation of Power Distribution Systems. Future Internet 2023, 15, 45. [CrossRef]

38. Zheng, Z.; Zhou, Y.; Wang, Q.; Wang, J.; Huang, Y. Research on transformer life cycle cost based on cuckoo optimization algorithm.
Power Syst. Prot. Control 2019, 47, 49–55.

39. Nariswari, R.; Pudjihastuti, H. Reliability Analysis of Distribution Transformer with Bayesian Mixture and Cox Regression
Approach. Procedia Comput. Sci. 2021, 179, 305–312. [CrossRef]

40. Peyghami, S.; Wang, Z.; Blaabjerg, F. A Guideline for Reliability Prediction in Power Electronic Converters. IEEE Trans. Power
Electron. 2020, 35, 10958–10968. [CrossRef]

41. Abud, T.P.; Augusto, A.A.; Fortes, M.Z.; Maciel, R.S.; Borba, B.S. State of the art Monte Carlo method applied to power system
analysis with distributed generation. Energies 2022, 16, 394. [CrossRef]

42. Foros, J.; Istad, M. Health Index, Risk and Remaining Lifetime Estimation of Power Transformers. IEEE Trans. Power Deliv. 2020,
35, 2612–2620. [CrossRef]

43. Reddy, G.H.; Koundinya, A.N.; Raju, M.; Gope, S.; Behera, C. Lifetime Estimation of Electrical Equipment in Distribution system
using Modified 3-Parameter Weibull Distribution. In Proceedings of the 2021 International Conference on Design Innovations for
3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 10–11 June 2021; pp. 21–26.

44. Shweta Agarwal, S.B.S. Reliability Analysis of Periodically Inspected Systems under lmperfect Preventive aintenance. Reliab.
Theory Appl. 2021, 16, 69–81.

45. Kelash, E.F.; Abdel-Raouf, O.; Ismail, H.N.A.; Elsisy, M.A. A New Coalition Formation Approach for Power Losses Reduction in
Electrical Power Micro-Grids. Int. J. Comput. Inf. 2020, 7, 55–71. [CrossRef]

46. Huang, W.; Shao, C.; Dong, M.; Hu, B.; Zhang, W.; Sun, Y.; Xie, K.; Li, W. Modeling the Aging-dependent Reliability of
Transformers Considering the Individualized Aging Threshold and Lifetime. IEEE Trans. Power Deliv. 2022, 37, 4631–4645.
[CrossRef]

47. Martinez-Monseco, F.J. An approach to a practical optimization of reliability centered maintenance. Case study: Power transformer
in hydro power plant. J. Appl. Res. Technol. Eng. 2020, 1, 37–47. [CrossRef]

48. Wang, D.; Qi, Q.; Wang, Z.; Marshall, P. Nonparametric approach enhancing ageing assessment of power transformers. In
Proceedings of the IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10
September 2020; pp. 1–4.

49. Geng, S.; Wang, X. Predictive maintenance scheduling for multiple power equipment based on data-driven fault prediction.
Comput. Ind. Eng. 2022, 164, 107898. [CrossRef]

50. Wang, W.; Wang, L.; Li, J. Optimization of maintenance interval based on equal deterioration rate theory. In Proceedings of the
IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020;
pp. 1840–1844.

51. Gui, F.; Chen, H.; Zhao, X.; Pan, P.; Xin, C.; Jiang, X. Enhancing Economic Efficiency: Analyzing Transformer Life-Cycle Costs in
Power Grids. Energies 2024, 17, 606. [CrossRef]

52. Campanhola, F.P.; Prediger, D.L.; Schaefer, J.L.; Marchesan, T.B.; Siluk, J.C.M. Methodology for Cost Analysis of the Unavailability
of Power Transformers in Brazilian Substations. Electr. Power Compon. Syst. 2024, 3, 414–425. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2022.111311
https://doi.org/10.1016/j.engfailanal.2018.10.011
https://doi.org/10.1016/j.ijepes.2024.109854
https://doi.org/10.1080/00207543.2015.1055344
https://doi.org/10.3390/app12178617
https://doi.org/10.3390/fi15020045
https://doi.org/10.1016/j.procs.2021.01.010
https://doi.org/10.1109/TPEL.2020.2981933
https://doi.org/10.3390/en16010394
https://doi.org/10.1109/TPWRD.2020.2972976
https://doi.org/10.21608/ijci.2020.35090.1024
https://doi.org/10.1109/TPWRD.2022.3152745
https://doi.org/10.4995/jarte.2020.13740
https://doi.org/10.1016/j.cie.2021.107898
https://doi.org/10.3390/en17030606
https://doi.org/10.1080/15325008.2023.2222019

	Introduction 
	Related Works 
	Periodic Imperfect Maintenance to Maximize Availability 
	Periodic Imperfect Maintenance to Minimize Maintenance Costs 

	Data 
	Methods 
	Modeling of Transformer Fault Distribution 
	Determine the Type of Probability Distribution Function for Transformer Faults 
	Distribution Fitting 

	Assumption of Maintenance Interval Optimization Model 
	Imperfect Maintenance Improvement Factor 
	Optimization Model for Maintenance Interval Considering Transformer Reliability and Imperfect Maintenance 
	The Total Maintenance Cost of a Transformer for a Defective Component 
	Preventive Maintenance Costs 
	Corrective Maintenance Costs 
	Overhaul Cost 
	Maintenance Interval Optimization Model 


	Case Study 
	Case Calculation and Analysis 
	Parameter Analysis 

	Conclusions 
	References

