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Abstract: In multi-institutional emergency room settings, the early identification of high-risk patients
is crucial for effective severity management. This necessitates the development of advanced models
capable of accurately predicting patient severity based on initial conditions. However, collecting
and analyzing large-scale data for high-performance predictive models is challenging due to privacy
and data security concerns in integrating data from multiple emergency rooms. To address this,
our work applies federated learning (FL) techniques, maintaining privacy without centralizing data.
Medical data, which are often non-independent and identically distributed (non-IID), pose challenges
for existing FL, where random client selection can impact overall FL performance. Therefore, we
introduce a new client selection mechanism based on local model evaluation (LMECS), enhancing
performance and practicality. This approach shows that the proposed FL model can achieve com-
parable performance to centralized models and maintain data privacy. The execution time was
reduced by up to 27% compared to the existing FL algorithm. In addition, compared to the average
performance of local models without FL, our LMECS improved the AUC by 2% and achieved up
to 23% performance improvement compared to the existing FL algorithm. This work presents the
potential for effective patient severity management in multi-institutional emergency rooms using FL
without data movement, offering an innovative approach that satisfies both medical data privacy
and efficient utilization.

Keywords: federated learning; centralized learning; patient severity analysis; local model evaluation;
client selection

1. Introduction

Kondo Y et al. (2019) [1] state that a key issue in emergency rooms is classifying
patient severity based on their initial state, enabling appropriate on-site treatment, and
Hansen J et al. (2022) [2] and Gyu-Sung Ham et al. (2022) [3] analyze the early identification
of high-risk patients to improve survival rates. According to Zhiqiang Liu et al. (2022) [4]
and Yoojoong Kim et al. (2023) [5], this requires extensive data analysis, where the current
method involves transferring data to a central data center for processing and analysis. How-
ever, centralized data analysis has drawbacks. Firstly, Sheller Micah J et al. (2020) [6] and
Kaissis Georgios et al. (2021) [7] state that medical data are highly sensitive and centralizing
them poses privacy risks. Secondly, Ahmadi N et al. (2022) [8] and Boggs et al. (2020) [9]
propose that integrating data from multiple emergency rooms is challenging due to pri-
vacy regulations and inconsistencies in data formats among institutions. Thirdly, Dinh
C. Nguyen (2022) [10] explores how delays and additional costs associated with data
centralization can degrade model performance and utility.

According to Xu Jie et al. (2021) [11], Rieke Nicola et al. (2020) [12] and Lim Wei Yang
Bryan et al. (2020) [13], federated learning (FL) is a solution to these issues. FL analyzes
local data in situ at each institution and transmits only the learning results to a central
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server, creating and sharing a global model while safeguarding data privacy and mini-
mizing the risks and costs associated with data movement. Despite its advancements, X.
Lian et al. (2017) [14] explain that FL faces challenges with computational efficiency and
prediction performance. Existing FL often randomly involves clients in the learning process,
potentially negatively impacting FL performance and introducing uncertainty. Further-
more, according to V. Smith et al. (2018) [15], disparate computational capacities among
clients can increase computational load and extend training time. S. Ji et al. (2021) [16],
W. Lin et al. (2022) [17] and Karimireddy et al. (2020) [18] state that not all clients contribute
equally to FL performance; some may introduce noise or bias due to non-IID data quality
and heterogeneity.

To address these issues, this work proposes a new client selection algorithm designed
to improve the overall efficiency and effectiveness of FL, as shown in Figure 1. This
algorithm performs client selection by evaluating the client’s local model (LMECS). The
global model is updated by aggregating the parameters of the selected local model. The
proposed LMECS utilizes a metric-based evaluation system to determine the contribution
of each client’s local model to the improvement of the global model’s performance. Clients
possessing models that meet specific performance criteria such as loss, accuracy, and area
under the ROC curve (AUC) are given priority in the aggregation process for creating the
global model. This not only accelerates the performance improvement of the global model
but also increases resilience against data discrepancies and anomalous client updates.
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By proposing this LMECS, this work aims to not only comply with the stringent
privacy requirements for medical data but also to present an advanced FL model that shows
superior performance metrics compared to existing FL algorithms. Through this work, the
goal is to extend to the rapid and accurate identification of high-risk patients in emergency
rooms without data sharing, potentially improving patient outcomes and operational
efficiency within the healthcare system. This work contributes in the following ways:

• FL-based Severity Analysis of Patients: By utilizing FL technology, this work over-
comes the limitations of traditional centralized data collection and analysis, enabling
accurate analysis of the severity of patients in multi-institutional emergency rooms
while maintaining data privacy.

• Flexible and Efficient Client Selection: A new algorithm is proposed to evaluate clients’
local models during the FL process and select the optimal clients based on custom
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metrics. This accelerates performance improvement speed, reduces communication
costs, and enhances the overall predictive performance of the model.

• Validation Using Real Multi-Institutional Emergency Room Data: The utility and valid-
ity of the proposed client selection algorithm are demonstrated through performance
comparisons of centralized learning, standalone learning, and FL models using real
multi-institutional emergency room data from Korea. The experimental validation
strengthens the validity of the performance comparison and increases the practical
applicability of the research findings.

The paper is organized as follows: Section 2 covers the related work pertinent to
this work. In Section 3, the data, models, and FL methods employed in the research
are introduced. Section 4 presents the environment in which the research experiments
were conducted. The results of the research are discussed in Section 5. Finally, Section 6
summarizes the research and proposes directions for future research.

2. Related Works
2.1. Patient Severity Analysis Based on Medical Data

To analyze patient severity, hospitals utilize clinical data and various machine learning
algorithms. Studies are being conducted in areas such as predicting cardiovascular events
in patients [19], analyzing the severity of COVID-positive patients [20,21], and assessing
the condition of emergency patients [22,23] using data and predictive models. Sánchez-
Salmerón et al. [24] explain that artificial intelligence models applied in these studies
include logistic regression, random forests, XGBoost, and deep learning, among other
types. According to Álvaro Valencia-Parra et al. [25], the outcomes of such models are
determined by the quality of the data used. Haitao Song et al. [26] state that clinical data
from hospitals typically involve a small number of patients and exhibit a non-IID nature.
Li Y et al. [27] explain that when data are imbalanced, models may not learn effectively,
leading to decreased performance in predictions. To address this issue, it is necessary to
increase the amount of trainable data and minimize bias to enhance predictions. For this
reason, recent research starts with collecting as much data as possible [28]. However, in
the field of medical research, there is opposition to centralizing data storage, and concerns
about data sharing and privacy protection remain [29,30].

In this study, we used the NEDIS dataset. NEDIS is a system designed to support
emergency medical policy decisions related to the occurrence, transportation, treatment,
and discharge of emergency patients. Data from the emergency rooms of 172 hospitals,
collected from 2017 to 2022, were used. The dataset includes vital information about
emergency patients, with personally identifiable information and codes removed. The data
are labeled using the Korean Triage and Acuity Scale (KTAS) to classify the severity levels
of patients, and a total of 2,051,908 data entries were used.

2.2. Federated Learning in Healthcare

FL is structured in a client–server architecture, with clients often set up in hospital
environments, applied in multiple institutions in the healthcare sector. Research has
been conducted using basic algorithms like FedAvg, fundamental to FL, to predict the
risk status of patients in hospitals with non-IID data [31,32]. Additionally, studies have
been performed using FL for personalized healthcare services [10], like individual health
management and the analysis of mortality rates within hospitals, based on electronic health
records (EHRs) [33,34].

FL consists of two main components: local updates by distributed clients and global
updates, where a central server aggregates the parameters from each client. The basic local
update in FL is carried out as follows.

C =
{

C1, C2, C3, · · · Ci
}

(1)

W i
t+1 = Wt − α∇L

(
Ci,W t

)
(2)
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C represents the local dataset held by each client. W denotes the parameters of the learning
model, while t and i represent the round and client, respectively. α is the learning rate, and
L represents the loss function. The basic global model update in FL is carried out as follows:

Wt+1 = ∑k
i PiW i

t+1 (3)

Pi represents the importance or weight of a client’s local model in the global update. In
foundational FL approaches like FedSGD and FedAvg [35], Pi can be ki/k. Ultimately, the
goal of FL is to optimize the objective function.

min
W

F (W), whereF (W)

= E[L(W , C)] + λ ∗ G(W)
(4)

E[L(W, D)] denotes the expected value of the update from the local client’s model and
dataset, while λ and G(W) represent the hyperparameters controlling the intensity of
regularization and the regularization term, respectively. A notable example is FedProx [36].
In the case of FedSGD and FedAvg, there is no separate regularization term, but various
algorithms add, while λ and G(W) to aim for improved model performance. These FL
algorithms have no criteria for client selection and usually select clients at random.

2.3. Client Selection in Federated Learning

In typical FL, clients participating in the training of the global model are randomly
selected. However, since each client’s data are non-IID, simply selecting clients randomly
does not guarantee the improved performance of the global model [37]. To address this
issue, it is necessary to select clients in a way that enhances the performance of the global
model. Research has been conducted focusing on two primary types of client selection:
resource-centric and performance-centric. Resource-centric client selection has been stud-
ied in environments where client resources are limited, such as IoT settings [38,39]. In
environments where data statistics are more critical than device performance, such as
with medical data, research has mainly focused on selecting clients based on the perfor-
mance of their local models. Studies related to performance-centric client selection include
those selecting clients based on the local model’s loss value to achieve rapid convergence
and better performance [40], as well as research selecting clients based on the accuracy
of their local models [41]. The findings of these studies are empirical, based on experi-
mental results [42,43]. Therefore, this work also aims to derive empirical results through
various experiments.

3. Method

To predict the severity of patients in multi-institutional emergency rooms based
on FL and to verify the utility of FL, data from various hospital emergency rooms in
Korea were utilized. Additionally, a severity analysis model layer demonstrating superior
performance was employed. This work also showcases a differentiated client selection
algorithm from existing FL algorithms, demonstrating its superior performance compared
to the conventional algorithms.

3.1. Dataset

The dataset used in this work is the Korean national emergency department infor-
mation system (NEDIS). NEDIS supports emergency medical policy decision-making by
tracking the emergency medical system process from the occurrence of an emergency
patient to their transfer, treatment, and discharge [44]. The data used in this work consist
of real-time collected patient visit information from emergency rooms of 172 hospitals
in South Korea, spanning from 2017 to 2021. The variables provided in the dataset are
described in Table 1. To differentiate FL clients (hospitals), emergency institution numbers
were used. These institution numbers are anonymized values of the institution names. For
predicting the severity of a patient’s condition, basic patient information, symptom onset
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time, initial vital signs, response, main symptoms, and KTAS (Korean Triage and Acuity
Scale) severity indicators were utilized. The target variable for severity analysis was based
on the emergency treatment outcomes. Patients admitted to the ICU or who had died were
defined as requiring critical care, while all other cases were defined as general patients.
These definitions were used to establish the target for patient severity analysis. Information
regarding patient transfers was excluded since the final emergency treatment outcomes for
these patients could not be ascertained.

Table 1. Data characteristics information.

Characteristics Description Details

Emergency Room (ER) ID Classification number for
each ER

Composed of 172 hospitals
in total

Basic Information Patient’s basic demographic
information Gender, Age

Time of Symptom Onset Time from onset of symptoms
to arrival at the ER

Distributed from 1 h to more
than 30 days

Early Biosignals Initial vital signs information
measured in the ER

Blood Pressure (Systolic,
Diastolic), Heart rate,

Respiration rate, Body
Temperature, Oxygen

Saturation rate

Response Upon Visit Patient’s initial reaction seen
in the emergency room

Alert, Reacting to voice,
Reacting to pain, Unresponsive

Main Symptoms Main symptoms of patients
who came to the ER Pain, Fever, Dizziness, etc.

KTAS Severe Index Korean emergency patient
classification information

Resuscitation, Urgent,
Emergency, Semi-emergency,

non-emergency

Outcomes Patient final status outcome in
the ER

Return Home, Transfer,
Hospitalization (General, ICU),

Death

3.2. Model

To predict the severity of emergency room patients, a model based on deep neural
networks (DNNs) was created. The model’s structure references a feedforward neural
network structure that has shown excellent performance in severity analysis problems [45].
The model includes a total of five hidden layers, with each layer comprising 89 neurons.
This configuration provides sufficient complexity to learn various patterns necessary for
predicting severity. Each hidden layer undergoes a linear transformation followed by batch
normalization to standardize the layer’s output, and a ReLU activation function is applied.
Additionally, a dropout rate of 0.5 is set for each layer to contribute to the prevention of
overfitting. In the output layer, a sigmoid activation function is applied to adjust the result
value to between 0 and 1, thereby predicting the patient’s severity.

3.3. Proposed Federated Learning Algorithm

Existing FL algorithms aggregate local models from multiple clients using simple
averaging, random sampling, or by adding regularization terms, and then update the
global model. These approaches have several inherent issues in terms of efficiency and
practicality [46]. Simple averaging, which aggregates under the assumption that all clients
are equally important, can be inefficient for model optimization as it does not consider
the quality, quantity, and distribution of data. Additionally, random sampling is reliant
on chance and cannot eliminate the possibility that some inefficient local models might
adversely affect the global model. The method of adding regularization terms can also
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increase the complexity of the model, and finding the appropriate regularization term can
be challenging. To solve these issues, this paper proposes a client selection algorithm based
on local model evaluation. The proposed algorithm flexibly selects clients according to
various evaluation metrics that determine the model’s performance. This dynamic selection
mechanism evaluates and compares each client’s local model using metrics such as loss,
accuracy, AUC, or other custom metrics. To express the LMECS algorithm mathematically,
it is necessary first to define the process of evaluating each client’s local model and the
criteria for their selection. The LMECS algorithm is as follows. The method for evaluating a
client’s local model is as follows: Si represents the score of client i’s local model. E evaluates
how well the local model performs on the dataset Ci using the global model parameters Wt.

Si = E
(

Ci, Wt

)
(5)

A set of clients Cs that meet a user-defined criterion θ is defined. A client i is selected
when its score Si is equal to or exceeds the threshold θ.

Cs = { i | Si ≥ θ } (6)

The local model parameters of the selected clients are aggregated to update the global
model. Each client updates its model based on its local data and sends these updated model
parameters Wi

t+1 to the central server. The FL server aggregates these updates, applying
weights divided by the number of selected clients |Cs|. Consequently, this formula updates
the global model using the parameters of the selected local models, creating a new model
Wt+1 to be used in the next round of training.

Wt+1 =
1

|Cs|∑ i ∈ CsWi
t+1 (7)

The pseudocode of the proposed algorithm is as follows, as illustrated in Algorithm
1. During the selection process, Si represents the performance score of each client’s local
model, while ST is the threshold value used to select clients based on this score. A client is
only selected if its score exceeds this threshold, and it becomes part of the set Cs. Only the
local updates from clients in this set are used to improve the global model.

The proposed algorithm evaluates clients’ local models based on metrics, selecting
only those that meet a user-defined criterion for inclusion in the aggregation process to
update the global model. Updates from clients that could degrade the performance of
the global model due to lower quality are excluded. This approach ensures that only
updates from clients contributing positively to the model’s performance and efficiency
are considered.

Algorithm 1 Local Model Evaluation based Client Selection

1: Input: Set of all clients C, datasets Di of each client i
2: Output: Aggregate global model parameters from selected clients W
3: Initialize global model parameters W
4: for each round t do
5: if t == 0 then
6: Select all subset of clients Cs
7: else
8: Select clients Cs from previously selected clients
9: end if
10: for each client i ∈ Cs in parallel do
11: if client i is selected then
12: Local training on client i
13: for each local epoch e to E do
14: for each batch b in local dataset Di do
15: Update local model Wi
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Algorithm 1 Cont.

16: end for
17: end for
18: end if
19: Evaluate local model and calculate score Si = E(Ci, Wt)
20: Communicate the score Si to the server
21: Send updated model Wi

t+1 to server
22: end for
23: Server-side client selection based on score Si
24: Selection threshold is θ

25: for each client i ∈ Cs do
26: if Si ≥ θ then
27: Add i to Cs
28: end if
29: end for
30: Aggregate updates from selected clients to update global model Wt+1 =

Aggregate
(

Cs, Wi
t+1

)
31: end for
32: Function Aggregate:
33: Input: Set of selected clients Cs, updated model parameters Wit+1
34: Output: Aggregate global model parameters Wt+1
35: Wt+1 = 1

|Cs ]
∑i∈C Wi

t+1

36: End Function

4. Experimental Design

To validate the severity analysis scenario for patients in multi-institutional emergency
rooms, we established three experimental environments, as shown in Figure 2: standalone
learning (SL), centralized learning (CL), and FL. All experiments utilized the previously
mentioned NEDIS data. To ensure comparability, each experiment under the three condi-
tions used the same configuration of the dataset for each hospital. This approach allowed us
to evaluate the efficiency of each model in a controlled manner, providing a clear compari-
son of how these different learning environments perform in the context of emergency room
patient severity analysis. This controlled approach was crucial in determining the most
effective method for analyzing patient severity in a multi-institutional emergency setting.

4.1. Environment Setup

We performed FL simulations based on Ray [47] using the Flower framework [48] in
a server environment equipped with an Intel(R) Core (TM) i9-10980XE CPU (3.00 GHz)
(Intel Corporation, Santa Clara, CA, USA) and two NVIDIA GeForce RTX 3090 GPUs
(NVIDIA Corporation, Santa Clara, CA, USA). Additionally, we were able to monitor
and observe the results of this experiment by utilizing the FedOps platform (version
1.1). [49–51], which can manage the FL lifecycle. The data processing and modeling were
carried out using Pytorch (version 2.2.0). To facilitate unbiased and accurate comparative
analysis across the three experimental environments, we defined a rigorous experimental
design. Data from 50 randomly selected hospitals were used, and to ensure reliability and
statistical significance, 10 trials were conducted for each set. Despite the random selection
of hospitals, each experimental environment was structured with the same dataset to ensure
comparability. The hyperparameter information for all experiments is presented in Table 2.
The data configuration for each experiment is detailed in Table 3, and a non-IID data
distribution was observed in all experimental environments. This thorough experimental
setup ensured that the comparative analysis between standalone learning, centralized
learning, and FL environments was robust, allowing for a comprehensive understanding
of each approach in the context of emergency room patient severity analysis.
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Table 2. Hyperparameter configuration used in the experiment.

Hyperparameter Notation Value

Number of CPUs per Client ccpu 4
Number of GPUs per Client cgpu 0
Server GPU Resources sgpu 1
Communication Round/Iteration r 100
Number of Epochs per Round e 2
Batch Size b 1024

Criterion for Loss L BinaryCross
Entropy

Optimization opt Adam
Learning Rate η 0.001

Table 3. Non-IID data configuration for each experiment.

Experiment
Number

Client Data (Train) Evaluation Data (Test)

Non-Critical Care Critical Care Total Size Non-Critical Care Critical Care Total Size

1 93.2% 6.8% 3,866,342 93.09% 6.91% 773,268
2 93.35% 6.65% 3,301,971 93.03% 6.97% 660,394
3 93.71% 6.29% 3,492,681 92.94% 7.06% 698,536
4 93.62% 6.38% 2,476,352 92.91% 7.09% 495,270
5 93.8% 6.2% 3,574,151 92.83% 7.17% 714,830
6 92.55% 7.45% 2,418,920 93.4% 6.6% 483,784
7 94.1% 5.9% 3,595,783 92.74% 7.26% 719,156
8 91.93% 8.07% 3,547,194 93.59% 6.41% 709,438
9 93.4% 6.6% 2,665,113 93.05% 6.95% 544,022

10 92.75% 7.25% 3,763,022 93.26% 6.74% 752,604
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4.2. Standalone Learning

In the standalone environment, each client trains its local model C using its local
dataset Di. This scenario reflects a situation where clients operate independently without
sharing data. Each client’s dataset is split into a training set and a test set in an 8:2 ratio,
with the test set used to evaluate the performance of each client’s local model (Figure 2a).

4.3. Centralized Learning

In the centralized environment, all participating clients’ data ADi = {D1, D2, .., Di}
are aggregated to train a centralized model AC. The training set in this model comprises
10 parts, and the test set has two parts. The training set includes data from each hospital,
and the test set is randomly composed of data not included in the training set. The
performance of the centralized model is evaluated using this test set (Figure 2b).

4.4. Federated Learning

In the federated environment, each client trains and evaluates its local model without
data sharing and shares the results to create and assess a global model. The local models are
updated based on the updated global model, and the clients then retrain and re-evaluate
these models. The performance comparison of FL is performed through the existing
algorithms FedAvg and FedProx, which randomly select clients, and the proposed LMECS
algorithm. To compare the performance of FL and CL, a test set for CL and a global
model evaluation dataset for FL were constructed. Both datasets comprise the same data.
Additionally, to compare the performance of FL and SL, the ratio of training to test sets for
each client in FL was structured the same as in SL, and a performance evaluation of each
local model was carried out using the test set (Figure 2c).

5. Results

In our work, we utilized a comprehensive set of performance metrics—accuracy, sensi-
tivity, specificity, PPV, NPV, and AUC—with a 95% confidence interval (95% CI), to assess
model effectiveness. The 95% CI is particularly critical in clinical settings, ensuring a robust
evaluation of the model’s diagnostic capabilities and allowing for accurate comparison
between models. These metrics were selected due to their relevance in clinical settings,
where a holistic view of model performance is essential. Accuracy measures the propor-
tion of true results among the total number of cases examined. Sensitivity and specificity
provide insight into the model’s ability to correctly identify positive and negative cases,
respectively. PPV and NPV offer a perspective on the model’s predictive power, while
AUC provides a cumulative measure of performance across all classification thresholds.
These metrics collectively offer a robust evaluation framework for the predictive models’
diagnostic capabilities. In comparing CL and FL, we included execution time. Execution
time comparison provides valuable insights into the trade-offs between model performance
and the computational cost associated with the training of each model. This method also
allows us to fine-tune the algorithm based on the performance (loss, accuracy, AUC) of the
metrics, and ensures that the improvements seen in the LMECS over existing FL algorithms
are statistically significant and not due to random chance.

5.1. Comparison of CL and FL

A performance comparison between CL and FL was conducted using the evaluation
data presented in Table 3. As seen in Figure 2, in the CL environment, the test set was
used, while in FL, a dataset was employed specifically for evaluating the global model.
The performance comparison between CL and FL is shown in Table 4. The accuracy-
based LMECS showed slightly higher accuracy (81.56 ± 1.63) than CL (81.16 ± 0.29) and
outperformed other existing FL algorithms (Figure 3). In sensitivity, which is an indicator
of how well the intensive care unit was identified, accuracy-based LMECS (83.81 ± 0.33)
showed the most similar performance to CL (84.02 ± 0.16) and was superior to the existing
FL algorithm (Figure 4). Specificity was highest in FedAvg (83.23 ± 2.58) compared to CL,
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LMECS, and FedProx. However, the lower sensitivity of FedAvg (79.13 ± 1.73) suggests that
the model did not adequately capture the nuances of critical care and tended to train in the
direction of typically non-critical care. FedAvg’s selection of clients was random, leading to
a model trained with clients having less critical care information (severe non-IID data). The
PPV and NPV metrics indicated that LMECS was almost similar to CL and superior to other
existing FL algorithms. The low performance of PPV and high performance of NPV can be
attributed to the relatively low proportion of critical care cases in the total dataset, as shown
in Table 3. In terms of AUC, which considers both the sensitivity and specificity for critical
care, accuracy-based LMECS (81.33 ± 0.21) was competitive with CL (81.92 ± 0.14) and
significantly outperformed FedAvg and FedProx (Figure 5). In terms of execution time, FL
showed a 29.7% reduction (3001.1 ± 85.2) compared to CL (4268.8 ± 151), demonstrating
that a distributed client environment is more efficient than analyzing large amounts of data
at once. This assessment was conducted in a simulation environment, and results may
vary in a real-world distributed client setting. However, similar execution times can be
expected with stable network conditions. Furthermore, the performance of the proposed FL
approach showed a 27.12% decrease in execution time compared to existing FL algorithms
(maximum 4117.7 ± 107 s).

Table 4. Comparison of global model performance between centralized learning and federated learning.

Metrics
(95% CI)

Centralized
Learning

Federated Learning

LMECS
(Loss)

LMECS
(Accuracy)

LMECS
(AUC) FedAvg

Accuracy (%) 81.16 ± 0.29 80.82 ± 0.24 81.56 ± 1.63 81.09 ± 1.25 80.32 ± 1.92
Sensitivity (%) 84.02 ± 0.16 83.03 ± 0.34 83.81 ± 0.33 83.78 ± 2.22 79.13 ± 1.73
Specificity (%) 81.15 ± 0.35 80.97 ± 0.37 82.45 ± 2.76 81.57 ± 2.28 83.23 ± 2.58

PPV (%) 24.30 ± 0.53 23.78 ± 0.53 23.58 ± 0.45 23.49 ± 0.48 22.11 ± 0.46
NPV (%) 98.53 ± 0.05 98.44 ± 0.12 98.45 ± 0.05 98.45 ± 0.04 96.25 ± 0.22
AUC (%) 81.92 ± 0.14 81.33 ± 0.21 81.18 ± 0.26 81.28 ± 0.21 75.96 ± 1.34

Execution Time (s) 4268.8 ±151 3001.1 ± 85.2 3291 ± 83.2 3278.4 ± 69.4 3207.6 ± 101
Bold denotes the highest performance in each Metrics.
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5.2. Comparison of SL and FL

SL and FL were compared in terms of the performance of local models using the
test data from the client data in Table 3, as shown in Figure 2. Since there were 50 client
local models, their performance was averaged for evaluation. The performance compar-
ison between SL and FL is shown in Table 5. The accuracy-based LMECS outperformed
both SL and other FL algorithms in overall performance. In terms of accuracy, our al-
gorithm (81.42 ± 2.33) showed a 3% improvement over SL (78.17 ± 0.42) and up to a
9% improvement over existing FL algorithms (62.81 ± 14.8). Sensitivity, an indicator of
critical care prediction, improved by 3% (83.44 ± 0.63) compared to SL (80.70 ± 1.55) and
also outperformed the existing algorithms. Specificity, PPV, and NPV also showed better
performance than both SL and the existing FL models. In terms of AUC performance, the
AUC-based LMECS was the highest, but not significantly different from other LMECS
algorithms. This LMECS showed a 2% improvement over SL (79.68 ± 0.74) and 6% and 23%
improvements over FedAvg (75.72 ± 1.69) and FedProx (75.72 ± 1.69), respectively. These
experimental comparisons demonstrate that applying various metrics within the LMECS
algorithm can provide adaptability and excellent performance suitable for user-specific
tasks. Our experimental results indicate that LMECS can achieve performance levels similar
to centralized learning, highlighting its potential to reach the capabilities of a centralized
approach while maintaining the benefits of FL. Additionally, when compared to standalone
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learning, the use of LMECS-based FL positively impacted the performance of client local
models, showcasing an enhancement in functionality over existing FL algorithms.

Table 5. Comparison of local model average performance between standalone learning and feder-
ated learning.

Metrics
(95% CI)

Standalone
Learning

Federated Learning

LMECS
(Loss)

LMECS
(Accuracy)

LMECS
(AUC) FedAvg

Accuracy (%) 78.17 ± 0.42 80.60 ± 0.64 81.42 ± 2.33 81.35 ± 1.62 78.11 ± 1.12
Sensitivity (%) 80.70 ± 1.55 82.74 ± 0.58 83.44 ± 0.63 83.02 ± 0.69 77.56 ± 1.93
Specificity (%) 77.66 ± 0.50 80.57 ± 0.66 81.91 ± 3.71 81.72 ± 2.74 80.29 ± 1.47

PPV (%) 21.11 ± 1.43 23.32 ± 0.36 23.62 ± 0.12 23.21 ± 0.31 21.82 ± 0.72
NPV (%) 95.13 ± 1.52 98.12 ± 0.56 98.72 ± 0.38 98.24 ± 0.16 96.12 ± 0.88
AUC (%) 79.68 ± 0.74 81.38 ± 0.41 81.43 ± 0.56 81.45 ± 0.39 75.72 ± 1.69

Bold denotes the highest performance in each Metrics.

6. Conclusions

We underscore the transformative potential of the Local Model Evaluation Client
Selection (LMECS) algorithm within FL for patient severity analysis in multi-institutional
emergency room settings. This work primarily focused on addressing the challenges
posed by existing FL and centralized data analysis methods, particularly in terms of data
privacy, computational efficiency, and the diverse nature of medical data. The LMECS
algorithm, an innovative contribution to FL, has demonstrated its ability to adapt to
various user-specific tasks, offering not just compatibility with the stringency of medical
data privacy but also a substantial improvement in performance metrics compared to
existing FL algorithms. Significantly, the experimental results revealed that LMECS could
match, and in some instances surpass, the performance levels of centralized learning (CL).
This is a critical breakthrough, suggesting that it is possible to achieve the efficiency and
accuracy of centralized models while retaining the inherent benefits of FL, such as data
privacy and reduced data movement. Moreover, our findings highlighted a significant
reduction in execution time with the implementation of the LMECS algorithm. This
reduction was observed when compared both to CL and existing FL algorithms. Such
efficiency is especially crucial in clinical settings, where prompt decision-making based on
accurate and timely data analysis can have a substantial impact on patient outcomes. This
aspect of LMECS underlines its suitability for real-world healthcare applications, where
both speed and accuracy are paramount. Another crucial aspect of our research findings
is the enhanced performance of the proposed LMECS algorithm compared to standalone
learning (SL), where FL is not applied. The experimental results indicate that LMECS
significantly improved the overall performance of local models. This improvement was
not limited to specific metrics but was observed across a range of performance indicators,
demonstrating the algorithm’s ability to enhance model accuracy and reliability in diverse
medical data environments. In terms of metric-based performance evaluation, LMECS’s
adaptability was evident. The ability to tailor the algorithm based on specific performance
metrics like loss, accuracy, and AUC enables a more nuanced approach to model evaluation.
In the future, applying LMECS to multiple classification and prediction models involving
data from a variety of hospitals will add significant weight to the work. This real-world
applicability is important to state the effectiveness of the algorithm beyond theoretical
or simulated environments. In summary, this work not only contributes to the field of
medical data analysis and patient care but also opens new avenues for further research.
The advancements in FL brought about by LMECS can be explored in other domains where
privacy concerns and data heterogeneity are predominant. The future of FL, particularly in
healthcare, looks promising, with LMECS paving the way for more efficient, private, and
accurate data analysis methods.
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