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Abstract: Selective laser melting (SLM) is a rapidly evolving technology that requires extensive knowl-
edge and management for broader industrial adoption due to the complexity of phenomena involved.
The selection of parameters and numerical analysis for the SLM process are both costly and time-
consuming. In this paper, a three-dimensional radial basis function-finite difference (RBF-FD) meshless
model is introduced to accurately and efficiently simulate the molten pool size and temperature dis-
tribution during the SLM process for austenitic stainless steel (AISI 316L). Two different volumetric
moving heat source models were presented, namely the ray-tracing method heat source model and
the double-ellipsoidal shape heat source model. The temperature-dependent material properties and
phase change process were also considered, based on experiments and effective models. Results of the
model for the molten pool size were validated with those of the literature. The proposed approach
can be used to predict the effect of different laser power and scan speed on the molten pool size and
temperature gradient along the depth direction. The result reveals that the depth of the molten pool is
more sensitive to laser power than scan speed. Under the same scan speed, a 22% change in laser power
(45 ± 10 W) affects the maximum temperature proportionally by about 9%. The developed algorithm is
computationally efficient and suitable for industrial applications.

Keywords: selective laser melting (SLM); meshless method; radial basis function-finite difference
(RBF-FD); thermal analysis; molten pool; phase change

1. Introduction

Selective laser melting (SLM), known as direct metal laser melting or laser powder bed
fusion, provides significant potential for the direct fabricating of complex three-dimensional
structures. Unlike selective laser sintering, SLM involves the complete melting and so-
lidification of metal materials. Various thermal–physical phenomena and morphologies
change when a laser beam irradiates the powder layer [1,2]. Initially, part of the powder
layer melts when the temperature reaches the melting point as the part has been heated.
Subsequently, the molten part solidifies as the temperature falls when the laser beam moves
away. During the SLM process, heat transfer mechanisms such as heat conduction between
powder particles and heat loss by convection and radiation on the surface are involved.
Fluid dynamics such as the surface tension effect, recoil pressure, and the Marangoni
convection will occur [3]. Phase transformations, including melting and fusion of powder
particles, formation and solidification of the molten pool, and evaporation at the liquid–gas
interface, were considered by [4,5]. Boley et al. [6] and Badrossamay and Childs [7] also
considered penetration phenomena such as spatial distribution and absorption of laser
radiation in the powder. Furthermore, the transient physical behavior during the SLM
process is significantly governed by interdependent process parameters: laser-related pa-
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rameters, scan-related parameters, powder-related parameters, and temperature-related
parameters [8].

In practice, the processing parameters applied to a specific case are provided by the
material suppliers, obtained through trial procedures and experience. To reduce the cost
of the trial process, numerical approaches can be used. Owing to the complexity of the
SLM process, many numerical models with approximations and assumptions have been
proposed to simplify and avoid time-consuming simulations. Matsumoto et al. [9] used
two-dimensional finite element methods for heat conduction and elastic deformation to
calculate the temperature and stress distributions of a single metallic layer formed on the
powder bed, where the whole area was treated as continuous. Gusarov et al. [10] proposed
a model for coupled radiative and conductive heat transfer with an effective volumetric
heat source estimated from laser radiation scattering and absorption in a powder layer.
Differences in thermal conductivity between the powder bed and dense material were also
considered. Hussein et al. [11] provided a non-linear three-dimensional transient model
based on a sequentially coupled thermo-mechanical field analysis code developed in the
ANSYS parametric design language (APDL). It revealed that the cyclic melting and cooling
rates resulted in high von Mises stresses in the product.

Dai and Gu [12] treated the powder bed as a continuum without the effect of dis-
crete powder particles. The formation process of the continuous molten pool, where the
thermo-capillary force and the recoil pressure are induced by evaporation, were studied by
commercial finite volume method software. Khairallah et al. [13] built fine-scale numerical
models with ALE3D, where a laser-ray model was applied, and the powder layer was pre-
sumed to be homogeneous bulk materials with effective powder-layer material properties.
Tran and Loa [14] proposed a volumetric heat source model that viewed the powder bed as
an optical medium, and the laser heat source was assumed to be absorbed gradually along
the depth of the powder layer, derived by the Monte Carlo method. A thermal model was
developed on Ansys Additive Science to simulate the SLM of a single bead by [15]. The
lack of fusion and keyhole defects, which were determined using the calculated melt pool
dimensions, were discussed.

In this paper, a transformation is introduced to describe the model of a powder bed
and heat source in a coordinate system based on a constant moving heat source instead
of a conventional fixed coordinate system. The numerical approach of a meshless method
called the radial basis function-generated finite difference (RBF-FD) method [16–18] was
applied, which has the advantage of solving complex-shaped domains more efficiently
while maintaining precision. The resulting model is beneficial to a pre-investigation of the
influence of process parameters, including laser power, scanning speed, and spot diameter,
on molten pool size in the SLM process.

2. SLM Process Modeling in Moving Coordinate System
2.1. Assumptions

Without losing generality, the assumptions for the complex SLM process are as follows.

• The heat loss from the surface is by radiation and convection only.
• The energy equation of the molten pool is considered in the numerical analysis, but

the fluid dynamics are not.
• The material properties are assumed to be temperature dependent. Phase transfor-

mation, such as melting and solidification, are discussed through modified thermal
properties [1].

• Phenomena such as vaporization, surface tension effect, recoil pressure, and the
Marangoni convection are not included in this study.

2.2. Governing Equations

Consider the SLM process shown in Figure 1. An effective volumetric heat source
is required instead of surface heat flux on the boundary to accurately predict the size of
the molten pool. Moreover, to account for the moving heat source, the coordinate system
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transforms from the x, y, and z fixed coordinate system to the ξ, y, and z coordinate system
according to a constant moving heat source by the transformation, as shown in Equation (1)

ξ = x − vt (1)

where v is the scan speed of the laser (mm/s).
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Using the abovementioned transformation, the three-dimensional heat transfer equa-
tion of the system shown in Figure 1 can be rewritten as Equation (2) for the moving
coordinate system

ρc
(

∂T
∂t

− v
∂T
∂ξ

)
=

∂

∂ξ

(
k

∂T
∂ξ

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ Q(ξ, y, z) (2)

where ρ is the material density
(
kg/m3); c is the heat capacity (J/kgK); t is the time (s);

ξ, y, and z are the coordinates according to a constant moving heat source (µm); k is the
thermal conductivity (W/mK); Q(x, y, z, t) is the volumetric moving heat sources per unit
volume

(
W
m3

)
; and T is the current temperature (K).

2.3. Volumetric Heat Source Models

Heat source models used in the SLM process are based on either the geometrically
modified approach or the absorption coefficient profile approach. In the geometrically
modified method, different geometric shapes are used to simulate the actual shape of the
heat source. On the other hand, the heat source models are not constrained in specific
geometries using the absorption coefficient profile approach, where a general form of the
heat source is formed by a two-dimensional Gaussian distribution on the top surface while
the laser energy is absorbed along the depth of the powder bed based on the absorption
coefficient functions.

In this study, we will study two types of volumetric heat source models, which are
the double-ellipsoidal shape heat source model and the ray-tracing method heat source
model, as shown in Figure 2. They belong to the geometrically modified approach and the
absorption coefficient profile approach, respectively.
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• Ray-tracing method heat source model (I)

The ray-tracing model uses an absorption coefficient profile approach, where the laser
energy is absorbed gradually along the depth of the powder bed. This method accounts
for the optical properties of the powder bed, leading to a more accurate representation of
laser energy distribution within the material. It can capture complex interactions between
the laser and the powder, resulting in more precise temperature gradients and molten
pool shapes. As shown in Figure 2a, Tran and Loa [14] applied a powder-bed model with
randomly distributed particles and calculated the absorption coefficient profile function by
Monte Carlo ray-tracing simulations. The volumetric heat source model can be represented
as Equation (3) with a moving coordinate system

Q(ξ, y, z) =
2P

πr02 exp
[
−2

ξ2 + y2

r02

]
· f (z) (3)

where P is the power of the stationary laser source (W), f (z) = dβ/dz is the absorption
coefficient function (1/µm) derived by the Monte Carlo ray-tracing simulation, and r0 is
the radius of the laser beam (µm).

• Double-ellipsoidal shape heat source model (II)

The double-ellipsoidal shape model uses a geometrically modified approach, where
the heat source is represented by a fixed geometric shape (double-ellipsoid). While simpler
and computationally efficient, it may not well capture the detailed absorption and scattering
effects of the laser within the powder bed. This can lead to less accurate predictions of
the temperature distribution and molten pool dimensions. As shown in Figure 2b, the
ellipsoidal distribution is introduced by Goldak et al. [19] with semi-axes a, b, and c and
the center at the reference coordinate origin. The volumetric heat source model can be
described as Equation (4) in a moving coordinate system

Q(ξ, y, z) =
6
√

3Pβ

bcπ
√

π
·



f f
a f

exp
[
−3

(
ξ2

a f
2 +

y2

b2 + z2

c2

)]
f or ξ > 0

fr
ar

exp
[
−3

(
ξ2

ar2 +
y2

b2 + z2

c2

)]
f or ξ < 0

(4)
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where f f = 2a f /(a f + ar

)
, fr = 2ar/(a f + ar

)
, and f f + fr = 2.

2.4. Initial and Boundary Conditions

The initial condition of the temperature distribution in the powder bed at time t = 0 is
expressed as Equation (5)

T(ξ, y, z)|t=0 = T0 (ξ, y, z) ∈ Ω (5)

where T0 is the ambient temperature (K) and Ω is all the domains.
The boundary conditions at the top surface of the powder bed are expressed as

Equation (6), the symmetry surface is expressed as Equation (7), and the other surfaces are
expressed as Equation (8)

k
∂T
∂z

= qs − h(T − T0)− σε
(

T4 − T0
4
)

(ξ, y, z) ∈ top o f Γ (6)

∂T
∂y

= 0 (ξ, y, z) ∈ rear side o f Γ (7)

T(ξ, y, z) = T0 (ξ, y, z) ∈ others Γ (8)

where qs is the effective laser heat flux on the top of surface
(
W/m2), h is the coefficient

of the convection
(
W/m2K

)
, σ is the Stefan–Boltzmann constant

(
W/m2K4

)
, ε is the

emissivity, and Γ is the boundary of Ω.

2.5. Material Properties

• Thermal conductivity

In this study, we used AISI 316L stainless steel as our material. Two states of AISI
316L, the powder state and the solidified state, were considered in this simulation. Gusarov
et al. [10] proposed a model to determine the effective thermal conductivity of packed
powder beds. They found that the effective thermal conductivity of the powder bed is
much smaller than that of bulk material. Therefore, the effective thermal conductivity k
including phase change in this study is defined as Equation (9)

Powder zone:

k(T) =


(∼

p
∼
n

π

∼
x
)
·ksolid(T) i f T < Tm − ∆T

kliquid(T) i f T > Tm + ∆T
Solidified zone and substrate:

k(T) =
{

ksolid(T) i f T < Tm − ∆T
kliquid(T) i f T > Tm + ∆T

(9)

where ksolid is the thermal conductivity of the corresponding bulk material,
∼
p denotes

the packing density of the powder layer,
∼
n is the average coordination number (note that

the coordination number is the number of contact points between a particle and all its
surrounding particles), and

∼
x is the contact size ratio. Tm is the melting temperature, and

the phase change is assumed to occur in the temperature between Tm − ∆T and Tm + ∆T.

• Density
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Similarly, the powder bed can be considered to be a mixture of solid state and gas
state. Therefore, the effective density ρ including phase change in this study is expressed
as Equation (10)

Powder zone:

ρ(T) =
{

(1 −∅)·ρsolid(T) +∅·ρgas(T) i f T < Tm − ∆T
ρliquid(T) i f T > Tm + ∆T

}
Solidified zone and substrate:

ρ(T) =
{

ρsolid(T) i f T < Tm − ∆T
ρliquid(T) i f T > Tm + ∆T

(10)

where ρpowder is the effective density of the powder bed, ρsolid is the density of the corre-
sponding bulk material, ρgas = 1.2 kg/m3 is the density of gas, and ∅ is the porosity, the
ratio of the volume occupied by the gas to the total volume of the medium.

• Heat capacity

The effective heat capacity c including phase change in this study can be described as
Equation (11)

Powder zone:

c(T) =


(1−∅)·ρsolidcsolid+∅·ρgascgas

ρpowder
i f T < Tm − ∆T

cliquid(T) i f T > Tm + ∆T
Solidified zone and substrate:

c(T) =
{

csolid(T) i f T < Tm − ∆T
cliquid(T) i f T > Tm + ∆T

(11)

where csolid and cgas = 1000 J/kgK are the heat capacities of the corresponding bulk
material and air, respectively.

Figure 3 illustrates the data of temperature-dependent material properties of AISI 316L
stainless steel. It shows that the effective thermal conductivity and density of the powder
bed is much smaller than that of bulk material; however, the effective heat capacity of the
powder bed is almost equal to that of the corresponding bulk material.

A large amount of latent heat will be absorbed or released during the phase change [1], and
the thermal material properties will follow Equations (12)–(14)

k = (1 − θ)·k1 + θ·k2 (12)

ρ = (1 − θ)·ρ1 + θ·ρ2 (13)

c =
(1 − θ)·ρ1c1 + θ·ρ2c2

ρ
+ L

dφ

dT
(14)

where the subscript represents phase 1 and phase 2, L is the latent heat
(

kJ
kg

)
, φ is

a smoothed function to represent the fraction of phase after transition, and θ is the
volumetric content ranging from 0 to 1 during the transition interval, as defined in
Equations (15) and (16), respectively

θ =


0 i f T < Tm − ∆T

T−(Tm−∆T)
2∆T i f |T| ≤ Tm + ∆T

1 i f Tm + ∆T < T
(15)

φ =
θ·ρ2 − (1 − θ)·ρ1

2ρ
(16)
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3. Methodology
3.1. RBF-FD Approximations

A typical central finite difference scheme for a derivative of function u(x, y) with
respect to x at any grid point (i, j) can be written in the form as follows

∂u
∂x

∣∣∣∣
(i,j)

≈ ∑
k∈{i−1,i,i+1}

ω(k,j)u(k,j) (17)

where ω(k,j) are obtained by using polynomial interpolation or Taylor series expansion.
Instead of using polynomial interpolation or Taylor series expansion, this study ap-

plied radial basis function interpolation to obtain the RBF-FD approximation [20,21]. The
RBF interpolation can be shown as Equation (18)

u(x) ≈ s(x) =
N

∑
i=1

λiϕ(∥x − xi∥) +
m

∑
j=1

β j pj(x) (18)

where ∥·∥ denotes the standard Euclidean 2-norm. ϕ(r = ∥·∥) is the RBF that can be re-
placed by any other type in Table 1. pj(x) is a basis for the space of all d-variate polynomials,
and ε is the shape function, which can be tuned by the user.

Furthermore, the expansion coefficients λi and β j are determined by enforcing the
conditions as Equations (19) and (20)

s(xi) = u(xi) i = 1, 2, . . . N (19)
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N

∑
i=1

λi pj(xi) = 0 j = 1, 2, . . . m (20)

According to [18,22], Equation (18) will be well posed without any polynomial aug-
mentation when using some type of RBFs, such as GA, MQ, IMQ, and IQ. However, for
the conditionally positive definite RBFs, such as PHS and MQ, polynomial augmentation
can be used for Equation (18) to ensure the linear system is uniquely solvable and leads
to more accurate results. Therefore, in this study, the RBF of type MQ was applied, and
the Lagrange form of the RBF interpolation as Equation (21) was used for deriving the
RBF-FD approximation

u(x) ≈
N

∑
i=1

χ(∥x − xi∥)u(xi) (21)

where χ(∥x − xi∥) satisfies Equation (22),

χ(∥x − xi∥) =
{

1, i f x = xi
0, i f x ̸= xi

i = 1 ∼ N (22)

knowing that Equations (18) and (21) infer a global formulation if N is the total number
of nodes located in the full domain. Therefore, a supporting region is defined first to
derive the localized formulation, as shown in Figure 4. It illustrates that the unknown
function u(x) at any node, say x1, is approximated by an RBF interpolation with the “center
node”, x1, placed on the node itself and the n − 1 closest surrounding nodes. The n nodes
constitute the supporting region for the center node.

Table 1. Common choices for radial basis function ϕ.

Type of RBFs Definition ϕ(r)

Infinitely smooth RBFs
Gaussian (GA) ϕ(r, ε) = e−(εr)2

Inverse multiquadric (IMQ) ϕ(r, ε) = 1√
1+(εr)2

Inverse quadratic (IQ) ϕ(r, ε) = 1
1+(εr)2

Multiquadric (MQ) ϕ(r, ε) =
√

1 + (εr)2

Piecewise smooth RBFs
Polyharmonic spline (PHS)
including cubic, TPS ϕ(r) =

{
r2n+1

r2nln(r)
n = 1, 2, 3, 4, 5, . . .

Compact support ϕ(r) = (1 − r)m
+p(r) m = 1, 2, 3, 4, 5, . . .

Other hybrid RBFs
Hybrid Gaussian-cubic ϕ(r) = αe−(εr)2

+ βr3

In order to match the localized formulation, substitute N for n in Equation (22) with
n ≪ N. Also, the linear differential operator L is applied on both sides of Equation (21),
and Lu(x1) can be described as Equation (23).

Lu(x1) ≈
n

∑
i=1

Lχ(∥x1 − xi∥)u(xi) (23)

According to the finite difference scheme mentioned in Equation (17), this approxima-
tion can be rewritten in the form of Equation (24)

Lu(x1) ≈
n

∑
i=1

ω(1,i)u(xi) (24)
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where the RBF-FD weights ω(1,i) are formally given by the operator L applied on the
Lagrange form of the RBF, that is, ω(1,i) = Lχ(∥x1 − xi∥), i = 1, 2, . . . n.

Moreover, it has been shown through the literature that better accuracy is gained by
adding the constraint as ∑n

i=1 ω(1,i) = 0. Hence, the solution for the RBF-FD weights can be
determined as Equation (25).

ϕ(∥x1 − x1∥) . . . ϕ(∥x1 − xn∥)
...

ϕ(∥xn − x1∥)

. . .
...

. . . ϕ(∥xn − xn∥)︸ ︷︷ ︸


ω(1,1)

...
ω(1,n)

 =

Lϕ(∥x1 − x1∥)
...

Lϕ(∥x1 − xn∥)


A

(25)

For the conditionally positive definite RBFs such as PHS and MQ, the polynomial
terms will be included and (25) can be further represented as (26), where the last entry γ in
the solution vector should be ignored.



1 x1 y1

A
...

...
...

1 xn yn
1 · · · 1
x1 · · · y1 1
y1 · · · yn





ω(1,1)
...

ω(1,n)
−
γ1
γ2
γ3


=



Lϕ(∥ x1 − x1 ∥)
· · ·

Lϕ(∥ x1 − xn ∥)
−

L1|x−x1
Lx|x−x1
Ly|x−x1


(26)

It can be seen that the RBF-FD weights solely depend on the relative positioning of
the nodes and RBF used. Once these two parameters are defined for a particular problem,
the estimation of weights can be performed in the pre-processing stage. Furthermore, as
the differential operator L can be arbitrary, a similar procedure can be used to obtain the
weights for all function derivatives. The convention followed for denoting the weights for
any point xi with n supporting points is ωi

(x), ωi
(y), ωi

(xx), or ωi
(yy) when the operator L

is ∂
∂x , ∂

∂y , ∂2

∂x2 or ∂2

∂y2 , respectively. For more details on RBF-FD discretization, refer to [23].
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3.2. Flow Chart

To start the solving procedure, a pre-processing program is required to calculate the
RBF-FD weights for all the nodes over the problem domain. After obtaining the weights,
the solving procedure can then be carried out, as illustrated in Figure 5. The procedure
shows that the phase change among the powder zone, the solidified zone, and the molten
zone is irreversible, while the phase change between the substrate and the molten zone is
reversible. The “gate” is used to determine whether the powder has been melted. Once the



Appl. Sci. 2024, 14, 6850 10 of 18

powder is melted and cools down to below the melting temperature, that is, it changes to
the solidified zone, it will be simulated with the solid property, not the powder property.
Therefore, it can be considered as an irreversible process that is totally different from
the substrate.
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The advantages of the meshless method are as follows.

• Handling complex geometries: The meshless method can efficiently handle complex-
shaped domains without the need for mesh generation, which is often a time-consuming
and challenging task in traditional methods like finite element methods (FEM) or finite
volume methods (FVM).

• Computational efficiency: It provides a high level of computational efficiency, making
it suitable for industrial applications that require fast and accurate simulations.

• Precision: The meshless method maintains a high level of precision in the simulations,
even for three-dimensional problems, which is beneficial for predicting the thermal
behavior and molten pool size in SLM processes.

• Flexibility: It is easily extendable to various types of problems, including those involv-
ing complex boundary conditions and material properties.

• Reduction in numerical artifacts: By avoiding the discretization of the domain into
a mesh, the meshless method can reduce the numerical artifacts that may arise from
mesh irregularities and improve the overall accuracy of the simulation results.
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4. Results and Discussion

The self-written program of the present study is implemented in Python version 3.6.8
and is executed on an Intel Core™ i7-7700 CPU (Intel Corporation, Santa Clara, CA, USA).
All the simulation parameters are listed in Tables 2 and 3. Figure 6 describes the absorption
coefficient function within the powder layer, as determined by Tran and Loa [14]. To
compare these two models, the simulation parameters are selected based on delivering the
same amount of heat energy to the powder bed with P = 45 W and v = 120 mm/s. As
shown in Figure 7, the geometry of the system is 150 µm in the y direction and 200 µm in the
z direction, with 150 µm upstream for ξ > 0 and a sufficiently long distance downstream
for ξ < 0.

Table 2. Simulation parameters with material properties, BCs and IC.

Parameters Values

Material

Type AISI 316L stainless steel [24]
Melting temperature Tm (K) 1648
Boiling temperature Tb (K) 3200
Latent heat L (kJ/kg) 300
Half of transition temperature ∆T 20
Powder layer thickness (µm) 50
Packing density

∼
p 0.55

Average coordination number
∼
n 5.02

Contact size ratio
∼
x 0.0119

Powder bed porosity ∅ 0.45

Conditions

Ambient temperature T0 (K) 300
Convective coefficient h

(
W/m2K

)
20

Emissivity ε 0.4
Stefan–Boltzmann constant σ

(
W/m4K

)
5.67 × 10−8

Table 3. Simulation parameters with two different heat source models.

Parameters Values

Ray-tracing method heat source (Model 1)

Laser power P (W) 35, 45(validation), 55
Scan speed v (mm/s) 80, 120(validation), 160
Laser beam radius r0 (µm) 50 [14]
Absorption coefficient function f (z) (1/µm) Figure 6

Double-ellipsoidal shape heat source (Model 2)

Laser power P (W) 35, 45(validation), 55
Scan speed v (mm/s) 80, 120(validation), 160
Semi-axes in y direction b (µm) 50
Semi-axes in z direction c (µm) 70
Front semi-axes in ξ direction a f (µm) 50
Rear semi-axes in ξ direction ar (µm) 200
Absorptivity β 0.59
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4.1. Model Validation

With parameters specified in Tables 2 and 3, the corresponding cross-sectional tem-
perature distribution of the molten pool is shown in Figure 8. Figure 9 provides a better
visualization of the shape and size of the molten pool. It is noted that the maximum temper-
ature of Models 1 and II are 2818 K and 2699 K, respectively. The maximum temperatures
and sizes of the molten pool obtained are of a similar scale to those in the literature studies,
as shown in Table 4. According to [10], their volumetric heat source was acknowledged to
be overestimated, which resulted in a relatively higher maximum temperature of 4900 K.
Moreover, Tran’s simulation model was based on the thermal insulation boundary, meaning
that it does not have heat transfer to the outside environment on all surfaces. Both results
indicate that the numerical results of this study are reasonable and validated. The proposed
approach can be adequately used for thermal analysis of the SLM process.
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Table 4. Comparison of the maximum temperature and size of molten pool.

Quantity Gusarov et al. [10] Tran and Loa [14]
Our Results

Model 1 Model 2

Length (mm) 0.300 0.226 0.284 0.383
Width (mm) 0.200 0.180 0.122 0.102
Depth (mm) 0.070 0.068 0.063 0.054

Max. temperature (K) 4900 3005 2818 2699

4.2. Temperature Distribution

Understanding the inherent features of SLM processes, such as temperature distribu-
tion and molten pool size, is essential before processing. These characteristics influence
the physical properties and the overall quality of the resulting products. The effect of laser
power and scan speed to temperature distribution along three different directions is shown
in Figures 10–12.
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Figure 10 shows that the maximum temperature appears at the top of the powder
surface, as depicted along the z-axis. This makes sense, since it is the place where the laser
beam irradiates. Under the same laser power, a 33% change (±40 mm/s) of scan speed
does not significantly change in maximum temperature for Model 1, while the change
in maximum temperature for Model 2 is about 10%. Under the same scan speed, a 22%
change in laser power (45 ± 10 W) affects the maximum temperature proportionally by
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about 9%. This reveals that the depth of the molten pool is more sensitive to laser power
than scan speed.

Figure 11 shows that the molten size along the y direction increases with an increase
in laser power and a decrease in scan speed, however, not significantly. Figure 12 illustrates
the temperature along the ξ-axis. Figure 13 shows the change in pool length along the
ξ-axis with different laser power and scan speed. It reveals that an increase in scan speed
significantly increases the pool length along the ξ-axis under the same laser power. As the
scan speed increases from 80 mm/s to 160 mm/s, the pool length increases by 26.8% and
12% for heat source Models I and II, respectively. Owing to a similar total heat absorption of
the power bed, the corresponding pool width, depth, and maximum temperature decrease.
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Based on the observation that, under the same amount of heat energy, the temperature
predicted using Model 1 is much higher than in Model 2, (because the heat source of
Model 2 is more widely distributed than Model 1) this causes the predicted temperature to
disperse more easily and results in the lower temperature performance.

5. Conclusions

In this paper, three-dimensional models are established to investigate the effect of laser
power and scan speed on the thermal behavior during the SLM process. The moving heat
source model of double-ellipsoidal shape and the ray-tracing method were applied to study
the molten pool shape and size of a stainless steel 316 L powder bed. Furthermore, unlike
the previous studies that used the finite element method, this paper applied a meshless



Appl. Sci. 2024, 14, 6850 17 of 18

method, called RBF-FD, to build a thermal model that is computationally efficient and easy
to program.

The numerical results conclude that the length of the molten pool is significantly
affected by the scan speed rather than the laser power. The influence on size along the y
and z directions is relatively small. The molten pool is larger with the higher laser power
and lower scan speed. The temperature distribution along the depth direction increases
and is concave from the bottom of the substrate to the junction between the substrate and
the powder bed, while it increases and is convex from the junction to the top of the powder
bed. Therefore, the maximum temperature gradient is about 25 K/µm to 30 K/µm for
Model 1 and 20 K/µm to 25 K/µm for Model 2, occurring at the junction between the
substrate and the powder bed. However, the mechanical properties of the printed parts
by grain structure were not provided in this study; for more on this, refer to the work by
Hassine et al. [25].
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