Transmission Loss Characteristics of Dual Cavity Impedance Composite Mufflers for Non-Planar Wave Cavity Resonance
Abstract
:1. Introduction
2. Acoustic Performance Evaluation Indicators for an Expandable Duct Silencing System
2.1. Acoustic Performance Evaluation Indicators of Noise Reduction Systems
- (1)
- Transmission loss caused by cross-sectional mutation
- (2)
- Transmission loss of expansion muffler based on plane waves
2.2. Transmission Loss of Expansion Mufflers Based on the Acoustic Finite Element Method
2.3. Experimental Verification of Transmission Loss of Mufflers
3. Acoustic Analysis of Dual Cavity Composite Duct Mufflers
3.1. Acoustic Finite Element Model of Dual Cavity Composite Duct Mufflers
3.2. Impact of Sound-Absorbing Materials on the Acoustic Performance of Dual Chamber Silencers
3.3. The Influence of Parameters on the Acoustic Performance of Dual Cavity Composite Silencers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landrat, M.; Abawalo, M.; Pikoń, K.; Fufa, P.A.; Seyid, S. Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield. Energies 2024, 17, 1988. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.; De Nazelle, A.; Pradas, M.C.; Daher, C.; Dzhambov, A.M.; Echave, C.; Gössling, S.; Iungman, T.; Khreis, H.; Kirby, N.; et al. The Superblock Model: A Review of an Innovative Urban Model for Sustainability, Liveability, Health and Well-Being. Environ. Res. 2024, 251, 118550. [Google Scholar] [CrossRef] [PubMed]
- Kosnik, M.B.; Hauschild, M.Z.; Fantke, P. Toward Assessing Absolute Environmental Sustainability of Chemical Pollution. Environ. Sci. Technol. 2022, 56, 4776–4787. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.J.; Aráujo, J.M.M.; Martinho, G.; Pereiro, A.B. Waste Management Strategies to Mitigate the Effects of Fluorinated Greenhouse Gases on Climate Change. Appl. Sci. 2021, 11, 4367. [Google Scholar] [CrossRef]
- Shao, J.; Yang, J.; Wu, X.; Wang, C.; Deng, G. Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror. Appl. Sci. 2020, 10, 994. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Wang, X.; Li, C. Technology Development of Electric Vehicles: A Review. Energies 2019, 13, 90. [Google Scholar] [CrossRef]
- Tounsi, D.; Taktak, W.; Dhief, R.; Taktak, M.; Chaabane, M.; Haddar, M. Evaluation of the Acoustic Performance of Porous Materials Lined Ducts with Geometric Discontinuities. Arch. Acoust. 2023, 47, 223–240. [Google Scholar] [CrossRef]
- Deery, D.; Flanagan, L.; O’Brien, G.; Rice, H.J.; Kennedy, J. Efficient Modelling of Acoustic Metamaterials for the Performance Enhancement of an Automotive Silencer. Acoustics 2022, 4, 329–344. [Google Scholar] [CrossRef]
- Deery, D.; Kennedy, J. Performance Enhancement of an Automotive Silencer Using Acoustic Metamaterial Baffles. Vibroeng. Procedia 2021, 37, 66–71. [Google Scholar] [CrossRef]
- Wang, A.; Fang, J.; Yin, X.; Song, Y.; Cao, F.; Gullo, P. Coupling Effect of Air Flow Rate and Operating Conditions on the Performance of Electric Vehicle R744 Air Conditioning System. Appl. Sci. 2021, 11, 4855. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wu, H.; Yan, C. Study on the Performance Improvement Mechanisms of Expansion Chamber Water Mufflers with Reacting End Walls. Acoust. Aust. 2023, 51, 221–231. [Google Scholar] [CrossRef]
- Saadabadi, M.; Samimi, M.; Hosseinlaghab, H. Organized Computational Measurement to Design a High-Performance Muffler. Metrology 2023, 3, 254–279. [Google Scholar] [CrossRef]
- Liu, P.; Zuo, S.; Wu, X.; Chen, S.; Kong, Y. Acoustic Attenuation Characteristics of the Muffler Phononic Crystal with Hybrid Resonators. Int. J. Mech. Sci. 2022, 234, 107677. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, K.; Zhang, W.; Zhang, K.; Wang, C.; Jin, W. Optimization of Multi-Blade Centrifugal Fan Blade Design for Ventilation and Air-Conditioning System Based on Disturbance CST Function. Appl. Sci. 2021, 11, 7784. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, P.; Li, J. Multi-Objective Multi-Variable Large-Size Fan Aerodynamic Optimization by Using Multi-Model Ensemble Optimization Algorithm. J. Therm. Sci. 2024, 33, 914–930. [Google Scholar] [CrossRef]
- He, L.; Li, P.; Zhang, Y.; Jing, H.; Gu, Z. Intelligent Control of Electric Vehicle Air Conditioning System Based on Deep Reinforcement Learning. Appl. Therm. Eng. 2024, 245, 122817. [Google Scholar] [CrossRef]
- Sikora, J.; Wagnerová, R.; Landryová, L.; Šíma, J.; Wrona, S. Influence of Environmental Noise on Quality Control of HVAC Devices Based on Convolutional Neural Network. Appl. Sci. 2021, 11, 7484. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y. Low Frequency Bandgap and High Stiffness of Innovative Auxetic Metamaterial with Negative Thermal Expansion. Thin-Walled Struct. 2024, 201, 112010. [Google Scholar] [CrossRef]
- Li, K.; Nennig, B.; Perrey-Debain, E.; Dauchez, N. Poroelastic Lamellar Metamaterial for Sound Attenuation in a Rectangular Duct. Appl. Acoust. 2021, 176, 107862. [Google Scholar] [CrossRef]
- Yamamoto, T.; Akimoto, Y.; Hosomi, N. Multiscale Simulation for Sound Transmission Loss of a Particulate Filter in an Exhaust System Using a Homogenization Method. Appl. Acoust. 2024, 219, 109939. [Google Scholar] [CrossRef]
- Piana, E.A.; Carlsson, U.E.; Lezzi, A.M.; Paderno, D.; Boij, S. Silencer Design for the Control of Low Frequency Noise in Ventilation Ducts. Designs 2022, 6, 37. [Google Scholar] [CrossRef]
- Dimitrovová, Z.; Biswas, P.; Gonçalves, R.; Silva, T. Recent Trends in Wave Mechanics and Vibrations: Proceedings of WMVC 2022; Mechanisms and Machine Science; Springer International Publishing: Cham, Switzerland, 2023; Volume 125, ISBN 978-3-031-15757-8. [Google Scholar]
- Xiao, Z.; Gao, P.; Wang, D.; He, X.; Wu, L. Ventilated Metamaterials for Broadband Sound Insulation and Tunable Transmission at Low Frequency. Extrem. Mech. Lett. 2021, 46, 101348. [Google Scholar] [CrossRef]
- Qi, H.-B.; Fan, S.-W.; Jiang, M.; Tang, X.-L.; Wang, Y.-S. Low-Frequency Ultra-Broadband Ventilated Muffler Based on a Resonance-Labyrinthine Metamaterial. Extrem. Mech. Lett. 2024, 67, 102120. [Google Scholar] [CrossRef]
- Nguyen, H.; Wu, Q.; Xu, X.; Chen, H.; Tracy, S.; Huang, G. Broadband Acoustic Silencer with Ventilation Based on Slit-Type Helmholtz Resonators. Appl. Phys. Lett. 2020, 117, 134103. [Google Scholar] [CrossRef]
- Gao, C.; Hu, C.; Hou, B.; Zhang, X.; Li, S.; Wen, W. Ventilation Duct Silencer Design for Broad Low-Frequency Sound Absorption. Appl. Acoust. 2023, 206, 109324. [Google Scholar] [CrossRef]
- Suyatno; Panggabean, N.B. A Silencer Design and Analysis of the Effect of Silencer Perforation towards Resonant Frequency and Insertion Loss in a Duct. J. Phys. Conf. Ser. 2021, 1896, 012019. [Google Scholar] [CrossRef]
- Villau, M.; Rämmal, H.; Lavrentjev, J. Innovative Fibreless HVAC Duct Silencer Based on Microperforated Elements. Mater. Today Proc. 2021, 47, 3154–3160. [Google Scholar] [CrossRef]
- Catapane, G.; Magliacano, D.; Petrone, G.; Casaburo, A.; Franco, F.; De Rosa, S. Semi-Analytical Estimation of Helmholtz Resonators’ Tuning Frequency for Scalable Neck-Cavity Geometric Couplings. CEAS Aeronaut. J. 2022, 13, 797–808. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, D.; Liu, J.; Hu, B.; Wen, J. Transmission and Bandgap Characteristics of a Duct Mounted with Multiple Hybrid Helmholtz Resonators. Appl. Acoust. 2021, 183, 108266. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, S.; Zhang, H.; Deng, C.; Sun, H. Flow Field Analysis and Noise Characteristics of an Automotive Cooling Fan at Different Speeds. Front. Energy Res. 2023, 11, 1259052. [Google Scholar] [CrossRef]
- Huang, B.; Xu, J.; Wang, J.; Xu, L.; Chen, X. Numerical Investigation on the Aerodynamic and Aeroacoustic Characteristics in New Energy Vehicle Cooling Fan with Shroud. Processes 2024, 12, 333. [Google Scholar] [CrossRef]
- Magliacano, D.; Ouisse, M.; de Rosa, S.; Franco, F.; Khelif, A. Investigations about the Modelling of Acoustic Properties of Periodic Porous Materials with the Shift Cell Approach. In Proceedings of the SMART 2019: IX ECCOMAS Thematic Conference on Smart Structures and Materials, Paris, France, 8–11 July 2019; Available online: https://hal.science/hal-02394280 (accessed on 6 June 2024).
- Magliacano, D.; Ouisse, M.; Khelif, A.; Rosa, S.; Franco, F.; Atalla, N. Computation of Wave Dispersion Characteristics in Periodic Porous Materials Modeled as Equivalent Fluids. In Proceedings of the ISMA2018: International Conference on Noise and Vibration Engineering, Leuven, Belgium, 17–19 September 2018; Available online: https://hal.science/hal-02394223 (accessed on 6 June 2024).
Structural Parameters | Value |
---|---|
Cross-sectional area of air duct cavity | |
Dilated chamber cross-sectional area | |
Expansion ratio | 2.29 |
Chamber length |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yan, B.; Zhang, H.; Wang, C.; Wang, J.; Zhang, Z.; Huang, Q.; Zhan, X. Transmission Loss Characteristics of Dual Cavity Impedance Composite Mufflers for Non-Planar Wave Cavity Resonance. Appl. Sci. 2024, 14, 6879. https://doi.org/10.3390/app14166879
Huang Y, Yan B, Zhang H, Wang C, Wang J, Zhang Z, Huang Q, Zhan X. Transmission Loss Characteristics of Dual Cavity Impedance Composite Mufflers for Non-Planar Wave Cavity Resonance. Applied Sciences. 2024; 14(16):6879. https://doi.org/10.3390/app14166879
Chicago/Turabian StyleHuang, Yizhe, Bojin Yan, Huizhen Zhang, Chenlin Wang, Jun Wang, Zhifu Zhang, Qibai Huang, and Xin Zhan. 2024. "Transmission Loss Characteristics of Dual Cavity Impedance Composite Mufflers for Non-Planar Wave Cavity Resonance" Applied Sciences 14, no. 16: 6879. https://doi.org/10.3390/app14166879
APA StyleHuang, Y., Yan, B., Zhang, H., Wang, C., Wang, J., Zhang, Z., Huang, Q., & Zhan, X. (2024). Transmission Loss Characteristics of Dual Cavity Impedance Composite Mufflers for Non-Planar Wave Cavity Resonance. Applied Sciences, 14(16), 6879. https://doi.org/10.3390/app14166879