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Abstract: Truncated singular value decomposition (TSVD) is a popular recovery algorithm for
multimode fiber single-pixel imaging (MMF-SPI), and it uses truncation thresholds to suppress
noise influences. However, due to the sensitivity of MMF relative to stochastic disturbances, the
threshold requires frequent re-determination as noise levels dynamically fluctuate. In response, we
design an adaptive truncation threshold determination (ATTD) method for TSVD-based MMF-SPI in
disturbed environments. Simulations and experiments reveal that ATTD approaches the performance
of ideal clairvoyant benchmarks, and it corresponds to the best possible image recovery under certain
noise levels and surpasses both traditional truncation threshold determination methods with less
computation—fixed threshold and Stein’s unbiased risk estimator (SURE)—specifically under high
noise levels. Moreover, target insensitivity is demonstrated via numerical simulations, and the
robustness of the self-contained parameters is explored. Finally, we also compare and discuss the
performance of TSVD-based MMF-SPI, which uses ATTD, and machine learning-based MMF-SPI,
which uses diffusion models, to provide a comprehensive understanding of ATTD.

Keywords: fiber imaging; multimode fiber imaging; single-pixel imaging; truncated singular value
decomposition; truncation threshold determination

1. Introduction

Multimode fibers (MMFs) are expected extensions of fiber bundles [1–6], and exam-
ples include endoscopic probes [7,8]. However, mode coupling and dispersion scramble
transmitted images into unrecognizable speckles, rendering direct imaging impossible.
Therefore, several methods have been developed for MMF imaging, such as (1) wavefront
shaping-based raster scanning [9–12]; (2) single-pixel imaging (SPI [13] or, equivalently,
ghost imaging [14]); and (3) machine learning [15–18]. Wavefront shaping requires complex
interference setups to measure transmission matrices for characterization of MMF transmis-
sion and to control the output of scanned point-by-point MMF objects. Machine learning
methods leverage large datasets to train models that can reconstruct images from speckle
patterns and require extensive training data. In MMF-SPI [19–28], MMF is used as a light
projector to illuminate the target; then, the light intensity response of the target is recorded.
With the help of SPI algorithms, the image can be recovered [29]. Compared with raster
scanning and machine learning methods, SPI has advantages in terms of simplicity com-
pared to wavefront shaping because only light intensity is required, avoiding interference
setups; it also has advantages in terms of imaging speeds compared to machine learning
because a few measurements are enough.

Compared with conventional SPI, MMF-SPI is more susceptible to stochastic noise;
thus, not all SPI algorithms work. A linear correlation method such as second-order correla-
tion is a simple and quick SPI algorithm, relying on the orthogonality of the measurement
matrix, but it often performs poorly in practical MMF-SPI [21,24] because the measurement
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matrix derived from MMF speckle patterns typically has lower orthogonality than assumed.
Regularized optimization methods such as compressive sensing (CS) [19–24] can provide
better image quality through the fine tuning of regularized parameters. However, this
key parameter can only be empirically specified beforehand or is gradually found via
costly iterations, ruling out high-speed imaging. For machine learning, the acquisition of
large-scale data, model training, and parameter fine tuning are inevitable [30]. In terms of
balancing costs, performance, and robustness, the relatively old truncated singular value
decomposition (TSVD) still enjoys unique advantages. Computing the pseudo-inverse of
measurement matrices with a suitable truncation threshold to maintain image information
and suppress noise at the same time, TSVD has become popular with MMF-SPI [25–28].
However, MMF-SPI is fragile relative to disturbances [31–36] such as fiber bending, result-
ing in dynamical changes in noise levels and, thus, requiring a flexible truncation threshold
for recovery.

When complete knowledge of the target is known, it is possible to test all potential
truncation thresholds to identify the optimal one, which is known as the clairvoyant
benchmark. This benchmark minimizes the recovery error and serves as a reference
for truncation threshold selection. In practice, this critical truncation threshold can be
chosen without prior knowledge via traditional methods such as the L-curve [37] and
generalized cross-validation (GCV) [38,39] methods. The L-curve method selects the
truncation point at the curve’s corner, and it is plotted as the norm of the solution against
the norm of the residual. GCV selects the threshold by minimizing the cross-validation
error. The computational complexity of both methods is related to the square of the pixel
number, rendering them unsuitable for high-speed imaging applications, especially in
disturbed conditions requiring frequent re-determination. For more efficient methods with
less computation, fixed truncation and Stein’s unbiased risk estimator (SURE) [40] are
recommended. The former selects truncation thresholds directly via the singular value (SV)
spectrum [25–28]. The latter is believed to be the state of the art for threshold noise signals.
Unfortunately, both show a low correlation with the recovered image of the benchmark
threshold as noise increases.

This study aims to develop an adaptive truncation threshold determination (ATTD)
method for TSVD-based MMF-SPI in disturbed environments, aiming to improve image
quality under various noise levels. Simulations and experiments suggest that ATTD can
approach the clairvoyant benchmark, which represents the upper bound of performance
achievable with prior knowledge of the target. Even under high-noise conditions where
fixed truncation thresholds and SURE are less effective, the ATTD method exhibits robust
performance. Additionally, the ATTD parameters are self-determined, and their stability is
examined. The unique aspects of this work include the adaptive nature of the thresholding
mechanism, which adjusts to varying noise levels without requiring prior knowledge,
and the notable improvements in image recovery under high-noise conditions, offering a
potentially robust solution for real-time applications.

2. Method
2.1. Background: Measurement and Recovery
2.1.1. Measurement of Multimode Fiber Single-Pixel Imaging (MMF-SPI)

Figure 1 shows the measurement procedure of MMF-SPI. With random input modu-
lations, MMF consecutively shines speckles on a target (x) . Transmitted light is collected
with a focus lens and registered as a light intensity sequence (y) via a bucket detector (BD),
which has no spatial resolution. Ideally, the noise-free BD signal reads y = Ax, where each
speckle is previously recorded using an array detector and shaped as a row of a measure-
ment matrix (A). The target (x) is reshaped into a column vector. Generally, A is fixed for
recovery after previous captures. Therefore, disturbances such as MMF bending cause illu-
mination deviations (△A), resulting in a mismatch between A and ydisturbed = (A +△A)x.
With noise, the BD signal is y + e instead, where the term e includes the following two
parts: (1) mismatch noise (△Ax) and (2) initially electric BD noise. The noise level of
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e changes dynamically via unavoidable disturbance. Here, we assume that both types
of noises can be modeled via Gaussian noise. The rationale for the impact of Gaussian
equivalence on bending is discussed in Section 4.

Figure 1. Measurement procedure of MMF-SPI.

2.1.2. Recovery via Truncated Singular Value Decomposition (TSVD)

As a common solution to the inverse problem, TSVD utilizes a truncation threshold
(k) to obtain the Moore–Penrose inverse of A (A†

k ). Then, the target (x) can be restored
as follows:

x̂k = A†
k(y + e) =

k

∑
j=1

uT
j (y + e)vj

sj
, 1 ≤ k ≤ Nmea, (1)

where column vectors uj and vj, together with the corresponding SV (sj), are obtained via
the singular value decomposition (SVD) of A, i.e., A = USVT. uj and vj are the columns
of orthogonal matrices U and V, respectively. S = diag{sj} contains all SVs. Truncation
(k) limits the measurement number (Nmea). Recovery involves solving an inverse problem
to obtain x̂ from A and y + e. The negative values of x̂k are set to zero due to the physical
nature of the images.

As Equation (1) shows, assuming that stochastic noise (e) affects each vector (uj)
homogeneously, those with a smaller weight (sj) would have a worse signal-to-noise ratio
due to the amplification of 1/sj, introducing more unwanted effects on the result. Thus,
it is important to cut off at a certain threshold (k) in order to abandon components with
smaller SVs [41].

2.2. Proposed Method: Adaptive Truncation Threshold Determination (ATTD)

The ATTD method begins with the assumption that the absolute value decomposition
(|UTy|) generally follows a descending order, consistent with the SV distribution. How-
ever, the presence of noise disrupts this order, causing |UT(y + e)| to become randomly
distributed beyond a certain index. Therefore, the point at which the order is disrupted be-
tween the decomposition indices and the SV indices serves as a reference for distinguishing
between signals and noise.

As the ATTD pseudo-code (Algorithm 1) shows, by inputting the noisy BD signal
(y + e), the left singular matrix (U) via the SVD of the recorded measurement matrix (A),
and the self-contained VAR and TOL parameters, the threshold (kd) is determined. Note
that VAR and TOL can be calibrated independently via several numerical simulations using
only the measurement matrix (A), as described in Appendix A (Algorithms A1 and A2,
respectively). Each step is described as follows:

(1) Projection: Calculate the absolute value of decomposition coefficients
(c = |UT(y + e)|).

(2) Sorting: Sort sequence c in descending order to obtain csorted and the corresponding
index (i).

(3) Binary transformation: Apply a naïve test function to binary |k− ik| as follows:

bk =

{
0, if |k− ik| > VAR
1, otherwise

(2)
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(4) Accumulated average: Compute the accumulated average of the first k values of b
as follows:

avek =
1
k

k

∑
j=1

bj, 1 ≤ k ≤ Nmea, (3)

where the avek sequence generally decreases with k.
(5) Determination: Determine the truncation threshold kd via the maximum index when

the accumulated average (ave) is larger than a certain proportion of its maximum,
i.e., TOL ·max(ave).

kd = max{k | avek ≥ TOL ·max(ave), 1 ≤ k ≤ Nmea}. (4)

Algorithm 1 kd =ATTD(y + e, U, VAR, TOL)

1: function ATTD(y + e, U, VAR, TOL)
2: c←

∣∣∣UT(y + e)
∣∣∣; ▷ (1) Project step.

3: i← sort(c); ▷ (2) Sort c in descending order and obtain corresponding indexes.
4: for k← 1 to k← length(i) do
5: compute bk via Equation (2); ▷ (3) Naïve test function to sift |k− ik|.
6: compute avekvia Equation (3); ▷ (4) Accumulated average.
7: end for
8: compute kd via Equation (4); ▷ (5) Determination.
9: return kd

10: end function

2.3. Experimental Design, Implementation, and Evaluation
2.3.1. Overall Experimental Design

To validate the effectiveness of ATTD, we designed the following experiments:

(1) Adaptation to varying noise levels: First, we conducted imaging experiments using
both simulated BD sequences with adjustable noise levels and real BD sequences
disturbed by a bending MMF to verify adaption to noise variations in ATTD. For the
results, please refer to the first two parts of Section 3. Note that we assume that the
noise generated via fiber bending in MMF-SPI is equivalent to the Gaussian additive
noise added in BD sequences. The rationale for this approximation is explained in
Section 4.

(2) Target insensitivity: Secondly, due to experimental constraints, we conducted experi-
ments on simulated BD sequences generated from different targets (USC-SIP image
database containing 210 images [42]) with varying noise levels to verify the object
insensitivity of ATTD. For the results, please refer to the third part of Section 3.

(3) Stability of the TOL parameters: Finally, we investigated whether the self-contained
TOL parameters calibrated with one measurement matrix are applicable to other
measurement matrices. For the results, please refer to the forth part of Section 3.

2.3.2. Implementation of Dynamically Changing Noise Levels

To verify the adaptation capability of ATTD, two methods were adopted to dynami-
cally change noise levels in simulations and realistic experiments.

First, the measurement matrix should be obtained via realistic calibration, as shown
in Figure 2. Polarized and expanded 532 nm coherent light was modulated by a digital
micro-mirror device (DMD). Then, it was shaped by an iris and coupled into fibers via
collimator C1. After transmission, an output speckle pattern was collimated via C2. Then,
2500 pseudo-random illumination patterns were consecutively captured by a CMOS cam-
era and, finally, shaped into A(0,0), where the sub-label represents the initial translation
stage (TS) position. Note that the VAR and TOL parameters of ATTD were calibrated via
simulations using A(0,0). Here, TOL was set at 0.4 (refer to Appendix A).
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Then, in simulation, the noisy simulated BD signal sequence (ysim = A(0,0)xTO +
e(ratio)) was created by adding additive Gaussian noise with an adjustable ratio to the sim-
ulated BD signal (for details on the computation of the ratio, please refer to Algorithm A2
in Appendix A). Here, xTO depicts GI letters comprising pixelated blocks, as shown in
Figure 3a.

Figure 2. Experimental setup. Laser: 532 nm coherent light. P: polarizer. BE: beam expander.
C1/C2: fiber collimator (Thorlabs, F220FC-532). DMD: digital micro-mirror device (VIALUX V7001).
Each loaded random pattern consists of half ones and half zeros. MMF: a 50 cm multimode fiber
(Corning OM3, graded-index fiber around 2232 modes/polarization). TO: transmissive object x.
CMOS camera (XiQ, MQ022RG-CM). BD: bucket detector (the camera was also used as a BD by
summing all pixels into a single value). TS: millimeter 2D translation stage. TSVD: truncated singular
value decomposition. Each captured pattern was downsampled from 300 × 300 to 150 × 150 pixels
for efficiency.

Figure 3. (a) Ground truth of xTO and adaptive performance comparison using simulated noises
(ratio = −70 dB, −35 dB, −30 dB, and −28 dB) using (b) clairvoyant benchmark kc, (c) ATTD kd,
(d) fixed kf, and (e) SURE with a known noise ratio. The truncation threshold and Pearson correlation
with clairvoyant images are marked in each image. Above each column, the noise ratio is denoted.
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Finally, in realistic imaging experiments, dynamical changes in noise levels were
realized via TS movement. A transmissive mask corresponding to xTO was placed in front
of the camera. The camera, functioning as a BD, captured transmitted light as a single-pixel
sum. After the same modulations as for calibration, the BD signal was registered as a
column vector (y). Noise levels were manipulated by a bending MMF attached to TS,
with various positions (m, n) altering the noise level. Disturbed BD signals (y(m,n)) could
be recorded by moving TS, causing speckles (A(m,n)) being shone on targets other than
A(0,0) as recorded in calibration. This illumination difference is equivalent to adding noise
to a BD signal if it sticks to A(0,0) for recovery. For endoscopy, only A(0,0) could be obtained
because A(m,n) was inaccessible after MMF entered body. Therefore, the target is generally
restored by the initial A(0,0) and disturbed y(m,n) (mismatch problem [21,35]).

2.3.3. Performance Evaluation via Clairvoyant Benchmark

To evaluate the performance of the proposed ATTD, the Pearson correlation between
the recovered image and the clairvoyant benchmark was used, where the clairvoyant
benchmark is the image restored via the clairvoyant truncation threshold (kc; refer to
Algorithm A2 in Appendix A). kc requires full knowledge of the target, which is ob-
tained by iterating all truncation values to achieve the best image quality under a certain
noise condition.

2.3.4. Comparative Truncation Threshold Determination Methods

First, we compared the recovery performance with traditional threshold methods. The
following two methods with relatively low computational complexity were used: (1) fixed
truncation (kf) and (2) Stein’s unbiased risk estimation (SURE). Fixed kf was selected directly
from the SVs using the index of SV that exceeds 1% of the maximum SV. The SURE requires
some computations with knowledge of the noise level. In simulations, the known noise
level was adopted for SURE calculations, while in practical experiments, the estimated noise
level was used (for details about these two methods, please refer to Appendix B). We did
not consider the L-curve and GCV methods in this comparison because their performances
are close to that of the clairvoyant benchmark, which can be obtained iteratively, rendering
their consideration unnecessary.

Secondly, we further considered two complex L-curve and GCV instances to compare
the time–cost performance with respect to single recovery. Both methods achieved recovery
performances approaching that of the clairvoyant benchmark and did not need a targeted
prior. The procedure for the L-curve method is as follows: The residual (|y−Axk|2) and
solution norm (|xk|2) are computed for each truncation (k), and the turning point on the
plot of the residual versus solution norm is chosen. For GCV, the procedure involves
calculating the generalized cross-validation score for each truncation (k) and selecting the k
value that minimizes the GCV score (∥y−Axk∥2/(Nmea − k)2). All data processing and
experiments were conducted on a computer with the following specifications: Intel(R)
Core(TM) i7-9750H CPU @ 2.60 GHz, 2.59 GHz, and 32 GB of RAM.

3. Results
3.1. Adapting Dynamical Noise Changes in Simulations

In the simulations, the proposed ATTD illustrated in the red box of Figure 3c main-
tained a high correlation relative to the clairvoyant benchmark reference across noise levels,
with robustness measuring around −30 dB, outperforming the fixed truncation (kf) and
SURE (as depicted in Figure 3d and Figure 3e, respectively). kf achieved consistent but
lower performance as noise increased, whereas SURE with a known noise ratio exhibited
high fidelity at −70 dB but suffered a drastic performance decline at higher noise levels,
indicating limited effectiveness in noisy environments.
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3.2. Adapting the Dynamical Change in Noise in Practical Experiments

Figure 4 illustrates the adaption performance of ATTD across different noise conditions
in an empirical setting, serving as a realistic validation for simulations. The top label (m, n)
denotes a distinct noise scenario (fiber configuration), and the clairvoyant benchmark in
Figure 4a acts as an ideal reference under each noise level. The ATTD exhibited a high
correlation with the clairvoyant benchmark shown in Figure 4b, with the performance
only declining at the most severe bend (8, 8). In contrast, as Figure 4c shows, fixed
truncation exhibited a decreasing trend with respect to correlation coefficients, which
indicates a gradual deviation from the ideal reference with increasing noise. The last
row reveals that SURE worked without fiber bending, and the limitations of SURE were
observed when faced with severe bending. These empirical results corroborate with the
simulation outcomes.

Figure 4. Adaptive performance comparison under varying fiber configurations (noise levels) using
(a) clairvoyant benchmark kc, (b) ATTD kd, (c) fixed kf, and (d) SURE with estimated noise. The trun-
cation threshold and Pearson correlation coefficients with the clairvoyant benchmark are marked in
each image. Above each column, (m, n) denotes the translation stage position (various noise levels).

3.3. Adapting the Change in Simulated Targets

To show that ATTD generally works for different targets but is limited by experimental
conditions, an image database (USC-SIP, containing 210 images [42]) was adopted. Each
image was set as the target (x) to produce simulated BD signals under different noise
levels. As Table 1 shows, the proposed ATTD showed a strong correlation of 0.97 with
the clairvoyant benchmark reference at −70 dB, decreasing with increased noise level and
reaching a moderate correlation of 0.47 at −20 dB. Fixed truncation started with a high
correlation of 0.93 at −70 dB, but it decreased significantly as noise increased, with a low
correlation of 0.14 at −20 dB. SURE began with a moderate correlation of 0.63 at −70 dB



Appl. Sci. 2024, 14, 6875 8 of 15

and decreased sharply, reaching a negligible correlation at higher noise levels (−35 dB to
−20 dB) and indicating a decline in performance in the presence of noise.

Table 1. Average Pearson correlations relative to USC-SIP (A(0,0) and TOL = 0.4).

−70 dB −35 dB −30 dB −20 dB

ATTD 0.97 0.78 0.64 0.49
Fixed 0.93 0.51 0.34 0.14
SURE 0.63 0.03 0.02 0.02

3.4. Robustness of TOL Parameter

According to the calibration methods for VAR and TOL provided in Appendix A,
VAR was calibrated based on the specific measurement matrix, while TOL required a series
of numerical simulations for calibration. Therefore, the stability of TOL is an important
subject of study. To show that the choice of TOL is not affected by a different measurement
matrix (A), the following four groups of illumination speckle patterns captured under
different fiber configurations were used: A(0,0), A(0,24), A(24,0), and A(24,24). Figure 5 shows
that they are totally different, with very low Pearson correlation coefficients between them.
Based on numerical simulations using the measurement matrix (A(0,0)), we determined
that TOL = 0.4. This value was then used in target-insensitivity simulations with different
measurement matrices, the results of which are shown in the Table 2. The performance of
ATTD remained largely unaffected by changes in the measurement matrix with VAR = 0.4,
indicating that the self-contained parameter of ATTD is also insensitive to variations in
the measurement matrix. In the verification of parameter robustness, this suggests extra
simplification in practice. One may use the same TOL value even if the measurement
matrix has been changed, e.g., the patterns are captured under a new fiber configuration.

Figure 5. Pearson correlation coefficients among measuring matrices (A(m,n)) captured at the follow-
ing different positions (m, n): (0, 0), (0, 24), (24, 0), and (24, 24).
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Table 2. Average Pearson correlations relative to USC-SIP (different A and TOL = 0.4).

−70 dB −35 dB −30 dB −20 dB

A(0,24) 0.98 0.77 0.63 0.48
A(24,0) 0.97 0.78 0.65 0.48
A(24,24) 0.98 0.77 0.63 0.46

3.5. Comparison of Computational Times with Traditional Threshold Methods

Table 3 presents the average computational time for single recovery using different
threshold methods. The L-curve and GCV methods, although capable of obtaining the
clairvoyant solution without prior knowledge, have computational complexities propor-
tional to the square of the number of pixels, resulting in average computational times of
approximately 76 and 75 s per recovery, respectively. Therefore, they are not suitable for
real-time imaging. In contrast, the SURE, ATTD, and fixed truncation threshold methods
have significantly lower computational times of 0.04, 0.013, and 0.002 s per recovery, respec-
tively. Notably, ATTD has an advantage over SURE in terms of computational time. While
the fixed truncation method is the fastest, it does not achieve the same level of imaging
performance as ATTD, which provides a favorable balance between speed and accuracy.

Table 3. Average computational time for a single recovery.

L-Curve GCV SURE ATTD Fixed

computational time (s) 76 75 0.04 0.013 0.002

4. Discussion
4.1. The Assumption of Equivalence between Fiber Bending Impact and Gaussian Noise Added to
the Bucket Detector Signal

The approximation of Gaussian noise for disturbances caused by fiber bending is
reasonable based on the following assumption and discussion. In our study, fiber bend-
ing involved complex scenarios where a 50 cm fiber fixed at both ends and attached to
a two-dimensional translation stage experienced configuration changes that resulted in
pixel-level intensity variations rather than simple pattern drifts caused by simple bending
and temperature changes. These changes were independent and random. In the context of
SPI, each speckle pattern corresponds to one measurement, and the errors from 2500 mea-
surements were independent. The disturbance measurement process is represented as
ydisturbed = (A +△A)x, where△Ax is the noise induced via bending. Given the indepen-
dent and random nature of these changes, approximating this noise with additive Gaussian
noise for y simplifies the computational process and provides a practical framework for
image recovery in MMF-SPI. Therefore, y + e is a reasonable assumption with respect to
noise in the model, where e includes bending noise and the initial electric BD noise.

4.2. Recovery Comparison with Machine Learning-Based Diffusion Models

To provide a comprehensive understanding of ATTD in TSVD-based MMF-SPI, we
compared its performance with that of the machine learning-based diffusion model. For this
comparison, we used the measurement matrix (A(0,0)) and the practically disturbed y(m,n)
as inputs for the diffusion model. Detailed information about the trained model can be
found in [43]. In evaluating performance, we used the Pearson correlation between the
recovered image and the ground truth as opposed to the clairvoyant benchmark used in
earlier experiments. This approach was necessary because ATTD and the diffusion model
employ different methodologies to solve the inverse problem. The comparison results are
illustrated in Figure 6.

Figure 6 compares the diffusion model and ATTD under the following noise conditions:
(0, 0), (8, 0), (0, 8), (0, 16), and (8, 8). The numbers in the images indicate the Pearson
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correlation coefficients between the reconstructions and the ground truth. At the (0, 0)
noise level, both methods exhibited a high correlation of 0.79. As noise levels increased,
the diffusion model maintained a slight edge, with correlations of 0.56 and 0.66 at (8, 0)
and (0, 8) compared to ATTD’s 0.52 and 0.63, respectively. At (0, 16), the diffusion model
performed better (0.40 vs. 0.24). However, at the highest noise level (8, 8), ATTD showed
improved resilience, with a correlation of 0.41, surpassing the diffusion model’s 0.36. These
results indicate that while the diffusion model performed slightly better at moderate noise
levels, ATTD was more robust under high and mixed noise conditions. Additionally,
generating a single recovery result with the diffusion model takes approximately 86 s,
highlighting ATTD’s significant time advantage. We believe that if more disturbed data
can be used for training, better performance may be realized under high noise levels.

Figure 6. Adaptive performance comparison under varying fiber configurations (noise levels) using
the (a) diffusion model and (b) ATTD kd. Truncation threshold and Pearson correlation coefficients
with the ground truth are marked in each image. Above each column, (m, n) denotes the translation
stage’s position (various noise levels).

4.3. The Design Goal of ATTD

The design goal of ATTD is to determine a truncation threshold that approaches the
best recovery under a certain noise level without prior knowledge of noise levels. Com-
mon knowledge is that the recovery quality of TSVD-based MMF-SPI decreases as noise
increases. Therefore, the performance of ATTD was evaluated using correlations relative to
the clairvoyant reference, which provide the best recovery under certain noise levels, rather
than the similarity relative to ground truth. ATTD exhibited a higher correlation relative
to the clairvoyant reference than traditional fixed truncation and SURE under high noise
levels, although it achieved poor recovery performance compared with the ground truth.

5. Conclusions

In terms of performance, ATTD achieved a truncation threshold with high correlations
relative to the clairvoyant benchmark, similarly to the results obtained by the L-curve and
GCV methods. Although this correlation decreases at high noise levels, the trade-off is justi-
fied by the reduced computational complexity. Additionally, compared to simpler methods
with lower computational complexities, such as the fixed truncation threshold method and
SURE, ATTD offers imaging performance approaching that of the clairvoyant benchmark.

This contribution proposes a promising mechanism for determining a suitable trunca-
tion threshold for TSVD-based MMF-SPI. The effectiveness of this approach is demonstrated
by its comparable performance to that of the clairvoyant benchmark, which can be obtained
using traditional methods with high computational complexity or via prior target knowl-
edge, outperforming traditional methods with less computation. This can be particularly
observed in the case of the fixed truncation threshold and the SURE mechanism, especially
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when the noise is substantial. Target insensitivity was verified via simulations, and all
parameters can be determined in a self-contained manner.
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MMF Multimode fiber;
SPI Single-pixel imaging;
CS Compression sensing;
TSVD Truncated singular value decomposition;
GCV Generalized cross-validation;
SURE Stein’s unbiased risk estimator;
SV Singular value;
ATTD Adaptive truncation threshold determination;
BD Bucket detector.

Appendix A. Self-Contained Parameter Determination for ATTD

ATTD requires two parameters, namely the variation bound (VAR) for |k− ik| and the
tolerance factor (TOL). The determination method is provided using software-masked BD
sequence yave = Axave, where xave is an artificial target with a random profile and pixel
average of 0.5.

(1) As shown in Algorithm A1, VAR determination is based on the cumulative average of
the index difference before and after sorting the projection amplitude, i.e., |k− ik|,
where k contains only those vectors with an SV larger than 1% of the maximum, i.e., the
most significant singular vectors. Although VAR seems to be arbitrary, the choice of a
suitable TOL can compensate for this.

Algorithm A1 Self-contained VAR determination

1: procedure VAR DETERMINATION(yave, U, S)
2: cave ←

∣∣∣UTyave

∣∣∣;
3: iave ← sort(cave);
4: s← diag(S);
5: for k← 1 to k← length(iave) do
6: if sk ≥ 0.01max(s) then vark ← |k− ik|;
7: else break;
8: end if
9: end for

10: VAR← mean(var);
11: end procedure
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(2) As Algorithm A2 shows, several TOL values were tested in ATTD with normally
distributed simulated noise (e) [44] and tuned via the Euclidean norm of software-
masked BD sequence yave, the number of measurements (Nmea), and a given amplitude
ratio (dB) [45]. A suitable TOL value can be chosen by comparing the ATTD output
(kd) and the clairvoyant benchmark (kc), given a certain noise level. Determining kc
requires the target ground truth (x) and the quality assessment image’s signal-to-noise
ratio (isnr).

isnr(x, x̂k) = 20 log10

(
⟨x⟩√

⟨(x− xk)2⟩

)
, (A1)

where ⟨.⟩ averages over all pixels, and x and x̂k are normalized by the sum of all
pixel values.

The simulation revealed that that the kd of 0.4 was closest to kc under various noise
levels ranging from −10 to −100 dB, and it was robust relative to multiple trials (see the
error bar in Figure 6). Notably, a different TOL value may perform better for a different A.
However, with no loss of generality, the provided parameter determination would work
well for a simple round of simulation as long as the measurement matrix (A) were recorded.

Algorithm A2 Self-contained TOL determination

1: procedure TOL-DETERMINATION(yave, U, S, Nmea)
2: for tol← 0.2 to tol← 0.6 do
3: for ratio← −100 to ratio← −10 do
4: e(ratio)← ||yave||2/N1/2

mea × 10(ratio/20) × random(Nmea);
5: kd(tol, ratio)← ATTD(yave + e(ratio), VAR, tol)
6: for k← 1 to k← Nmea do
7: isnrk = isnr(x̂k, xave);
8: end for
9: kc(tol, ratio)← arg max

k
isnr; ▷ Clairvoyant benchmark

10: end for
11: end for
12: TOL← arg min

tol
|kd − kc|;

13: end procedure

Figure A1. Determined ATTD kd vs. clairvoyant benchmark kc under varying noise ratios using
different tolerance factors (TOL = 0.2, 0.4, and 0.6). The error bar shows the standard deviation of
multiple trials repeated with the same ratio but different noise sequences.
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Appendix B. Comparative Truncation Threshold Determination Methods

In this section, the details of the following methods used for comparative experiments
are described: (1) fixed truncation threshold and (2) Stein’s unbiased risk estimator (SURE).

(1) According to the direct singular value sequence (s), the fixed truncation threshold is
commonly set as

kf = min{k | sk ≤ 0.01 · smax}, (A2)

where smax = s1. Then, the recovered target is

x̂kf
=

kf

∑
j=1

uT
j (y + e)vj

sj
. (A3)

(2) SURE has long been adopted as the state-of-the-art threshold selection mechanism [40].
First, the noisy BD signal (y + e) is projected onto an orthogonal matrix (U) obtained
via the SVD of measurement matrix A to obtain the amplitude (c = UT(y + e)), which
is then reinforced by a specified value (t), i.e., the soft threshold [46].

ηt(c) = sgn(c)(|c| − t)+, (A4)

where sgn() is the signum function and (∗)+ = max(∗, 0). The SURE function denotes
the cost as follows:

SURE(t, c) = Nmeaσ2 − 2σ2#{j : |cj| ≤ t}+
Nmea

∑
j=1

(|cj| ∧ t)2, (A5)

where #{j : |cj| ≤ t} is the number of amplitudes with an absolute value of no more
than t, and a ∧ b = min(a, b). The noise power (σ2) can be estimated via the median
absolute deviation in practical experiments [46], or it can be specified beforehand in
simulations. Note that the value of the cost of SURE(t, c) only changes when threshold
t changes from one amplitude |cj| to another; thus, iterating all amplitudes would
produce the optimal topt as follows:

topt = arg min
0≤t≤
√

σ2 log Nmea

SURE(t; c). (A6)

Moreover, the universal upper bound of t is recommended [46,47]. Finally, the recov-
ered target is expressed as follows:

x̂SURE =
Nmea

∑
j=1

ηtopt(cj)vj

σj
. (A7)
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