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Abstract: The effectiveness of viscoelastic dampers as passive control devices has been demonstrated
in the past through both experimental and numerical investigations. Based on the Modal Strain
Energy Method, some authors have also proposed design procedures to size the viscoelastic dampers
assuming a fist-mode behavior of the structure. However, even if the damped structure is governed
by the first mode of vibration, viscoelastic dampers are sensitive to the frequencies of the upper
modes and transmit unexpected internal forces to braces. This paper aims to develop a simple design
procedure for steel moment-resisting frames equipped with viscoelastic dampers considering the
effects of the higher modes of vibrations on the internal forces transmitted from the dampers to the
braces. In the perspective of a designer-oriented study, the seismic demand is evaluated through
simple analytical tools, such as the lateral force method or the response spectrum analysis. The design
procedure is applied to a set of steel moment-resisting frames considering two levels of seismic
hazard and two types of soil. Finally, the effectiveness of the proposed procedure is verified through
nonlinear dynamic analysis. Based on the results, it is found that the proposed design procedure
ensures the control of the story drift below prefixed limits and to predict accurately the internal forces
that arise in the braces.

Keywords: passive control; viscoelastic damper; viscoelasticity; steel structure; moment-resisting
frame; added damping; seismic design

1. Introduction

Buildings designed according to conventional capacity design techniques [1] experi-
ence only minor structural damage in the case of low-to-moderate-intensity earthquakes
and ensure an adequate safety level to their occupants in the case of major events. However,
after severe earthquakes the immediate functionality of the building or even the possibil-
ity and the cost-effectiveness of repairing are not guaranteed since both the dissipative
members and the non-structural elements are expected to be strongly damaged.

To limit or even avoid damage in structural and non-structural components, passive
control techniques [2] have been developed and successfully applied in the last decades to
both new and existing buildings in order to control the seismic response [3–5].

The present paper focuses on a passive control system based on viscoelastic solid
dampers and applied to new moment-resisting frame (MRF) steel structures.

A viscoelastic solid damper (VED) exploits the viscous-hysteretic behavior of elas-
tomers to dissipate strain energy in the form of heat when subjected to cyclic deformation
in dynamic load conditions [6,7]. When subjected to dynamic cyclic loading, the response
of the elastomer shows a lag between the applied strain and the stress developed in the
material. In the stress–strain plane, the response to harmonic loading is characterized by
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inclined elliptical hysteretic cycles. Mechanical properties of elastomers are affected by
strain rate and ambient temperature, as widely reported in the literature [8–10]. In the case
of prolonged cycling, elastomers are prone to softening due to self-heating [11,12], and this
effect increases with the imposed deformation [13,14].

A VED consists of layers of elastomer and steel plates bound together through a
vulcanization process. Steel plates are linked to the structure so as to allow the elastomeric
layers to deform in shear. VEDs are usually mounted in series with a bracing system,
typically consisting of diagonal braces (e.g., [15,16]) or chevron braces (e.g., [17,18]), but
other configurations can be found in the literature [19–22]. The key features of a VED, as a
passive control device, are the capability of providing the structure with additional stiffness
and damping [23] and the capability of recovering its initial undeformed shape at the end
of seismic events [15,24].

To the best knowledge of the authors, the first applications of VEDs in buildings date
back to the 1960s for the control of wind-induced vibrations [21]. The first experimental
and theoretical studies on the use of VE dampers as seismic devices date back to the early
1990s [8,9,25–28]. Recently, design guidelines for new buildings equipped with viscoelastic
dampers, based on nonlinear response spectrum analysis, have been included in the draft
of the new Eurocode 8 [29]. However, various design approaches for buildings equipped
with VEDs already exist in the literature, i.e., procedures based on the construction of the
elastic or elastoplastic reduction curve [30,31], energy-based procedures [32], procedures
based on the direct displacement-based design method [33,34], and procedures based on
the Modal Strain Energy (MSE) method [35–38]. The MSE method is an analytical tool
initially formulated by Ungar and Kerwin [39] and developed for engineering purposes
by Johnson and Kienolz [40]. The MSE method allows the prediction of the equivalent
viscous damping ratio of a structure equipped with viscoelastic dampers provided that the
characteristics of the viscoelastic material and the modal shape of the undamped structure
are known. Also, capacity spectrum method procedures have been proposed to assess the
performances of buildings with high added damping [41–43]. Other studies focused on the
effects of earthquakes with different characteristics on structures equipped with seismic
protection devices, with specific reference to near-fault earthquakes [44–46].

The objective of this paper is to formulate a design procedure for viscoelastically
damped steel MRFs based on the Modal Strain Energy Method (MSE method) in the
framework of the provisions of the Eurocodes. Past research (e.g., the design procedure
proposed by Chang et al. [36]) mainly focused on the sizing of the dampers, while the items
related to the design of the members connected to the VEDs were left uncovered. In order
to correctly predict the internal forces that arise in members connected to the VEDs due to
higher modes of vibration, specific steps are dedicated in the proposed procedure to take
into account the sensitivity of the dampers to the frequencies of the higher modes. This
step involves the derivation and the calibration of an analytical model of the damper that
is able to catch the frequency dependency of the VE material.

The proposed procedure is applied to design a series of case studies with 4, 6, and
8 stories for two values of the peak ground acceleration (PGA) and two soil types. In these
case studies, VEDs are placed in the central bay of each perimetral frame on all floors. The
dampers are in series with braces in the chevron configuration. A typical braced bay and a
particular of the VED are shown in Figure 1. In the next section, the constitutive equation of
viscoelastic materials is introduced. Then, a frequency-dependent model of the VE material
is proposed, and its parameters are calibrated based on experimental data. Hence, the
proposed design procedure is presented and applied to case studies. Finally, the proposed
procedure is validated through nonlinear dynamic analysis.
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Figure 1. (a) Schematic representation of a braced bay and (b) particular of the VED. 
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Figure 2. (a) Mechanical response to cyclic deformation and (b) stress–strain diagrams for viscoe-
lastic materials. 
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Figure 1. (a) Schematic representation of a braced bay and (b) particular of the VED.

2. Dynamic Characteristics of Viscoelastic Materials

The response of a viscoelastic solid material to a shear deformation history γ(t) is
intermediate between the response of an elastic solid material and a viscous fluid. If γ(t) is
a harmonic function with amplitude γ0 and pulseω, the steady-state stress response τ(t)
of the VE material is lagged by a phase angle δ ranging from 0◦ (elastic behavior) to 90◦

(viscous behavior), i.e.,
γ(t) = γ0 sinωt (1)

τ(t) = τ0 sin(ωt + δ) (2)

The steady-state stress–strain hysteretic diagram described by Equations (1) and (2)
has the shape of an ellipse centered on the origin and inclined with respect to the γ axe.
The inclination of the ellipse depends on the elastic component of the response, while the
enclosed area depends on the viscous component, as shown in Figure 2.

The hysteretic diagram of the VE material can be described by a pseudo-elastic
law, i.e.,

τ(t) = G∗γ(t) (3)

where G* is called the “dynamic modulus”. This quantity accounts for both the elastic and
viscous components of the response, whose contribution to the total response is a function
of the phase angle δ. Equations (1) and (2) can be expressed in the frequency domain
as follows:

γ(iω) = γ0eiωt (4)

τ(iω) = τ0ei(ωt+δ) (5)
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Figure 2. (a) Mechanical response to cyclic deformation and (b) stress–strain diagrams for
viscoelastic materials.
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The dynamic modulus is a complex number given by the following relation

G∗ =
τ0ei(ωt+δ)

γ0eiωt =
τ0

γ0
eiδ (6)

According to complex notation, the dynamic modulus can also be expressed in
polar coordinates

G∗ =
τ0

γ0
(cos δ+ i sin δ) (7)

or, equivalently, in Cartesian coordinates

G∗ = G′ + iG′′ (8)

where G′ is called the “shear storage modulus” and represents the elastic component of
the material behavior, whereas G′′ is called the “shear loss modulus” and represents the
viscous components of the material behavior [13,35]. By equating Equations (7) and (8), G′

and G′′ can be obtained
G′ =

τ0

γ0
cos δ (9)

G′′ =
τ0

γ0
sin δ (10)

According to Equations (7) and (8), the dynamic modulus G* can be represented as
a vector of the complex plane whose angle with the axis of the real numbers is the phase
angle δ, as shown in Figure 3. The intensity of G* is called the “complex modulus” and is
given as follows:

|G∗| = τ0

γ0
(11)

This mathematical representation is consistent with the actual behavior of VE mate-
rials. In fact, when the phase angle tends to 0◦ (elastic behavior), the loss modulus tends
to zero. Vice versa, when the phase angle tends to 90◦ (viscous behavior), the storage
modulus tends to zero. The ratio between the loss modulus and the storage modulus
is called the “loss factor” η and represents an indicator of the damping capability of an
elastomer [47]

η =
G′′

G′
=

sin δ
cos δ

= tan δ (12)

Finally, the intensity of the dynamic modulus can also be expressed as a function of G′

and G′′

|G∗| =
√

G′2 + G′′ 2 (13)

The complex modulus |G*|, the storage modulus G′, the loss modulus G′′ , and
the loss factor η are the parameters that will be used in the next sections to characterize
the elastomer.

Equation (3) can be rewritten in the frequency domain using Equations (4) and (5)

τ(iω) = |G∗|eiδ γ0eiωt = |G∗|γ0ei(ωt+δ) (14)

In the time domain, the above equation is expressed as

τ(t) = |G∗|γ0 sin(ωt + δ) (15)

Considering the identity sin(α + β) = sinαcosβ + cosαsinβ, the Equation (15) can be
rewritten as follows:

τ(t) = γ0[|G∗| cos δ sinω t + |G∗| sin δ cosω t] (16)
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Considering Equations (9) and (10), it is possible to make the storage and the loss
moduli explicit

τ(t) = γ0
[
G′ sinωt + G′′ cosωt

]
(17)

Equation (17) is the constitutive equation of VE materials subjected to a harmonic
loading with pulse ω and amplitude γ0. With further mathematical steps, Equation (17)
can be rewritten as follows:

τ(t) = G′γ(t)± G′′
√
γ2

0 − γ2(t) (18)

In this form, the constitutive equation represents the equation of an ellipse centered on
the origin of the plane τ-γ and rotated by an angle that is equal to arctan|G∗| as shown in
Figure 2b. The area enclosed by the ellipse represents the energy dissipated per cycle, i.e.,

Ed =
∫ 2π

ω
0

τ(t)
.
γ(t) dt (19)

Making the functions
.
γ(t) and τ(t) explicit and considering Equation (17) and the first

derivative of Equation (1) with respect to time yields

Ed =
∫ 2π

ω
0

[
G′ sinω t + G′′ cosω t

]
γ2

0ω cos(ωt) dt (20)

Ed = π γ2
0 G′′ (21)

Note that the energy dissipated per cycle is proportional to the loss modulus only.
Also note that according to Equations (18) and (21), if G′′ tends to zero, the ellipse collapses
to a straight line with slope (elastic behavior), while if G′ tends to zero, the axes of the
ellipse match with the γ and τ axes (viscous behavior).

3. Numerical Model of Viscoelastic Dampers

The storage modulus G′ and the loss modulus G′′ control the shape of the hysteretic
cycle of a VE material. The dependency of the VE material on the load frequency, ambient
temperature, and self-heating is then reflected on these parameters. As an example, the
dependency of the storage modulus and the loss modulus on strain rate and ambient
temperature is shown in Figure 4 for the elastomer ISD-110 tested by Chang et al. [8] for
different load frequencies and with the control of the ambient temperature.

The dependency of G′ and G′′ on strain rate is due to the molecular structure of
elastomers: the faster the strain is applied, the less time molecular chains have to unroll.
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Therefore, an increase in the strain rate determines an increase in the stiffness and
dissipative capability, i.e., an increase in both the storage modulus and the loss modulus.
Variations in the ambient temperature affect both the stiffness and dissipation capabilities
of the elastomer. An increase in ambient temperature magnifies the rubbery behavior
of the material, and both the storage modulus and the loss modulus decrease. Similarly,
self-heating of the elastomer due to prolonged operating times (e.g., in the case of wind
excitation) decreases the storage and loss moduli.

In this paper, the strain rate dependency of the VE material is considered explicitly in
nonlinear dynamic analyses through the VE material model introduced in this section. The
effects of ambient temperature are taken into account by choosing experimental values of
G′ and G′′ and G′ and G′′ obtained for a selected value of the ambient temperature. The
effects of the temperature variation (due to self-heating) on G′ and G′′ are neglected in this
study. Indeed, the impact of self-heating on the mechanical properties of the elastomer
in the case of short-duration events, like earthquakes, is considered negligible by some
researchers [12,19,48]. Other researchers consider self-heating by means of the explicit
calculation of the heat generated in the VE material during the loading history [27,49]. The
resulting temperature variation is then used to evaluate new values of the storage and loss
moduli through appropriate shift functions [11,49,50] (i.e., functions that provide the values
of G′ and G′′ depending on temperature and based on the time–temperature superposition
principle). However, this process is not straightforward since it requires updating the material
parameters during the numerical analysis. Moreover, this method requires the knowledge of
additional properties of the selected VE material (e.g., specific heat capacity, time–temperature
superposition functions) that are not always available in the literature.

The most common approaches in the literature for the numerical representation of
VE materials are linear models (also referred to as integer derivative models) [2,7] and
fractional derivative models [27,50,51].

Linear models are constituted by basic elements, i.e., springs and dashpots in various
configurations. The simplest possible arrangements of one spring and one dashpot generate
the well-known Kelvin–Voight model and Maxwell model, i.e., models with one spring
and one dashpot connected in parallel and in series, respectively [51]. Even if these models
are both able to reproduce the elliptical hysteretic cycle of the VE material by means of
two parameters (i.e., the stiffness of the spring and the viscous constant of the dashpot),
these simple models do not catch the strain rate dependency of the elastomer effectively.
However, if more complex models are considered (i.e., with a larger number of parameters),
the strain rate dependency of the elastomer may be effectively taken into account. The
Generalized Maxwell Model, an in-parallel combination of more than one (n) Maxwell
elements plus one Kelvin–Voight element (n + 2 parameters), is considered to be an effective
solution for the representation of the strain rate dependency of VE materials [49,52,53].

Fractional derivative models are based on a basic discrete element called a “spring-pot”.
The stress–strain behavior of this latter element is expressed through a linear differential
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operator that allows a differentiation of order α, α being either an integer or a fraction.
When α = 0 or α = 1, the spring-pot is equal to a spring or a dashpot, respectively. When
0 < α < 1, a viscoelastic behavior is obtained. Like linear models, the use of the spring-pot
element in combination with spring elements generates more complex models that effec-
tively predict the response of VE materials. The advantage of such models is represented
by the possibility of reproducing the VE behavior with a lower number of elements than
linear models. Standard-linear solid models, i.e., models with a Kelvin–Voight element in
series with a spring or models with a Maxwell element in parallel with a spring (3 parame-
ters + the value of α), are considered to be valid solutions [54]. However, the spring-pot
element is not available in the material library of most commercial software, including
OpenSees v. 3.6.0, which is used to carry out the numerical analyses of this paper. Since the
implementation of the spring-pot element is beyond the scope of this work, linear models
are preferred herein.

In the following subsections, the models that are able to represent the VEDs are
discussed. In particular, the Generalized Maxwell Model, to be used in nonlinear dy-
namic analysis and the equivalent brace model to be used in response spectrum analysis,
are described.

3.1. Generalized Maxwell Model

In this study, the VE material is represented by means of a Generalized Maxwell
Model with four Maxwell elements. The optimal number of Maxwell elements has been
established based on the best trade-off between the number of parameters of the model and
its effectiveness in reproducing the hysteresis cycles of the selected VE material at different
frequencies. A schematic representation of the Generalized Maxwell Model with n = 4
(GMM4) is shown in Figure 5. The constitutive equation of the GMM4 is given as follows:

τGMM4(t) = γ0
[
G′GMM4 sin(ωt) + G′′GMM4 cos(ωt)

]
(22)

where G′GMM4(ω) and G′′GMM4(ω) are the shear storage modulus and the shear loss mod-
ulus, respectively. These parameters are obtained by means of the following expressions

G′(ω) = GE,0 +
4

∑
i = 1

GE,i (ωλi)
2

1 + (ωλi)
2 (23)

G′′ (ω) = ω GC,0 +
4

∑
i = 1

GE,iωλi

1 + (ωλi)
2 (24)

where
λi =

GC,i

GE,i
i = 1 to 4 (25)

In the above equations, λi is the “relaxation time” of the material, GE,i and GC,i are the
elastic modulus of the spring and the viscous coefficient of the dashpot of the i-th Maxwell
element, GE,0 and GC,0 are the elastic modulus of the spring and the viscous coefficient of
the dashpot of the Kelvin–Voigt element, andω is the circular frequency of excitation of the
structure (to be taken equal to the oscillation frequency of the structure in the fundamental
mode of vibration). Details about the derivation of Equations (22)–(24) are reported in
Appendix A. Note that both the storage and the loss moduli depend on the frequency of
oscillation. Based on experimental values of G′ and G′′ at various frequencies and fixed
ambient temperatures, it is possible to calibrate the storage and loss moduli of the GMM4
model in order to reproduce the hysteretic behavior of the selected VE material. In this
study, the elastomer ISD-111H tested by Montgomery [52] is considered. Experimental
values of G′ and G′′ obtained through cyclic tests at an ambient temperature of 20 ◦C and
at frequencies of 0.1 Hz, 0.3 Hz, 1.0 Hz, and 2.0 Hz are shown in Table 1, together with the
loss factor η.
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Calibration of the coefficients in Equations (23) and (24) is obtained through least
square regression analysis performed on the data reported in Table 1 by means of the
MS-Excel solver. The values obtained for the ten constants GE,0, GC,0 and GE,i, GC,i (with
i = 1 to 4) of the GMM4 model are reported in Table 2.

Table 1. Experimental values of the storage and loss moduli obtained for the elastomer ISD-111HH
at 20 ◦C [52].

γ0 = 100%
f [Hz]

0.1 0.3 1.0 2.0

G’ [MPa] 0.123 0.191 0.327 0.446
G” [MPa] 0.101 0.183 0.366 0.517
η [-] 0.82 0.96 1.12 1.16

Table 2. Parameters of the GMM4 obtained by optimizing the equations of G’ and G” on
experimental values.

T = 20 ◦C Spring 0 Spring 1 Spring 2 Spring 3 Spring 4

GE [MPa] 0.033337 0.311289 0.099964 0.003002 0.080206

Dashpot 0 Dashpot 1 Dashpot 2 Dashpot 3 Dashpot 4

GC [MPa/ω] 0.029715 0.038467 0.069748 0.065506 0.439183

Equation (22) is expressed in terms of stress and strain. However, for design purposes,
it is convenient to consider a force–displacement formulation in order to take account of
the geometric characteristics of the VED

FGMM4(t) = u0
[
K′GMM4 sin(ωt) + K′′GMM4 cos(ωt)

]
(26)

where K′GMM4 and K′′GMM4 are called the “in-phase stiffness” and the “out-of-phase stiffness”
of the VED, respectively. These parameters are obtained by means of the following relations

K′GMM4 = nl
Al
tl

G′GMM4 (27)

K′′GMM4 = nl
Al
tl

G′′GMM4 (28)

where Al and tl are the area and the thickness of a single elastomeric layer of the VED and
nl is the number of layers.

3.2. Equivalent Brace Model

Since the proposed design procedure is based on linear elastic analyses (lateral force
method of analysis and response spectrum analysis), only the contribution of the VED–
brace subassembly to the lateral stiffness of the frame needs to be represented in the
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structural model. The VED is modeled as a simple spring whose stiffness corresponds
to the in-phase stiffness of the VED at the expected ambient temperature and at the fre-
quency corresponding to the dominant mode of vibration of the structure. The VED–brace
subassembly is modeled as a single rod whose lateral stiffness is equal to that of the
subassembly. Specifically, the lateral stiffness keq of the equivalent brace is obtained by
the in-series sum of the lateral stiffnesses k’v of the VED and the lateral stiffnesses kb of
the brace.

keq =
1

1
k′v

+ 1
kb

(29)

Referring to the schematic representation of the VED–brace subassembly shown in
Figure 6, the lateral displacement utot of the node A due to a horizontal force F is given
by the sum of the lateral deformation of the damper uv and the lateral deformation of the
brace ub, i.e.,

utot = uv + ub (30)

Both the VED and the bracing system are subjected to the force F. Therefore, the
stiffnesses k’

v and kb can be written as

k′v =
F
uv

(31)

kb =
2EAb cos2 α

lb
(32)

where α is the angle of inclination of the brace with respect to the horizontal line, lb is
the length of the brace, Ab is the area of the cross-section of the brace, and E is Young’s
modulus of steel. Once the equivalent stiffness keq is determined by Equation (29), the
VED–brace subassembly is represented in the numerical model by means of a fictitious
brace with cross-sectional area Aeq equal to

Aeq =
keq lb

2E cos2 α
(33)
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4. Proposed Design Procedure

The proposed design procedure is based on the assumptions that (i) the response
of the building equipped with VEDs is governed by the first mode of vibration and (ii)
the addition of the VED–brace subassembly to the frame does not affect its first mode
shape. Regarding the first hypothesis, Chang et al. [26] proved that the global response of a
viscoelastically damped frame is essentially governed by the first mode o vibration. The
second hypothesis derives directly from the application of the Modal Strain Energy method
(MSE) as a design criterion [35–38]. Referring to this latter hypothesis, Tsai and Chang [37]
demonstrated that the assumptions made in deriving the MSE method may result in an
overestimation of the modal damping ratios of viscoelastically damped structures when
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the added damping is higher than 20%. Thus, these researchers recommended limiting the
value of the added damping to a maximum value equal to 20%.

Due to its lateral deformability, the insertion of the VED–brace subassembly in the
frame does not determine a significant increase in the lateral stiffness of the structure.
Owing to this, beams and columns are sized according to capacity design rules established
in Eurocode 8 [1] for steel moment-resisting framed (MRF) structures. Thus, members
are verified according to Eurocode 3 [55] to resist internal forces determined by means of
linear analyses. Once the MRF is fully sized, the VED–brace subassembly is included in the
model and sized considering the effects of the higher modes of vibration. Finally, response
spectrum analysis is performed to verify that limits on floor displacements are respected.
The proposed design procedure is shown in the flowchart diagram reported in Figure 7.
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Beams and columns of the MRF are designed for the Life Safety (LS) limit state (here
associated with seismic events with a probability of exceedance of 10% in 50 years). Since
limited damage is accepted in these members, the behavior factor q is taken equal to 1.5,
the same value recommended in Eurocode 8 for base-isolated buildings.

To ensure the functioning of the dissipative system in the worst-case scenario, braces
and the columns belonging to the braced bays are designed to remain elastic (q = 1) at the
attainment of the Near Collapse (NC) limit state (here associated with seismic events with
a probability of exceedance of 2% in 50 years). VEDs are designed to remain undamaged
at the attainment of the NC limit state. The elastomer ISD-111H can totally recover from
deformation of 400% without damage [56]. However, for the sake of safety (as no statistical
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data are available), VEDs are designed to develop a maximum deformation of 200% at the
NC Limit State, as suggested by Kasai et al. [6].

4.1. Design of the MRF

In this study, the initial MRF is designed to sustain gravity loads only, according to
prescriptions of Eurocode 3. Then, the modal analysis is performed, and the first period T1,
the first mode shape Φ1, and the modal participation factor Γ(1) are obtained.

Limits on inter-story drifts δmax are established for Near Collapse (NC), Significant
Damage (SD), and Damage Limitation (DL) limit states using the limits reported in FEMA
365 [57] as reference values for the corresponding limit states (i.e., Collapse Prevention,
Life Safety, and Immediate Occupancy, respectively). These latter limits, reported in the
first row of Table 3, are stipulated for the rehabilitation of existing MRFs. Since one of
the objectives of the examined structural typology is to limit damage, it is reasonable to
consider drift limits in the design of new buildings stricter than those reported in FEMA
365. Owing to this, the limit drift values adopted in this study are reported in the second
row of Table 3.

Table 3. Drift limits provided by FEMA 365 for MRFs for the considered limit states, and drift limits
assumed for viscoelastically damped MRFs.

δmax,NC δmax,LS δmax,DL

FEMA 365 (Table C1-3) 5% 2.5% 0.7%
Adopted limits 2.5% 1% 0.5%

For the considered limit states, the maximum accepted values of the top displacement
utop

NC, utop
LS , utop

DL are calculated assuming that the drift limit is attained at all floors simulta-
neously. Then, the top displacements are converted into the displacements of equivalent
SDOF systems uSDOF

NC , uSDOF
LS and uSDOF

DL using the following expression

uSDOF =
utop

Γ(1) φ
(1)
top

(34)

where φ(1)
top is the component of the first mode shape at the top floor.

For the considered limit states, the minimum demanded values of the equivalent vis-
cous damping ratio, ξd,NC, ξd,LS, and ξd,DL, are evaluated by means of the elastic response
spectrum scaled at the peak ground acceleration (PGA) corresponding to earthquakes with
probability of exceedance equal to 2% (NC), 10%(SD), and 63% (DL) in 50 years, respectively.
The values of ξd,NC, ξd,LS, and ξd,DL are found by minimization of the difference between
the spectral ordinates Sd(T1, ξd,NC)ag,NC, Sd(T1, ξd,LG)ag,LG, and Sd(T1, ξd,DL)ag,DL, and the
maximum displacements uSDOF

NC , uSDOF
LS , and uSDOF

DL of the equivalent SDOF system. The
value of the equivalent viscous damping ratio to be considered in the next steps of the
procedure is the maximum among the values determined for the considered limit states,
i.e., ξd = max{ξd,NC, ξd,LS, ξd,DL}.

The equivalent viscous damping ξadd that shall be provided by the VEDs is equal to
ξd minus the inherent damping ξ0 of the bare frame, assumed equal to 3% for steel MRFs.

For the sake of simplicity, the seismic base shear and the internal forces are obtained
by means of the elastic response spectrum scaled at the PGA associated with the LS limit
state. The behavior factor q and the importance factor γNC will be applied to the relevant
members when internal forces are combined. The importance factor is calculated for the
relevant limit state using the following expression, as suggested in Eurocode 8 Part 1
(§2.1 (4))

γ =

(
PL

PLR

)− 1
k

(35)
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where PL is the probability of exceedance of the seismic action (2% and 63% in the case
of NC and DL, respectively) in TL years (i.e., 50 years), PLR is the reference probability of
exceedance (10% in the case of LS) over the same TL years, and k = 3 is a constant.

The design base shear is calculated by means of the following expression, as reported
in Eurocode 8

Vbase = Se(T1, ξ0)ag,LS
m λ (36)

where Se(T1, ξ0)ag,LS is the spectral acceleration obtained at the period of vibration T1 for
the equivalent viscous damping ratio ξ0 of the bare frame, m is the seismic mass of the
building, and λ is a correction factor (=0.85) accounting for the difference between the base
shear force predicted by the lateral force method of analysis and the response spectrum
method of analysis.

The base shear obtained by Equation (36) is reduced based on the MSE method, as
shown in the following steps. According to the MSE method, the equivalent viscous
damping ratio of the damped structure can be expressed as

ξadd =
ηv−b

2
Kv−d

Ks
=
ηv−b

2

(
Kv−d

K0 + Kv−d

)
(37)

where ηv-b is the loss factor of the damper–brace subassembly, K0, Ks, and Kv-d are the
lateral stiffness of the MRF, the lateral stiffness of the damped structure, and the lateral
stiffness of the damper–brace subassembly, respectively. Assuming that the base shear is
proportional to the lateral stiffness of the structure, Equation (37) can be rewritten as [36]

Vbase = Vv−d + V0 = 2
ξadd

ηv−b − 2ξadd
V0 + V0 (38)

where Vv-d is the fraction of Vbase to be sustained by the dissipative system and V0 is the
fraction to be resisted by the MRF. The value of the seismic base shear to be used to design
the MRF is then derived from Equation (38) as

V0 = B
ηv−b − 2ξadd

ηv−b
Vbase (39)

where B is a corrective coefficient (equal to
√

10/(5 + ξadd) ≥ 0.55) of the equivalent
viscous damping ratio given in Eurocode 8 Part 1-1 (§3.2.2.2).

The loss factor of the VED–brace subassembly, ηv-b, is given by the subsequent
expression [6,36]

ηv−b =

kb
k′v

η2
v +

kb
k′v

+ 1
ηv (40)

where kb is the lateral stiffness of the brace and k’
v is the lateral stiffness of the VED. The

loss factor of the elastomer (i.e., the ratio of the loss modulus to the storage modulus) is
a stable quantity with respect to both frequency and temperature and for the elastomer
ISD-111H, it can be assumed equal to unity. The ratio kb/k’

v is a design parameter that
has to be established a priori and denotes how stiff the brace is with respect to the lateral
stiffness of the VED. Clearly, the stiffer the brace, the higher the deformation of the VED.
Chang et al. [36] found that the efficiency of the dissipative system is sensitive to the ratio
kb/k’

v up to a value of 40. Further increases in the lateral stiffness of the brace do not
improve the performance of the VEDs significantly.

The base shear V0 is used to perform a linear static analysis on the initial MRF and
obtain the internal forces due to seismic action. In this phase, the behavior factor q and the
importance factor γNC are applied. The resulting internal forces are combined with the
internal forces due to gravity loads in the seismic combination and the resistance and lateral
stability checks are conducted on members of the MRF and on the dissipative systems. If
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beam and column cross-sections need to be changed, the above steps of the procedure are
iterated until each member of the structure is verified.

Note that if the period of the initial structure falls into the constant-displacement zone
of the spectrum and numerous iterations are required to complete the design process, the
structure might become increasingly rigid, and the demanded damping might decrease at
each iteration. In such a case, some judgment is necessary to obtain a rational design. A
viable strategy is to fix a value of ξadd that is greater than or, at least, equal to ξd − ξ0 and
lower than 20%—ξ0 at the very first iteration and benefit from the reduction of the base
shear. Once fixed, the value of ξadd shall no longer be modified. Chang et al. [36] suggested
an initial value of ξadd equal to 15%, regardless of the limits on drifts.

4.2. Design of the Braces

In accordance with Equation (38), the design value of the lateral stiffness of the VED-
brace subassembly at the i-th floor, kv-b,i is given as follows:

kv−b,i = αMSEk0,i (41)

where
αMSE =

2ξadd
ηv−b − 2ξadd

(42)

where k0,i is the lateral stiffness of the MRF at the i-th floor. The stiffness of the VED at the
i-th floor is given by the subsequent expression [36]

k′v,i =

[(
1 + η2

v
)
+ kb

k′v

][
1 + η2

v−b

]
kb
k′v
(1 + η2

v)
kv−b,i (43)

Recall that the response of the VEDs is sensitive to the changes in the load frequency.
Thus, the force that arises in VEDs and that is transferred to the braces is affected by the
higher modes of vibration. Further, due to the phase shift of the VE material, the force
associated with the maximum displacement through the stiffness k’v,i is not the maximum
force that occurs in the device (see Figure 2b). To obtain an accurate prediction of the
maximum axial force in braces due to seismic actions, the following steps are required in
the design process.

First, an initial value of the lateral stiffness kb,i of the braces at the i-th floor is estimated
from the prefixed ratio kb/k’v considering the value of k’v,i calculated by Equation (43). The
calculation of the lateral stiffness and the cross-sectional area of the equivalent brace by
Equations (29) and (33) is straightforward. The structural model is then updated, including
the equivalent braces modeled as hinged rods with area Aeq.

Secondly, the period of vibration Tj and the seismic lateral forces Fi
(j) associated with

the j-th mode are determined by modal analysis of the MRF with equivalent braces. Then,
the in-phase stiffness G′ of the VE material is calculated for each mode of vibration by
Equation (23) considering the respective circular frequency. If kv,i

′ are the stiffnesses of the

VEDs in the first mode of vibration, the stiffnesses of the VEDs k′(j)v,i corresponding to the
j-th mode (with j > 1) are calculated through the following expression

k′(j)v,i = k′v,i
G′(j)

G′(1)
(44)

The stiffnesses k(j)eq,i and the areas A(j)
eq,i of the equivalent braces are evaluated by

Equations (29) and (33) for each mode of vibration. For the j-th mode of vibration, the
axial forces in braces are obtained by linear static analysis performed on the structure with

equivalent braces with area A(j)
eq,i using the equivalent seismic forces Fi

(j).
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Third, the axial forces obtained in braces for the j-th mode are multiplied by a corrective

factor γ( j )
k that accounts for the shift between the occurrence of the maximum deformation

and maximum force in VEDs

γ
(j)
k =

∣∣∣G∗(j)∣∣∣
G′(j)

(45)

The maximum axial forces in the braces NSIS
max,i due to seismic action are finally ob-

tained, combining the effects of the modes of vibration using the SRSS rule. As braces are
expected to remain elastic at the NC limit state, the importance factor γNC is applied, i.e.,

NSIS
max,i = γNC

√√√√ n

∑
j=1

(
N(j)

i γ
(j)
k

)2
(46)

The axial forces in braces due to gravity loads (NGL
max,i) in the seismic combination

are computed through a separated analysis performed on a different structural model.
Specifically, braces are modeled with their effective cross-section to account for the fact
that, in the vertical direction, the stiffness of the braces is not affected by the presence of
the VED. At the first iteration, the cross-section of the brace at the i-th floor is chosen so
that its lateral stiffness kb,i is greater or equal to the lateral stiffness of the VED k’v times the
prefixed ratio kb,i/k’v.

Note that even if the design of the braces may require more than one iteration, the
stiffness of the VED–brace subassembly always remains low compared with the lateral
stiffness of a real brace. Thus, the insertion of the VED–brace subassembly in the MRF does
not affect the period of the structure significantly (i.e., no further iterations are necessary to
verify the members of the MRF).

4.3. Check on Drift Limits

Once all members of the structure are sized, the model is updated considering the
equivalent braces, and a response spectrum analysis is performed to check that the limits
on drifts are not exceeded on all floors. The analysis is run using the elastic response
spectrum scaled at the PGA corresponding to the LS limit state and considering the viscous
damping ratio ξd. The resulting floor displacement profile is compared with the maximum
displacement profile derived from the limits reported in Table 3 for the LS limit state. The
displacement profiles corresponding to NC and DL limit states are obtained by multiply-
ing the components of the LS displacement profile by the respective importance factors
γNC = 1.71 and γDL = 0.472.

4.4. Design of the VEDs

Once the design of the MRF is complete and the assumed limits on floor displacement
are verified, the thickness tl, the areas Al,i, and the number nl of the elastomeric layers of
the VEDs are determined.

The thickness tl is given as the ratio of the maximum allowed floor displacement
∆umax,NC to the maximum allowable strain γVED

NC established for the elastomer at the NC
limit state (i.e., 200%)

tl =
∆umax,NC

γVED
NC

(47)

where ∆umax,NC is given as

∆umax,NC = h δmax,LS γNC (48)

where h is the interstory height.
To mitigate the self-heating of the VEDs in the case of long-duration events,

Kasai et al. [27] suggested considering elastomeric layers thicker than 12.7 mm. In this
study, this value is considered as a lower bound for the thickness of the elastomeric layers.
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Finally, the area of the elastomeric layers Ai,l of the damper at the i-th floor is given by
the following expression:

Ai,l =
k′v,i t

n G′(ω1, Temp)
(49)

The storage modulus G’ (ω1, Temp) of the elastomer is evaluated by Equation (23)
considering the circular frequency of the first mode of vibration of the structure and the
established service temperature.

5. Application to a Case Study

The procedure illustrated in the previous section is applied to design a set of twelve
residential buildings with 4, 6, and 8 stories, located in a medium or high seismicity zone
with reference PGA ag,R equal to 0.25 g or 0.35 g founded on rock soil (type A soil according
to Eurocode 8 Part 1) or soft soil (type C soil).

All buildings have the same squared floor plan whose axes of symmetry lay in the
X and Y directions, as shown in Figure 8. The structure consists of two sets of four steel
MRFs arranged in two orthogonal directions. The length of the bays is equal to 8 m in
both directions, and the inter-story height is equal to 3 m at all levels. VEDs are located at
all stories in the central bay of each perimetral frame, sustained by a couple of braces in
the chevron configuration and connected to the bottom flange of the beam. Columns of
the MRF are denoted with the letter “C” and a number that is 0 for columns belonging to
the braced bay, 1 for corner columns, and 2 for columns of the central part of the building.
Columns C0 are oriented with the strong axis perpendicular to the plane of the braced
bay, columns C1 are oriented with the strong axis parallel to the X direction, and columns
C2 are oriented with the strong axis parallel to the Y direction. HEB profiles are used for
columns and braces, whereas IPE profiles are used for beams. To minimize the weight of
the structure, different steel grades are used, i.e., steel grade S355 is used for columns, S275
is used for beams, and S235 is used for braces. Bi-directional slabs are used in order to
equally distribute gravity loads on the beams. It is assumed that slabs are rigid in their
plan and that masses are equally distributed over the floor surface.

Characteristic values of dead loads gk and live loads qk acting on the slabs are assumed
to be equal to 4.40 kN/m2 and 2.00 kN/m2, respectively. The design gravity loads in the
non-seismic and seismic design situations are equal to 9.16 kN/m2 and 5.00 kN/m2,
respectively. The values of the line loads applied to the beams and the values of the axial
forces applied to the columns are determined as a function of tributary areas. The value of
the floor masses is equal to 146.8 t at all floors.

In the following sections, the application of the proposed procedure is developed in
detail for the 4-story building founded on rock soil (A) in an area characterized by medium
seismic hazard (PGA = 0.25 g).

5.1. Numerical Model for Design Analyses

Due to the in-plan and in-elevation regularity of the buildings, a two-dimensional
numerical model is considered. Further, due to the double symmetry of the plan, only a
perimetral and a central frame are included in the model, as shown in Figure 9. To simulate
the rigid diaphragm effect due to the slabs, all the nodes of the two frames belonging to the
same floor are constrained to have the same translational displacements. All members are
modeled as elastic elements.

Columns are constituted by the same profile along the height of two stories and
column-to-column connections are assumed to be rigid and full-strength. Column-to-
foundation connections are fixed, except for the case of C0 columns, which are pin-
connected to the foundation. With the sole exception of the braced beam, which is pinned
at the ends, beams-to-columns connections are fixed.
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In the model to use for design analyses, the VED–brace sub-assemblage consists of
two truss members in the chevron configuration. Note that in the horizontal direction, the
stiffness of the VED–brace assemblage is given by the equivalent brace model discussed
in Section 3.2, while in the vertical direction, the stiffness of the VED–brace assemblage
is the same as the stiffness of the sole braces. Thus, to properly estimate the axial force
in the braces, internal forces due to gravity loads in the seismic combination and due to
seismic actions are separately evaluated considering two different structural models. In
the model for gravity loads analysis, the actual cross-section of the chosen steel profile is
used for braces. In the model for response spectrum analysis, the cross-sectional area of the
braces is evaluated using the equivalent brace model. Internal forces resulting from the
two structural models are then combined.

The seismic action is represented by the average elastic response spectrum obtained
from artificial ground motion records for different values of the equivalent viscous damping
ratio ξ, namely 3%, 5%, 10%, 15%, and 20% of the critical damping. Spectra corresponding
to intermediate values of ξ are obtained by linear interpolation. The set of 10 artificial
ground motions used to generate the spectra is the same set used to perform nonlinear
dynamic analyses (NLDA) and discussed in Section 6. The use of average spectra instead
of the EC8 spectrum is preferred to simplify the comparison with the results of NLDA.

5.2. Design of the MRF

The initial MRF is sized to sustain gravity loads only in the non-seismic situation.
Beam and column cross-sections obtained from gravity loads analysis are shown in Table 4.
Then, modal analysis is performed on the initial MRF and the period T1, the mode shape
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Φ1 and the modal participation factor Γ(1) associated with the first mode of vibration are
obtained. The minimum values of the required equivalent viscous damping ratio are
determined for NC, LS, and DL limit states based on the prefixed drift limits established in
Section 4.1 (see Table 3). These values are shown in Table 5.

Table 4. Cross-sections of beams and columns obtained through gravity load analysis.

Columns Beams

Floor C0 C1 C2 Braced Bay MRF

1 HEB200 HEB140 HEB260 IPE 300 * IPE 360 *
2 HEB200 HEB140 HEB260 IPE 300 * IPE 360 *
3 HEB160 HEB120 HEB180 IPE 300 * IPE 360 *
4 HEB160 HEB120 HEB180 IPE 300 * IPE 360 *

Note: all profiles are made of S355 steel grade except the ones marked with * S275.

Table 5. Minimum values of the required equivalent viscous damping ratio for the considered
limit states.

Limit State Φ(1)
4 [-] Γ(1) [-] T1 [s] umaxMDOF [m] uSDOF [mm] ξd [%]

DL
0.0592 22.004 2.096

0.06 46.271 8.77
LS 0.12 92.542 9.62
NC 0.30 231.355 3.48

The damping ratio that should be provided by the dampers is equal to

ξadd = ξd − ξ0 = 9.62%− 3% = 6.62% (50)

The ratio kb/kv is assumed to be equal to 40, and the loss factor ηv of the elastomer
ISD-111H is taken equal to 1. The reduced value of the seismic base shear V0 is evaluated
by Equation (39) considering the spectral acceleration Se(T1, ξ0)ag,LS. Internal forces due to
seismic actions are determined by the lateral force method of analysis. The value of the
reduced seismic base shear V0 and the other quantities involved in the calculations are
shown in Table 6 for the first and the last design iteration. It should be noted that V0 is
about 80% Vbase.

Table 6. Values of the design base shear at the first and at the last iteration on the procedure and
relevant quantities for the calculations.

T1 [s] ξadd [%] kb/kv [-] ηv [-] ηv-b [-] βMSE Vbase [kN] V0 [kN]

2.096
6.62 40 1.00 0.952

0.799 733.14 585.42
1.668 0.928 965.5 770.9

Capacity design rules are applied to size the elements of the frame. Beam and column
cross-sections obtained at the last iteration are shown in Table 7.

Table 7. Cross-sections of beams and columns obtained at the last iteration of seismic analysis.

Columns Beams

Floor C0 C1 C2 Braced Bay MRF

1 HEB 220 HEB 180 HEB 360 IPE 360 * IPE 300 *
2 HEB 220 HEB 180 HEB 360 IPE 360 * IPE 300 *
3 HEB 220 HEB 160 HEB 200 IPE 360 * IPE 300 *
4 HEB 220 HEB 160 HEB 200 IPE 360 * IPE 300 *

Note: all profiles are made of S355 steel grade except the ones marked with * S275.
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5.3. Design of the Braces

The lateral stiffness of the VED–brace subassembly is calculated at each story as a
function of ξd by Equation (41). The lateral stiffness of the VEDs is then calculated by
Equation (43).

Since the lateral stiffness of the VED–brace subassembly at the i-th story is proportional
to the lateral stiffness of the frame at the i-th story by means of the factor αMSE, the
hypothesis that the first modal shape remains unaltered is fulfilled. The values of kv-b,i and
kv,i and the relevant quantities needed for their calculation are shown in Table 8.

Once the lateral stiffness k’v.i of the VED–brace subassembly has been determined at
all floors, the lateral stiffness kb,i of the braces can be calculated through the ratio kb/k’v,
and a minimum cross-section of the braces can be determined.

Table 8. Lateral stiffnesses of the VED–brace subassemblies and of the VEDs and other relevant quantities.

Piano αMSE [-] k0,I [kN/mm] kv-b,I [kN/mm] k’
v,I [kN/mm]

1

0.162

21.599 3.490 3.494
2 17.824 2.880 2.883
3 12.767 2.063 2.065
4 11.777 1.903 1.905

To consider the effects of the higher modes of vibration on the mechanical properties of
the VEDs, the axial forces in braces are evaluated according to the procedure illustrated in
Section 4.2., i.e., a response spectrum analysis is performed on the structure with equivalent
braces, and the lateral forces Fi

(j) associated with the j-th mode are memorized. The
reference spectrum is the artificial elastic spectrum scaled at a PGA = 0.25 g with an
equivalent viscous damping ratio equal to ξd = 9.62%. For each mode of vibration, a linear
static analysis is performed using a distribution of forces proportional to the relevant mode
of vibration. The values of the axial forces obtained from each analysis for the braces are
then combined using the SRSS rule according to Equation (46) and then combined with the
axial forces due to gravity loads in the seismic combination. The resulting value of the axial
force is used to design the braces. If the checks on resistance and/or lateral stability are not
fulfilled, a new cross-section is selected, and the analysis is repeated until convergence has
been reached. The cross-sections of the braces at the first and last iterations of the procedure
are shown in Table 9.

Table 9. Cross-sections of the braces (S235) at the first and last iteration.

Floor
Initial Values Final Values

kb/k’
v Profile kb/k’

v kb/k’
v

1 40.07 HEB 100 66.10 HEB 140
2 48.55 HEB 100 63.41 HEB 120
3 67.78 HEB 100 88.53 HEB 120
4 73.48 HEB 100 95.97 HEB 120

5.4. Check on Drift Limits

Once the MRF and the braces are sized, a response spectrum analysis is performed on
the frame with equivalent braces to verify whether the limits on drifts are met at all floors.
The reference response spectrum is the elastic response spectrum scaled at a PGA = 0.25 g
with ξd = 9.62%.

Limits on floor displacements are fulfilled for all the considered limit states. The first
period of the final structure with equivalent braces is T1 = 1.548 s. Note that the period of
the MRF without the equivalent braces is equal to 1.668 s, i.e., the presence of the equivalent
braces decreases the period by about 7%.
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5.5. Design of the VEDs

Once the structure with equivalent braces has been designed and the final period of
vibration is known, the thickness and the minimum required area of the elastomeric layers
of the dampers can be evaluated. The thickness of the elastomeric layers is calculated by
Equation (47) considering the maximum floor displacement allowed for the conditioning
limit state (i.e., Significant Damage). Considering that VEDs are allowed to reach their
maximum deformation at the attainment of the NC limit state, the maximum displacement
for the SD limit state is amplified by the importance factor γNC

tl =
δmax,LS

γVED
NC

h γNC =
1%

200%
3000 mm 1.71 = 25.7mm (51)

The value of the storage modulus G′ is evaluated by Equation (23) for the circular fre-
quencyω1 corresponding to the final value of the period T1 and considering a temperature
of 20 ◦C.

The number of elastomeric layers is a design parameter that is established depending
on the desired size of the device. The areas of the elastomeric layers can be determined
at all stories using Equation (49). In this example, the areas of all VEDs are determined
considering four rectangular layers of elastomer. The dimensions bl × hl of each layer are
obtained by fixing one of the two dimensions of the layer (hl = 20 cm in this example). The
relevant quantities needed for the sizing of the VEDs are shown in Table 10.

G′(ω1 = 4.056, Temp = 20◦C) = 0.268 N/mm2 (52)

The final cross-sections of the members and the final dimensions of the VEDs of the
other buildings are shown in Appendix B.

Table 10. Areas and dimensions of the elastomeric layers and relevant quantities for the calculations.

Floor T1 [s] G’ [N/mm2] t [mm] nl Al,i [cm2] bl × hl [cm]

1

1.548 0.268 25.7 4

838.80 42 × 20
2 692.19 35 × 20
3 495.79 25 × 20
4 457.38 23 × 20

6. Nonlinear Dynamic Analyses

The seismic response of the structures designed through the proposed procedure is
evaluated by nonlinear dynamic analyses considering P-∆ effects. Numerical analyses are
performed by means of the OpenSees v. 3.6.0 computer program [58].

The seismic input consists of two sets of 10 artificial accelerograms generated for a
PGA equal to 0.35 g with the computer program SIMQKE [59] to match the elastic response
spectrum with 5% equivalent viscous damping provided by Eurocode 8 for soil type
A or C.

The two-dimensional structural model of the MRF has the same geometrical charac-
teristics and boundary conditions as the model used for design analyses. Under the same
assumptions formulated in Section 5.1, only two frames of the structure are modeled (i.e., a
perimetral frame and an inner frame). The presence of rigid slabs is simulated by means of
constraints applied at each floor between a master node belonging to the perimetral frame
and the other nodes belonging to the same floor to force the constrained nodes to have
the same horizontal displacements. All members are represented by a single force-based
element, except for the beams of the braced bay that are modeled with two elements to
have a node at midspan for the connection with the VEDs.

Members of the MRF that are expected to develop plastic hinges (i.e., C1-, C2-columns
and beams) are modeled as forceBeamColumn elements with fiber sections and elastic
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interior. The length of the plastic hinges is assumed to be equal to the height of the member
cross-section. The integration method for the plastic hinge is “HingeRadau”. Members
that are expected to remain elastic at the attainment of the NC limit state (i.e., braces and
C0-columns) are modeled as elasticBeamColumn elements.

Each VED is modeled using six zeroLength elements connected in series between
a node belonging to the braces and the midspan node of the beam of the braced bay. A
uniaxialMaterialElastic, uniaxialMaterialViscous, and uniaxialMaterialViscousDamper are
assigned to the zeroLength elements representing the spring, the dashpot, and the Maxwell
elements of the GMM4 model (see Figure 5), respectively. The parameters that characterize
the response of the single springs and dashpots of the GMM4 are calculated using the
following relations

kEi,n =
Al,i nl GE,n

tl
(53)

cCi,m =
Al,i nl GC,m

tl
(54)

where kEi,n and cci,m are the stiffness and viscous coefficients of the n-nth spring and m-nth
dashpot of the model (n, m = 0, 1, . . ., 4) at the i-th story; GE,n and Gc,m are the constants of
the model as determined by the optimization on the experimental data of the elastomer
ISD-111H (see Table 2). Ai, nl, and tl are the geometric characteristics of the VED. The
calculated values of kEi,n and cci,m are shown in Table 11.

Table 11. Values of the stiffness and of the coefficient of viscosity of the springs and the dashpots of
the GMM4 model.

Floor
Spring Stiffness [kN/mm] Damper Viscous Factors [kN/mm]

kE,0 kE,1 kE,2 kE,3 kE,4 cC,0 cC,1 cC,2 cC,3 cC,4

1 0.376 3.512 1.128 0.034 0.905 0.335 0.434 0.787 0.739 4.954
2 0.310 2.898 0.931 0.028 0.747 0.277 0.358 0.649 0.610 4.088
3 0.222 2.076 0.667 0.020 0.535 0.198 0.256 0.465 0.437 2.928
4 0.205 1.915 0.615 0.018 0.493 0.183 0.237 0.429 0.403 2.702

The Rayleigh formulation is used to introduce the inherent damping of the frame
(mass and stiffness coefficients are defined so that the first and second modes of vibration
are characterized by an equivalent viscous damping ratio equal to 0.03). No stiffness
proportional damping is considered for the braces. Convergence of the numerical solu-
tion is checked in terms of the norm of the displacement increment with a tolerance of
10 × 10−6 over a maximum of 100 iterations. The initial integration step is 0.005 s. Three
algorithms are used in sequence to reach convergence at the single step of the accelerogram
(i.e., Newton Initial, Broyden, NewtonLineSearch). If convergence is not achieved with this
strategy, the displacement step is reduced by half.

For each case study, an incremental NLDA is conducted starting from a PGA of 0.04 g
to reach a PGA of 0.60 g with increment steps of 0.04 g. The subsequent response parameters
are checked:

• The values of the PGA corresponding to the achievement of yielding, or buckling of
the members of the MRF and to the limit displacement established for the VEDs;

• The lateral story displacements;
• The internal forces in the dampers, braces, and C0-columns.

6.1. Seismic Response of the Case Study

The achievement of yielding at the ends of the beams and/or at the base of the
C1- and C2-columns (i.e., members designed considering q = 1.5) is expected for values
of the PGA equal to or larger than 0.2 5 g/1.5 = 0.167 g. The members of the braced
bay are expected not to develop internal forces associated with the plasticization of the
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cross-section or the buckling of the member until the value of the PGA associated with
the NC limit state is reached. The elements of the braced bays, instead, are expected to
remain elastic until the value of the PGA associated with the NC limit state has been
reached, i.e., 0.25 g × 1.71 = 0.429 g. VEDs are expected to reach the maximum allowed
deformation at the NC limit state (i.e., 200%) at the attainment of a story drift equal
to 51.4 mm.

The numerical analysis shows that the damper located at the first story reaches the NC
limit state first at a PGA equal to 0.443 g, which is slightly higher than the expected value
(i.e., 0.429 g). Braces remain elastic and do not buckle even when the maximum expected
value of the PGA (0.429 g) is reached. C0-columns remain elastic until the NC limit state of
the structure has been reached.

The force–displacement responses of the VEDs recorded at a PGA equal to 0.443 g
for one of the accelerograms are shown in Figure 10. The effects of the higher modes of
vibrations are particularly apparent in the hysteretic cycles of the dampers located at the
first and second story whose shape is irregular and not perfectly elliptical.

However, the hysteretic cycles of the VEDs are well enveloped by the response of
the GMM4 model calibrated based on the maximum forces and maximum displacements
recorded in the dampers and considering the frequency associated with the first period of
the structure (red dashed line in the figure).

The values of the maximum forces recorded in the dampers and the ratios of the
maximum allowed displacement to the maximum displacement experienced are shown
in Table 12. The latter data show that the dissipative system is efficient as almost all the
dampers approach their maximum stroke during the time history.
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Figure 10. Hysteretic cycles of the VEDs located at the first (a), second (b), third (c), and fourth
(d) story recorded at the PGA of 0.437 g and enveloped by the GMM4 model for ω1 = 4.077 rad/s
(i.e., T1 = 1.541 s).
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Table 12. Maximum forces and displacements reached by the VEDs for a PGA of 0.437 g cor-
responding with the achievement of the maximum deformation for the damper located at the
first story.

Floor PGA [g] Fmax [kN] umax [mm] F(umax) [kN] u(Fmax) [mm] ulim/umax

1

0.443

277.28 49.75 186.86 34.91 96.7%
2 210.09 44.00 136.86 29.38 85.6%
3 172.38 46.70 111.26 31.95 90.8%
4 119.99 31.51 75.75 19.68 61.3%

As shown in Figure 11a, the average values of the axial force of C0-columns recorded
with OpenSees are well predicted by the response spectrum analysis with ξ = 9.62%. The
average values of the shear force and bending moment are slightly overestimated, as shown
in Figure 11b,c. The average values of the axial force in braces are satisfactorily predicted
by the SRSS analysis, even though the axial force is slightly underestimated at the first floor,
as shown in Figure 11d.

As part of the MRF, columns C1 and C2 are allowed to develop plastic hinges at
their base, and this happens for an average value of PGA equal to 0.280 g. The average
of the PGAs associated with the development of the first plastic hinge in a beam of
the MRF is equal to 0.241 g. No significant difference is recorded between the design
predictions and the results of dynamic analyses for the internal forces of the columns of
the MRF.

The comparison between the average floor displacements obtained by dynamic anal-
ysis for a PGA equal to 0.25 g and the displacements predicted by response spectrum
analysis with ξ = 9.62% is shown in Figure 12. The design solution obtained through the
proposed procedure fulfills the limitations on the floor displacements and the members are
verified against the design internal forces.
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Figure 11. (a) Axial forces, (b) shear forces, and (c) bending moments in C0 columns, (d) axial forces
in braces (PGA = 0.429 g).
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Figure 12. Comparison between floor displacements predicted by response spectrum analysis and
displacements obtained through NLDA for (a) four-, six- (b), and (c) eight-story buildings designed
for A or C soil and for design PGA equal to 0.25 g or 0.35 g.

6.2. Seismic Response of the Other Buildings

The values of the PGA corresponding to the first yielding in beams or columns of the
MRF and to the first attainment of the maximum allowed deformations in the VEDs are
shown in Table 13 for all the case studies. Also, the values of the expected PGA are reported
for both SD and NC limit states. In the range of the investigated PGAs (i.e., 0.04 g–0.60 g),
the internal forces associated with the plasticization of the cross-section or the buck-
ling of the C0-columns or the braces are never attained. Braces and C0-columns always
remain elastic.
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Table 13. Values of the PGA for which the SD limit state and the NC limit state are attained in
members of the MRF and the VEDs.

Case PGASD PGANC PGAbeams PGAcolMRF PGAVED

4-story
Soil A

0.250 0.429 0.241 - 0.443
0.350 0.600 0.309 - 0.603

Soil C
0.250 0.429 0.273 - 0.437
0.350 0.600 0.340 - 0.541

6-story
Soil A

0.250 0.429 0.330 0.312 0.544
0.350 0.600 0.341 0.386 0.572

Soil C
0.250 0.429 0.222 0.273 0.376
0.350 0.600 0.292 - 0.513

8-story
Soil A

0.250 0.429 0.304 0.361 0.505
0.350 0.600 0.353 0.432 0.560

Soil C
0.250 0.429 0.223 0.291 0.357
0.350 0.600 0.281 0.372 0.489

Dampers always reach the maximum allowed strain after the formation of the first
plastic hinge in the MRF. In some cases, the value of the PGA associated with the first
attainment of the maximum allowed strain in one of the VEDs is smaller than expected.
This discrepancy is apparent in the cases in which the added damping is greater than
10%. However, it should be noted that these values of the PGA refer to only one damper
(i.e., the first to reach the maximum strain), and thus, they do not refer to the whole
dissipative system. Also, recall that the rupture of a VED occurs for values of the shear
deformation of the elastomeric layer of about 400%, a value that is twice the assumed
maximum deformation at the attainment of the NC limit state.

The observations formulated in the previous subsection for the case study regarding
the prediction of the internal forces in the members of the MRFs, in C0-columns and in the
braces, can be extended to the other buildings.

As shown in Figure 12, the assumed limits on the floor displacements are fulfilled in
all the case studies.

7. Conclusions

In this paper, a design procedure for steel moment-resisting frames with viscoelastic
dampers has been proposed. The parameters that control the response of viscoelastic
materials, namely the storage modulus, the loss modulus, and the loss factor, have been
discussed, and their dependency on frequency and ambient temperature has been pointed
out. A simple and frequency-dependent numerical model, the Generalized Maxwell Model
with four Maxwell elements (GMM4), has been proposed to represent the dynamic response
of viscoelastic materials. Mathematical expressions for the storage and the loss moduli of
the GMM4 have been derived analytically and calibrated based on experimental data of a
commercial elastomer.

The proposed design procedure is based on the Modal Strain Energy (MSE) method,
and its application requires simple analytical tools, such as the modal response spectrum
analysis and the lateral force method of analysis. This approach has been improved in
order to accurately predict the internal forces that are transmitted from each damper to
the braces due to the sensitivity of the VE material to the effects of the higher modes
of vibration.

The design procedure has been applied to 4-, 6-, and 8-story buildings equipped with
viscoelastic dampers sustained by braces in the chevron configuration. The buildings are
founded on different soils (Soil A and C) and are designed based on seismic actions of
different intensities (design PGA equal to 0.25 g and 0.35 g).
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To validate the proposed design procedure, the response of the designed buildings
was investigated by nonlinear dynamic analyses. Based on the results of the NLDA, the
following conclusions can be drawn:

• The fulfillment of the main design objective, i.e., the control of the story drifts below
prefixed limits, is achieved for all cases. At the same time, the internal forces of the
braces and of the other members of the MRF are well predicted. This proves the
effectiveness of the procedure based on the MSE method.

• The GMM4 model is effective in reproducing the hysteretic behavior of the VEDs as a
function of frequency and for a given ambient temperature.

• VEDs are effective in conferring the demanded damping to the structure, although
in the cases in which high damping is demanded, at least one of the dampers of the
dissipative system exceeds the maximum allowed displacement for a value of the PGA
that is lower than the expected value.

Future developments of this research will concern:

• Optimal arrangement of the dampers in the structure;
• Comparison of the seismic performance and construction costs of the frames designed

by means of the proposed procedure with those of the frames designed by means of
other procedures available in the literature;

• Study of the response of viscoelastically damped structures in the case of near-fault
design scenarios.
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Appendix A

Consider a Maxwell element subjected to a displacement story γ(t). Equilibrium and
compatibility equations are given as follows

τ(t) = τE(t) = τC(t) (A1)

γ(t) = γE(t) + γC(t) (A2)

where τE(t) and τC(t) are expressed as follows

τE(t) = G′E γE(t) (A3)

τC(t) = G′′C
.
γC(t) (A4)

Consider the first derivative of Equations (A2) and (A3) and obtain the terms
.
γC(t)

and
.
γE(t) .

γC(t) =
.
γ(t)− .

γE(t) (A5)

.
γE(t) =

.
τE(t)
G′E

(A6)
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Consider Equation (A1) and substitute Equations (A5) and (A6) into Equation (A4)

τ(t) = G′′C

[
.
γ(t)−

.
τE(t)
G′E

]
(A7)

Assume λ = G′′C/G′E and rearrange

G′E
.
γ(t) =

1
λ
τ(t) +

.
τE(t) (A8)

This is a first-order linear differential equation whose solution has the following form

τ(t) = e−A(t)
[

C +
∫

GE
.
γ(t)eA(t)dt

]
(A9)

where
A(t) =

∫ 1
λ

dt = t
1
λ

(A10)

Make the displacement story γ(t) explicit through Equation (1), consider its first
derivative and substitute into Equation (A10)

τ(t) = e−t/λ
[

C + γ0ωGE

∫
cos(ωt) et/λdt

]
(A11)

where C is a constant of integration. Solve the integral by parts as follows∫
cos(ωt) et/λdt = cos(ωt)λet/λ − γ0ω

∫
− sin(ωt) et/λdt (A12)

Assume
I =

∫
cos(ωt) et/λdt (A13)

and repeat the integration by parts for the second integral in Equation (A12)

I = cos(ωt)λet/λ +ωλ
[
sin(ωt)λet/λ −ωλI

]
(A14)

Solving the above equation for I leads to

I = et/λ λ

1 + (ωt)2 [ωλ sin(ωt) + cos(ωt)] (A15)

Substitute Equation (A15) into Equation (A11)

τ(t) = e−t/λ

{
C + et/λ GE γ0 λω

1 + (ωλ)2 [ωλ sin(ωt) + cos(ωt)]

}
(A16)

τ(t) = C e−t/λ +
GE (ωλ)

2

1 + (ωλ)2γ0 sin(ωt) +
GE ωλ

1 + (ωλ)2γ0 cos(ωt) (A17)

where the first term is a transient quantity that tends to zero at steady state and the
quantities that multiply the sine and cosine functions represent, respectively, the shear
storage modulus G′M and the shear loss modulus G′′M of the Maxwell element.

τM(t) = γ0
[
G′M sin(ωt) + G′′M cos(ωt)

]
(A18)

where

G′M =
GE (ωλ)

2

1 + (ωλ)2 (A19)
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G′′M =
GE ωλ

1 + (ωλ)2 (A20)

Consider a Kelvin–Voight element subjected to a displacement story γ(t). Equilibrium
and compatibility equations are given as follows

τ(t) = τE(t) + τC(t) (A21)

γ(t) = γE(t) = γC(t) (A22)

Substitute Equations (A3) and (A4) into Equation (A21) and consider Equation (A22), i.e.,

τ(t) = GEγ(t) + GC
.
γ(t) (A23)

Make the displacement history γ(t) explicit through Equation (1), consider its first
derivative and substitute into Equation (A23), i.e.,

τ(t) = GEγ0 sin(ωt) + GCωγ0 cos(ωt) (A24)

where the quantities that multiply the sine and cosine functions represent respectively the
shear storage modulus G′K and the shear loss modulus G′′K of the Maxwell element.

τK(t) = γ0
[
G′K sin(ωt) + G′′K cos(ωt)

]
(A25)

where
G′K = GE (A26)

G′′K = GCω (A27)

Consider the Generalized Maxwell element with n Maxwell subassemblies. Equilib-
rium and compatibility equations are given as follows

τGMM(t) = τK(t) +
n

∑
i=1
τM,i(t) (A28)

γ(t) = γK(t) = γM,i(t)i = 1, 2 . . . n (A29)

Substitute Equations (A18) and (A25) into Equation (A29) and obtain the subsequent
expression

τGMM(t) = γ0

{[
G′K +

n

∑
i=1

G′M,i

]
sin(ωt) +

[
G′′K

.
γ(t) +

n

∑
i=1

G′′M,i

]
cos(ωt)

}
(A30)

Making the storage and the loss moduli explicit leads to

τGMM(t) = γ0

{[
GE,0 +

n

∑
i=1

GE,i (ωλi)
2

1 + (ωλi)
2

]
sin(ωt) +

[
GC,0ω

.
γ(t) +

n

∑
i=1

GE,i ωλi

1 + (ωλi)
2

]
cos(ωt)

}
(A31)

where the quantities that multiply the sine and cosine functions represent respectively
the shear storage modulus G′GMM and the shear loss modulus G′′GMM of the Generalized
Maxwell element.

G′GMM(ω) = GE,0 +
n

∑
i=1

GE,i (ωλi)
2

1 + (ωλi)
2 (A32)

G′′GMM(ω) = GC,0ω
.
γ(t) +

n

∑
i=1

GE,i ωλi

1 + (ωλi)
2 (A33)
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Appendix B

Table A1. Cross-sections adopted for the 4-story buildings.

Floor
Columns Beams

Braces
C0 C1 C2 Braced bay MRF

4 Stories, Soil A, PGA 0.25 g

4 HEB 220 HEB 160 HEB 200 IPE 300 * IPE 360 * HEB 120 **
3 HEB 220 HEB 160 HEB 200 IPE 300 * IPE 360 * HEB 120 **
2 HEB 220 HEB 180 HEB 360 IPE 300 * IPE 360 * HEB 120 **
1 HEB 220 HEB 180 HEB 360 IPE 300 * IPE 360 * HEB 140 **

4 Stories, Soil A, PGA 0.35 g

4 HEB 240 HEB 180 HEB 240 IPE 300 * IPE 360 * HEB 140 **
3 HEB 240 HEB 180 HEB 240 IPE 300 * IPE 360 * HEB 140 **
2 HEB 260 HEB 220 HEM 300 IPE 300 * IPE 360 * HEB 160 **
1 HEB 260 HEB 220 HEM 300 IPE 300 * IPE 360 * HEB 200 **

4 Stories, Soil C, PGA 0.25 g

4 HEB 260 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 140 **
3 HEB 260 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 160 **
2 HEB 280 HEB 240 HEM 300 IPE 300 * IPE 400 * HEB 200 **
1 HEB 280 HEB 240 HEM 300 IPE 300 * IPE 400 * HEB 240 **

4 Stories, Soil C, PGA 0.35 g

4 HEB 280 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 180 **
3 HEB 280 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 200 **
2 HEB 300 HEB 260 HEM 300 IPE 300 * IPE 400 * HEB 260 **
1 HEB 300 HEB 260 HEM 300 IPE 300 * IPE 400 * HEB 300 **

Note: all profiles are made of S355 steel grade except the ones marked with * S275, ** S235.

Table A2. Mechanical and geometric characteristics of the VEDs obtained for 4-story buildings.

Floor γ [%] tl [mm] nl [-] k’v [kN/mm] T1 [s] G’ [N/mm2] Ai [cm2] ξadd [%]

4 Stories, Soil A, PGA 0.25 g

4

200 25.7

4 2.0321

1.541 0.268

486.74

7
3 4 2.2027 527.61
2 4 3.0753 736.63
1 4 3.7266 892.64

4 Stories, Soil A, PGA 0.35 g

4

200 25.7

4 3.5618

1.273 0.293

781.48

9.5
3 4 4.2573 934.09
2 4 7.1050 1558.90
1 4 9.2980 2040.05

4 Stories, Soil C, PGA 0.25 g

4

200 25.7

4 5.2586

1.124 0.311

1087.76

11.5
3 4 6.3045 1304.12
2 4 9.6773 2001.81
1 4 12.9529 2679.38

4 Stories, Soil C, PGA 0.35 g

4

200 25.7

4 7.7447

1.039 0.323

1543.77

15
3 4 9.5688 1907.35
2 4 14.7518 2940.50
1 4 20.2874 4043.90
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Table A3. Cross-sections adopted for the 6-story buildings.

Floor
Columns Beams

Braces
C0 C1 C2 Braced bay MRF

6 Stories, Soil A, PGA 0.25 g

6 HEB 180 HEB 140 HEB 200 IPE 300 * IPE 360 * HEB 120 **
5 HEB 180 HEB 140 HEB 200 IPE 300 * IPE 360 * HEB 120 **
4 HEB 200 HEB 160 HEB 240 IPE 300 * IPE 360 * HEB 120 **
3 HEB 200 HEB 160 HEB 240 IPE 300 * IPE 360 * HEB 120 **
2 HEB 220 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 120 **
1 HEB 220 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 140 **

6 Stories, Soil A, PGA 0.35 g

6 HEB 200 HEB 140 HEB 200 IPE 300 * IPE 360 * HEB 120 **
5 HEB 200 HEB 140 HEB 200 IPE 300 * IPE 360 * HEB 140 **
4 HEB 240 HEB 180 HEB 240 IPE 300 * IPE 360 * HEB 140 **
3 HEB 240 HEB 180 HEB 240 IPE 300 * IPE 360 * HEB 140 **
2 HEB 260 HEB 220 HEB 320 IPE 300 * IPE 360 * HEB 140 **
1 HEB 260 HEB 220 HEB 320 IPE 300 * IPE 360 * HEB 160 **

6 Stories, Soil C, PGA 0.25 g

6 HEB 220 HEB 160 HEB 220 IPE 300 * IPE 360 * HEB 140 **
5 HEB 220 HEB 160 HEB 220 IPE 300 * IPE 360 * HEB 140 **
4 HEB 260 HEB 200 HEB 260 IPE 300 * IPE 360 * HEB 140 **
3 HEB 260 HEB 200 HEB 260 IPE 300 * IPE 360 * HEB 160 **
2 HEB 280 HEB 240 HEB 320 IPE 300 * IPE 360 * HEB 160 **
1 HEB 280 HEB 240 HEB 320 IPE 300 * IPE 360 * HEB 200 **

6 Stories, Soil C, PGA 0.35 g

6 HEB 240 HEB 200 HEB 220 IPE 300 * IPE 360 * HEB 160 **
5 HEB 240 HEB 200 HEB 220 IPE 300 * IPE 360 * HEB 180 **
4 HEB 280 HEB 240 HEB 280 IPE 300 * IPE 400 * HEB 200 **
3 HEB 280 HEB 240 HEB 280 IPE 300 * IPE 400 * HEB 200 **
2 HEB 300 HEB 340 HEB 340 IPE 300 * IPE 400 * HEB 240 **
1 HEB 300 HEB 340 HEB 340 IPE 300 * IPE 400 * HEB 280 **

Note: all profiles are made of S355 steel grade except the ones marked with * S275, ** S235.

Table A4. Mechanical and geometric characteristics of the VEDs obtained for 6-story buildings.

Floor γ [%] tl [mm] nl [-] k’v [kN/mm] T1 [s] G’ [N/mm2] Ai [cm2] ξadd [%]

4 Stories, Soil A, PGA 0.25 g

6

200 25.7

4 1.8232

2.326 0.225

520.11

10

5 4 1.8755 535.06
4 4 3.1539 899.77
3 4 3.2270 920.62
2 4 4.1055 1171.23
1 4 4.5794 1306.43

4 Stories, Soil A, PGA 0.35 g

6

200 25.7

4 2.6487

2.108 0.235

725.87

10

5 4 2.7978 766.72
4 4 3.9674 1087.25
3 4 4.1353 1133.26
2 4 5.3604 1468.99
1 4 6.8299 1871.70

4 Stories, Soil C, PGA 0.25 g

6

200 25.7

4 3.5385

1.948 0.242

938.38

12

5 4 3.8398 1018.29
4 4 5.1871 1375.56
3 4 5.4881 1455.38
2 4 7.1881 1906.21
1 4 9.5327 2527.98

4 Stories, Soil C, PGA 0.35 g

6

200 25.7

4 6.1181

1.496 0.272

1446.15

15

5 4 7.6185 1800.80
4 4 11.3658 2686.56
3 4 12.1210 2865.07
2 4 15.6574 3700.98
1 4 22.9575 5426.54
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Table A5. Cross-sections adopted for the 6-story buildings.

Floor
Columns Beams Braces

C0 C1 C2 Braced bay MRF

8 Stories, Soil A, PGA 0.25 g

8 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 120 **
7 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 120 **
6 HEB 220 HEB 160 HEB 260 IPE 300 * IPE 360 * HEB 120 **
5 HEB 220 HEB 160 HEB 260 IPE 300 * IPE 360 * HEB 120 **
4 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 120 **
3 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 120 **
2 HEB 260 HEB 220 HEB 360 IPE 300 * IPE 360 * HEB 120 **
1 HEB 260 HEB 220 HEB 360 IPE 300 * IPE 360 * HEB 140 **

8 Stories, Soil A, PGA 0.35 g

8 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 120 **
7 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 120 **
6 HEB 220 HEB 160 HEB 260 IPE 300 * IPE 360 * HEB 140 **
5 HEB 220 HEB 160 HEB 260 IPE 300 * IPE 360 * HEB 140 **
4 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 160 **
3 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 160 **
2 HEB 280 HEB 240 HEB 360 IPE 300 * IPE 360 * HEB 180 **
1 HEB 280 HEB 240 HEB 360 IPE 300 * IPE 360 * HEB 220 **

8 Stories, Soil C, PGA 0.25 g

8 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 140 **
7 HEB 200 HEB 140 HEB 220 IPE 300 * IPE 360 * HEB 140 **
6 HEB 220 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 160 **
5 HEB 220 HEB 180 HEB 260 IPE 300 * IPE 360 * HEB 160 **
4 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 180 **
3 HEB 240 HEB 180 HEB 300 IPE 300 * IPE 360 * HEB 200 **
2 HEB 280 HEB 260 HEB 360 IPE 300 * IPE 360 * HEB 220 **
1 HEB 280 HEB 260 HEB 360 IPE 300 * IPE 360 * HEB 260 **

8 Stories, Soil C, PGA 0.35 g

8 HEB 220 HEB 180 HEB 220 IPE 300 * IPE 400 * HEB 160 **
7 HEB 220 HEB 180 HEB 220 IPE 300 * IPE 400 * HEB 160 **
6 HEB 260 HEB 200 HEB 280 IPE 300 * IPE 400 * HEB 180 **
5 HEB 260 HEB 200 HEB 280 IPE 300 * IPE 400 * HEB 180 **
4 HEB 280 HEB 220 HEB 320 IPE 300 * IPE 400 * HEB 220 **
3 HEB 280 HEB 220 HEB 320 IPE 300 * IPE 400 * HEB 220 **
2 HEB 320 HEB 360 HEB 400 IPE 300 * IPE 400 * HEB 260 **
1 HEB 320 HEB 360 HEB 400 IPE 300 * IPE 400 * HEB 320 **

Note: all profiles are made of S355 steel grade except the ones marked with * S275, ** S235.

Table A6. Mechanical and geometric characteristics of the VEDs obtained for 6-story buildings.

Floor γ [%] tl [mm] nl [-] k’v [kN/mm] T1 [s] G’ [N/mm2] Ai [cm2] ξadd [%]

8 Stories, Soil A, PGA 0.25 g

8

200 25.7

4 0.9364

2.898 0.206

291.72

5

7 4 0.9945 309.83
6 4 1.5977 497.74
5 4 1.6458 512.73
4 4 1.9597 610.52
3 4 1.9979 622.41
2 4 2.3373 728.16
1 4 2.9864 930.36

8 Stories, Soil A, PGA 0.35 g

8

200 25.7

4 2.0529

2.759 0.21

627.14

8

7 4 2.1806 666.15
6 4 2.7679 845.56
5 4 2.8301 864.56
4 4 3.3709 1029.76
3 4 3.4469 1052.96
2 4 4.2593 1301.14
1 4 5.6326 1720.68

8 Stories, Soil C, PGA 0.25 g

8

200 25.7

4 2.6984

2.665 0.213

812.98

10

7 4 2.8663 863.55
6 4 3.6385 1096.19
5 4 3.7200 1120.76
4 4 4.4310 1334.97
3 4 4.5306 1364.98
2 4 5.5989 1686.81
1 4 7.4037 2230.57

8 Stories, Soil C, PGA 0.25 g

8

200 25.7

4 5.4841

2.069 0.236

1491.25

15

7 4 5.8908 1601.83
6 4 7.8005 2121.13
5 4 8.8216 2398.78
4 4 11.0738 3011.18
3 4 11.5056 3128.60
2 4 14.6208 3975.70
1 4 21.2937 5790.19
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