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Abstract: The shift towards autonomous excavators in construction and mining is a significant leap
towards enhancing operational efficiency and ensuring worker safety. However, it presents challenges,
such as the need for sophisticated decision making and environmental perception due to complex
terrains and diverse conditions. Our study introduces the E-GTN framework, a novel approach
tailored for autonomous excavation that leverages advanced multisensor fusion and a custom-
designed convolutional neural network to address these challenges. Results demonstrate that GridNet
effectively processes grid data, enabling the reinforcement learning algorithm to make informed
decisions, thereby ensuring efficient and intelligent autonomous excavator performance. The study
concludes that the E-GTN framework offers a robust solution for the challenges in unmanned
excavator operations, providing a valuable platform for future advancements in the field.

Keywords: excavator automation; point cloud; reinforcement learning; terrain feature extraction

1. Introduction

Excavators, the backbone of construction, mining, and infrastructure projects, are tran-
sitioning from being manually operated to becoming autonomous as part of digitization and
intelligentization in the construction machinery industry [1]. This shift towards unmanned
excavation is not just a leap in operational efficiency and production capacity, especially in
the mining sector, but also a step forward in worker safety by reducing exposure to haz-
ardous conditions. However, the transition to unmanned systems introduces considerable
challenges, as the current reliance on expert experience and dynamic programming for
trajectory planning is limited by their inability to match the efficiency of manual excavation
and their poor adaptability to diverse environmental conditions and soil types [2].

The challenges of unmanned excavation are multifaceted, involving the intricacies
of data complexity and the need for robust and reliable operations [3]. Excavators must
navigate complex terrains, adapt to varying excavation areas, and integrate a wealth of
mechanical and sensor data to accurately perceive and respond to their environment [4].
Discrepancies between virtual simulations and real-world scenarios necessitate careful
data sampling and raise issues of integration among simulation platforms, control systems,
and reinforcement learning algorithms. These complexities can lead to overfitting and a
degradation in performance, underscoring the need for advanced solutions that can handle
the sophisticated decision making and environmental perception required for effective
unmanned excavator operations [5].

Addressing key gaps in autonomous excavation, we identify:

1. Terrain Adaptability: Autonomous systems lack flexibility, falling short in efficiency
compared to manual excavation.

2. Simulation–Reality Discrepancy: Complex environmental methods struggle with
overfitting due to differences between simulations and actual conditions.
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3. Static Decision Models: Existing systems need dynamic decision making to adapt in
real-time to environmental changes.

To address these challenges, we designed the E-GTN framework. It is a specialized
pipeline designed for the autonomous mining domain, focusing on terrain information
extraction related to reinforcement learning tasks in unmanned mining operations.The
E-GTN framework first uses LiDAR to capture raw point cloud data to reconstruct terrain
features in multiple ways. The terrain feature extraction module is the core of the E-GTN
framework and utilizes a convolutional neural network for advanced feature extraction.
Our customized GridNet proficiently processes grid data to extract key terrain features
that contribute to reinforcement learning tasks in autonomous mining. Finally, the decision
module utilizes the features extracted by the GridNet to inform the reinforcement learning
algorithm, ensuring efficient and intelligent autonomous excavator operation. E-GTN
ensures a smooth transition from data collection to extraction for terrain features, simplify-
ing the entire process. The operational environment awareness technology provides the
necessary technical support for the next path generation worker, which is the precursor of
the excavation trajectory generation technology.

Our main contributions are as follows:

1. We introduce advanced multisensor fusion for terrain environment reconstruction
within the E-GTN framework, significantly enhancing the terrain’s geometric repre-
sentation and laying the groundwork for high-fidelity environmental reconstruction.

2. We present a convolutional network-based perception for grid-based excavation envi-
ronments through the Terrain Feature Extraction module, enabling the application of
our custom-designed model, GridNet, to extract salient terrain features crucial for the
reinforcement learning algorithm.

3. We model the decision-making process as a Markov decision process (MDP), and
develop an advanced deep reinforcement learning (DRL) algorithm for excavation
tasks, which provides a comprehensive platform benefiting scholars and practitioners
in related fields.

2. Related Work

In the field of autonomous machinery, unmanned excavators, while not as complex
as self-driving cars, face a unique set of challenges. The character of the typical excavator
working environment is static and there is a reduction in the variety of objects compared to
an autonomous driving scenario. However, the terrain features of excavator scenarios are
highly variable and detailed in form.

Significant research, both domestic and international, has been conducted on environ-
mental perception technologies for unmanned excavators. Pioneering systems developed
by scholars like Stentz et al. [6] utilized LiDAR on excavators for environmental perception,
laying the groundwork for subsequent systems. Despite their limitations in integrating
driving and positioning, these early systems demonstrated the potential for stationary data
collection. Yamamoto et al. [7], tailoring to specific excavation projects, developed an auto-
mated hydraulic excavator prototype based on 3D information, focusing on environmental
perception through a combination of LiDAR and cameras, supplemented with gyroscopes
and GPS for comprehensive data collection.

Further advancements by Chae et al. [8] introduced a mobile 3D environment recogni-
tion system for civil engineering, utilizing movable 3D laser scanners to scan and input
site terrain for processing. Shariati et al. [9] proposed a multi-frame convolutional ap-
proach, providing a complete solution for unmanned excavators by exploiting temporal
information between continuous frames and extracting richer features through CNNs. This
mature technology has been tested globally, achieving recognition accuracy above 90% at
10 fps, serving as a foundational step in various implementations. Forkel’s work [10] on
large-scale grid mapping with LiDAR for autonomous driving was notable but lacked focus
on under-vehicle information crucial for unmanned excavator perception. Collaborative
research by Baidu and the University of Maryland [3] developed an Autonomous Excava-
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tor System (AES) that combined cameras, positioning systems, and LiDAR for extended
autonomous excavation.

Building upon the foundation set by previous research, our method innovatively
processes LiDAR data through a deep learning-based terrain processing network, which
efficiently converts complex 3D point clouds into 2D pseudo-images for feature extraction,
as summarized in Table 1. This method not only simplifies data processing but also focuses
more on the extraction of terrain features. By integrating these features with a DRL algorithm,
our system achieves intelligent trajectory generation with improved computational efficiency,
signifying a significant advancement over existing research.

Table 1. Comparative analysis of excavator environmental perception methods.

Input Features Our Contributions

[6,7] LiDAR + Cameras + GPS

Integration of early
environmental perception
with 3D information for
excavation projects

Advanced multisensor
fusion and terrain
processing network based
on deep learning

[8] Movable 3D laser scanners Mobile scanning for civil
engineering

Efficient data processing
through pseudo-imaging

[9] Cameras Rich feature extraction but
low efficiency

Custom GridNet for salient
terrain feature extraction

[3,10] LiDAR

Large-scale 3D point cloud
reconstruction and
traditional control
algorithm for excavation

Combination of reduced
dimensionality and
DRL algorithm

3. Methods

We introduce the E-GTN framework, a specialized pipeline designed for the au-
tonomous excavation domain, focusing primarily on the extraction of terrain information
pertinent to reinforcement learning tasks in unmanned excavation operations. The overall
structure of E-GTN is shown in Figure 1.

Figure 1. Overall architecture of E-GTN.

In the terrain information processing stage of our E-GTN framework, we commence
with the capture of raw point cloud data using laser radar. These data are then processed
using voxel grid downsampling and normal estimation to reduce complexity and enhance
feature representation. The resulting downsampled point cloud is essential for creating a
detailed and computationally manageable model of the terrain, which is critical for accurate
environmental reconstruction and subsequent analysis.
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The terrain feature extraction module is the centerpiece of the E-GTN framework,
where the downsampled point cloud is meticulously transformed into a structured grid
map. This grid map undergoes normalization and is treated as a pseudo-image, allowing
us to leverage convolutional neural networks (CNNs) for advanced feature extraction. Our
tailored model GridNet adeptly processes the grid data to distill critical terrain features
that are instrumental for the reinforcement learning tasks in autonomous excavation.

Finally, the decision-making module utilizes the features extracted by GridNet to
inform the reinforcement learning algorithm. While this section is less emphasized, it is still
pivotal as it enables the autonomous system to make strategic decisions based on the terrain
information provided. The integration of these modules within the E-GTN framework
ensures a seamless flow from data acquisition to decision execution, facilitating efficient
and intelligent autonomous excavator operations.

3.1. Terrain Information Processing
3.1.1. Raw Point Cloud Acquisition

Given the raw point cloud data P, we apply a voxel grid downsampling method. For
each voxel V with edge length l, the subset of points PV ⊆ P is replaced with their centroid
cV to obtain the downsampled point cloud P′:

cV =
1

|PV | ∑
p∈PV

p, P′ =
⋃
V

cV (1)

where |PV | denotes the number of points in voxel V. The next step involves estimating the
normal at each point in P′. Using a neighborhood defined by a radius search in a KD-tree
structure [11], the normal vector n⃗p at point p is computed as the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix constructed from the neighbors of p.

For feature description, we compute Fast Point Feature Histograms (FPFHs) [12]
for each point p in P′ based on the normal vectors and the relative positions within a
neighborhood N (p):

FPFH(p) = SPFH(p) +
1
k ∑

pk∈N (p)

1
ωpk

SPFH(pk) (2)

where SPFH(p) is the Simplified Point Feature Histogram for point p, ωpk is the inverse
Euclidean distance between p and pk, and k is the number of neighbors.

To align the point clouds into a common coordinate frame, we first apply an initial
rough alignment using feature matching. A RANSAC-based approach with FPFH features
estimates the transformation (Ri, ti) by maximizing the consensus set of matched features:

(Ri, ti) = arg max
R,t

|{(p, q) ∈ P′ × Q′ : ∥(Rp + t)− q∥ < ϵ}| (3)

where Q′ is the downsampled point cloud from the other laser scanner and ϵ is a threshold
for matching.

Subsequently, the Iterative Closest Point (ICP) algorithm [13] refines the transformation
(R, t) by minimizing the mean squared error between the corresponding points:

(R∗, t∗) = arg min
R,t

∑
(p,q)∈C

∥(Rp + t)− q∥2 (4)

where C is the set of corresponding point pairs between the registered point cloud P′ and
the target cloud Q′, and (R∗, t∗) is the optimized transformation. Through these steps, we
ensure the integrity and computational efficiency of the data, leading to a high-fidelity
reconstruction of the excavation site suitable for further simulation and analysis.
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3.1.2. Environment Reconstruction

In our study, the region of interest (ROI) is delineated by an axis-aligned bounding
box to focus on terrain changes in front of the excavator bucket. The ROI is defined
by coordinates minROI and maxROI , significantly reducing data processing volume and
increasing efficiency.

The Poisson Surface Reconstruction algorithm [14] seeks a smooth surface that approx-
imates the normals of the point cloud. The mathematical formulation involves solving the
Poisson equation:

∆ f = div(N) (5)

where f is the scalar field whose gradient approximates the point cloud normals N, ∆
is the Laplacian, and div is the divergence operator. The normals N are estimated from
the input point cloud, and the divergence of N forms the right-hand side of the equation,
representing the flux of the normal vectors.

The boundary conditions for the domain Ω are typically set to Neumann conditions:

∂ f
∂n

∣∣∣∣
∂Ω

= N · n (6)

where ∂ f
∂n is the derivative of f in the direction of the outward normal n on the boundary ∂Ω.

After solving the Poisson equation, the surface S is extracted as the isosurface where
the scalar field f equals a chosen iso-value τ, typically zero:

S = {x ∈ Ω | f (x) = τ} (7)

resulting in a triangular mesh that represents the continuous surface of the point cloud
data. This reconstruction fills gaps and creates a model with uniform density, facilitating
further processing and analysis.

3.2. Terrain Feature Extraction
3.2.1. Point Cloud to Grid Dimensionality Reduction Mapping

In the preprocessing phase, the original point cloud data, which include a set of points
each with coordinates, intensity, and environmental label, are denoted as P = {pi}, where
pi = [xi, yi, zi, Ii, li] and i = 1, . . . , N. Here, N is the total number of points in the point
cloud, Ii represents the intensity, and li is the label of the i-th point.

Filtering based on the label l retains only the points associated with the target environ-
ment, resulting in a reduced point cloud P′ =

{
p′

i
}

, where p′
i = [x′i , y′i, z′i] and i′ = 1, . . . , N′.

Here, N′ is the count of points in the filtered point cloud.
The grid map parameters are computed as follows:

grid_width =

⌊
W
∆x

⌋
, grid_height =

⌊
H
∆y

⌋
(8)

where W and H are the width and height of the scene, respectively, and ∆x and ∆y are the
grid resolutions in the respective dimensions. An empty grid map G is initialized with
zero values:

G = 0grid_height×grid_width (9)

For each point p′
i within the specified range, the corresponding grid indices (ix, iy) are

calculated by:

ix =

⌊
x′i − xmin

∆x

⌋
, iy =

⌊
y′i − ymin

∆y

⌋
(10)

where xmin and ymin are the minimum coordinates of the grid. The z-coordinate is mapped
to the grid if it falls within the specified range [zmin, zmax]:



Appl. Sci. 2024, 14, 6974 6 of 14

G(iy, ix) =

{
z′i if zmin ≤ z′i ≤ zmax

0 otherwise
(11)

The grid G is then reshaped into a vector for efficient storage and processing:

g = reshape(G, grid_height · grid_width) (12)

For visualization and further analysis, the grid map is normalized and converted into
a pseudo-image Igrid:

Igrid =
G − min(G)

max(G)− min(G)
(13)

This pseudo-image is then scaled to the range [0, 1] to standardize the data for subse-
quent processing steps:

Igrid =
Igrid

255
(14)

The normalized grid map Igrid is now ready for feature extraction and environmental
perception tasks, providing a consistent input for machine learning algorithms.

3.2.2. Terrain Feature Extraction Network

To facilitate the processing of grid data by convolutional neural networks (CNNs),
which are typically designed for RGB images, the channel dimension of the grid data
must be expanded to simulate a three-channel image. This expansion is denoted by the
operation expand_channels, which replicates the single-channel grid pseudo-image G
across three channels, yielding a tensor GridRGB with dimensions [3, Hg, Wg], where Hg
and Wg represent the height and width of the grid, respectively:

GridRGB = expand_channels(G) ∈ R3×Hg×Wg (15)

For batch processing, the tensor is further extended to accommodate a batch size of bs,
resulting in a four-dimensional tensor Gridbatch:

Gridbatch ∈ Rbs×3×Hg×Wg (16)

The environmental state vector State is defined to encapsulate additional neces-
sary inputs from the environment, excluding the target point cloud. It is represented as
State ∈ Rbs×Sd , where Sd is the dimensionality of the state information.

The feature extraction network, denoted as GridNet, is composed of a CNN model
CNNGridNet for processing grid data and a fully connected network FCNGridNet for process-
ing state data. The CNN model, incorporating depthwise separable convolutions and an
inverted residual structure, transforms the input dimensions as follows:

CNNGridNet : R3×Hg×Wg → RCg (17)

where Cg represents the number of feature channels produced by the CNN. The fully
connected network processes the state vector:

FCNGridNet : RSd → RCs (18)

where Cs is the size of the feature vector for the state data.
The environmental feature vector Feat is obtained by concatenating the output of the

CNN and FCN models:

Feat = concat(CNNGridNet(GridRGB), FCNGridNet(State)) ∈ RCg+Cs (19)
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MobileNetV2 [15] is selected for its efficiency and is specifically adapted for this appli-
cation. This structure initially expands the channel count of the input feature map through
a lightweight expansion layer. It elevates the dimensions before applying depthwise sep-
arable convolutions for feature extraction. Finally, a linear projection layer reduces the
dimensions back to the original size.

3.3. Decision Making

Within the scope of excavator operations, we confront the dynamic optimization
challenge by conceptualizing the joint optimization of excavation strategies as an MDP [16].
To effectively address this MDP, we engineered an adept DRL [17] algorithm. This algorithm
is specifically tailored to navigate the intricacies of continuous excavation tasks, thereby
refining the decision-making process in a real-time setting.

The MDP framework of our DRL model is succinctly encapsulated by the tuple
⟨S, A, P, r⟩, where S delineates the state space, A signifies the action space, P represents the
set of state transition probabilities, and r constitutes the reward function.

3.3.1. State Space

At any decision epoch t, the state space S(t) is formulated to provide a detailed
depiction of the excavator’s operational status and its environmental engagement. The
state space is concisely defined as:

S(t) ≜ {J(t), S(t), Vsoil(t)} (20)

where J(t) encompasses the joint angles of the excavator, S(t) entails the angular velocities
of the joints, and Vsoil(t) quantifies the volume of soil excavated at time t.

Given the continuum of the state space, we model the state transition probability
as a probability density function f , which quantifies the probability of migrating to the
subsequent state s(t + 1) consequent to executing an action a(t):

Pr(s(t + 1)|s(t), a(t)) =
∫

St+1
f (s(t), a(t), s′) ds′ (21)

3.3.2. Action Space

The action space A(t), at time t, is comprised of a series of potential excavator move-
ments, each represented by the discrete adjustments in the joint angles:

A(t) ≜ {∆Jswing(t), ∆Jboom(t), ∆Jarm(t), ∆Jbucket(t)} (22)

Each component of A(t) specifies an incremental modification to a corresponding
joint angle, thereby facilitating precise control over the excavator’s movements and excava-
tion activities.

4. Experiments
4.1. Data Acquisition

Data for our study were sourced from actual excavation sites, as depicted in Figure 2a.
The data collection involved an SY870 excavator [18] performing earthmoving tasks, with
the operator ensuring consistent excavation criteria and ground leveling post-operation.
The SY870 excavator is manufactured by Sany Group, headquartered in Changsha, China.
The excavator’s position remained fixed during the tasks, and the terrain was restored after
each session to maintain consistent conditions for every new excavation. The SY870 is a
hefty machine with a 4.5 cubic meter bucket capacity. In the unloading phase, excavated
soil was loaded into mining trucks.

Throughout the excavation processes, the excavator’s location was kept constant. The
operator used a uniform standard to determine the end of the excavation process. The
goal was to keep the post-excavation ground as level as possible and to ensure a constant
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excavation speed. To avoid operational anomalies, the operator restored the terrain after
each excavation to ensure the initial conditions for subsequent operations were as consistent
as possible. Figure 2b shows the work area of the excavation operation, with Area A being
the excavation zone and Area B being the unloading zone. The width of the spoil platform
at the excavation site was 13 m, and the work area was 6.5 m by 1.4 m by 4 m.

Figure 2. Excavation operation: Real to simulated.

To simulate actual operations, radar devices were installed on both sides of the exca-
vator’s cabin and boom to collect real-time data about the surrounding environment and
terrain. The excavator’s LiDAR is the Ouster OS1. The Ouster OS1 is manufactured by Ouster,
Inc., headquartered in San Francisco, CA, USA. This is a high-performance LiDAR with a
detection range of up to 100 m and an angular sampling accuracy of ±0.01◦ vertically and
±0.01◦ horizontally. The excavator’s four joint angles are fitted with IMU SYD T500 sensors.
The manufacturer of the IMU SYD T500 sensors is SYD Dynamics, based in Odense, Southern
Denmark. This is an integrated inertial measurement unit that incorporates multiple sensors,
capable of outputting measurements from a 3-axis gyroscope and a 3-axis accelerometer with
a timestamp resolution of less than 1 µs. During operations, these data were stored at a
frequency of 50 Hz in Rosbag packages. The dataset includes the angular velocity of each joint
of the excavator, joint force, piston rod speed, volume of soil excavated, ground support force,
and LIDAR point clouds. The operator’s excavation trajectory, followed during the operation,
was transmitted to a simulation platform (Unity) via the UDP protocol in Matlab 2023a to
acquire data on the excavation process in a simulated environment. Figure 2c illustrates the
terrain of the work area after the completion of the excavation in the real scenario. Figure 2d
displays the terrain of the work area after the excavation in the simulated scenario, which is
essentially consistent with the terrain in the real scenario.

4.2. Environment Reconstruction

After capturing the original point cloud data, we processed the terrain information
based on the point cloud. The process began with preliminary steps, such as downsampling,
normal estimation, and FPFH feature extraction. This was followed by initial registration
and then precise alignment using the ICP method for the point clouds collected by the left
and right radars of the bucket. Next, we reconstructed the point cloud by first removing
outliers and any unreasonable points. We then defined the ROI for the actual excavation
process. After selecting the ROI, we used Poisson surface reconstruction techniques to
rebuild the point cloud, filling in gaps and preparing for the conversion of the point cloud
to a grid and feature extraction.

Our methodology employed the OpenCV library for normal estimation and point
cloud registration. This approach facilitated rapid neighborhood searches and maintained
a balance between accuracy and computational efficiency.

The preliminary registration aimed to align the left and right radar point clouds
roughly, setting the stage for more precise alignment. We utilized OpenCV’s feature-based
method to quickly estimate an initial transformation matrix.

For fine-tuning the alignment, we applied the ICP algorithm, optimizing the point
clouds’ alignment accuracy. The processed point clouds, an initial transformation from
the preliminary step, and a set maximum distance for corresponding points were fed



Appl. Sci. 2024, 14, 6974 9 of 14

into OpenCV’s ICP implementation. This step refined the point clouds’ alignment by
minimizing the direct Euclidean distance between corresponding points.

Figure 3a shows the unregistered point clouds from the left and right radars, where the
misalignment is evident. Figure 3b illustrates the point clouds after preliminary registration,
showing basic alignment. After ICP registration, as shown in Figure 3c, the left and right
point clouds are well aligned, resulting in a fused point cloud.

Figure 3. Terrain reconstruction based on point cloud.

In our research, we focused on the terrain changes in front of the excavator bucket
before and after each scoop. In Open3D, we created an axis-aligned bounding box as the
ROI to study the terrain changes in detail. As shown in Figure 3e, we defined the ROI
boundaries as (3, 2, −4) and (6, 5, 1), with ‘x+’ pointing down and ‘z−’ to the right.

Surface reconstruction organized the points in the point cloud into a smooth surface,
effectively representing the continuity and smoothness of the surface. The reconstructed
model usually has uniform data density, making the surface features more consistent and
continuous. The pre-reconstruction point cloud, as seen in Figure 3d, shows an uneven
distribution of points within the ROI and some gaps. After reconstruction, as shown in
Figure 3f, the holes and missing parts in the point cloud were filled in, adding points to
the area (marked in black), transforming the sparse and incomplete point cloud into a
continuous surface model, ready for further modeling operations.

4.3. Terrain Feature Extraction

Firstly, we convert the point cloud into a grid format. The grid map’s width and height
are calculated by dividing the real-world scene’s width and height by the resolution. We
initialize an empty grid map with the shape (grid_height, grid_width), which corresponds
to the size of the grid map. In our study, we focused on a region of interest, selecting a local
grid map of (150, 120) with 18,000 grids, representing a 15 m × 12 m real-world scene at a
resolution of 0.1 m. We then create an array matching the grid map size, representing the
empty grid map as an all-zero array, initializing each grid value to zero. The point cloud
‘lidar’ is then iterated over, mapping the points onto the grid map, uniformly stretching
them to fit the grid map. The grid map values are the z-coordinates sampled within
each grid’s range, thus reducing the three-dimensional point cloud to a two-dimensional
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grid map. This pseudo-image, equivalent to a single-channel grayscale image, is then
dimensionally expanded by duplication to meet the model’s input requirements, unlike
RGB images which have three channels.

Next, we use the MobileNetV2 network as the backbone for GridNet to perform deep
learning feature extraction. We select the network’s last layer, extracting image features as
a (512, 1) vector, which is then passed through a linear layer to generate a (256, 1) feature
vector. This vector encapsulates the basic features of the terrain state, providing a compact
yet information-rich representation. These vectors are particularly suitable as input states for
the RL algorithm in the next step of the unmanned excavator’s path generation. Compared
to other networks mentioned, MobileNetV2 requires fewer computational resources, has
a lower parameter count, and operates efficiently, making it suitable for use on mobile
devices. In the final grid information extraction, MobileNetV2 processes a total of 300
scoops, including the first and middle scoops. The extracted grid feature information and
state feature information are then input into the reinforcement learning model.

This section details training and testing the Decision Transformer (DT) [19], an offline
RL algorithm, for generating excavator trajectories. The DT model handles sequence
lengths up to 40 and segments up to 200, accommodating the unpredictable data lengths in
real-world applications. Its linear embedding layer, operating in a 512-dimensional space,
and a decoder with three layers and eight attention heads each, allow for detailed input
representation. The model uses a tanh function for action outputs within a continuous
range and employs a 0.1 dropout rate for robustness against overfitting. ReLU activations
facilitate learning complex patterns. Training datasets with varied segment lengths are
batch-sampled and preprocessed. Actions are scaled between −1 and 1, with states and
features standardized. The AdamW optimizer, with a learning rate and weight decay of
1 × 10−3, progressively increases the rate over 100 iterations. A custom loop minimizes the
error between predicted and actual actions across 500 iterations of 100 steps each.

The trend in the training loss statistics for the algorithm is indicative of its learning
performance. As shown in Figure 4, the mean training loss (a) decreases significantly in
the initial steps, suggesting rapid learning and model improvement. The loss continues to
gradually decrease, stabilizing towards the end of the training process, which is a sign of
the model converging to a solution. The standard deviation of the training loss (b) exhibits a
few peaks, which indicates variability in the loss across different training batches. However,
similar to the mean, the standard deviation generally decreases over time, implying that
the model’s predictions are becoming more consistent as training progresses.

Figure 4. Model training loss.

5. Results
5.1. Decision-Making Results

The excavator’s decision-making process is a real-time and multi-channel processing
dynamic system, as shown in Figure 5. It involves three primary channels: the terrain
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reconstruction channel (Channel 1), the excavator control channel (Channel 2), and the
DRL model operation channel (Channel 3).

Figure 5. Real-time decision-making process.

Channel 1: This channel employs two LIDAR scanners to capture point cloud data
P(t), which are then used to create a 3D reconstruction of the terrain using the algo-
rithm described in Section 4.2. The processing time for terrain reconstruction ranges from
240 ms to 280 ms.

Channel 2: Operating at a frequency of 10 Hz, this channel executes every 100 ms. At
each time step t, it receives the point cloud information P(t) from the terrain reconstruction
channel and the current joint information of the excavator, combining them to form the state
S(t), which encompasses the immediate conditions of both the environment and the excavator.

Channel 3: The state S(t) is relayed to the DRL model operation channel where it first
undergoes processing by the GridNet, taking 9 ms, followed by decision making through the
DRL model, which takes 14 ms. Ultimately, the DRL model outputs an action A(t), a vector
containing increments for four joint angles, to guide the excavator’s subsequent movement.

The complete operational results of the E-GTN are depicted in Figure 6. Within the
simulated environment, the excavator’s bucket has a capacity of 4.5 cubic meters. Under
the implementation of our method, coupled with the GridNet’s terrain feature extraction,
the system achieved an average excavation volume of 3.7 cubic meters per scoop with
a standard deviation of 0.27 cubic meters. In contrast, without the feature extraction,
the average excavation volume dropped significantly to 0.45 cubic meters per scoop,
with a standard deviation of 0.46 cubic meters. These findings underscore the efficacy
of integrating GridNet in enhancing the precision of the excavation process, optimizing
the excavator’s operational capacity, and highlighting the importance of terrain feature
extraction in the decision-making process.

Figure 6. Excavation result based on EGTN.

5.2. Feature Extraction Results

Upon completing the training, we extracted the terrain features before and after
excavation and input them into our GridNet. The visualized results are shown in Figure 7.
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A comparison between the feature maps before and after training reveals a noticeable
difference: post-training, there is an increased level of feature activation, indicating that the
network’s ability to extract features has improved.

Figure 7. Comparison of feature map activations.

The images on the left represent the terrain before excavation, while the images on
the right depict the terrain after excavation. In both cases, the feature maps are shown for
pre-training and optimal-training weights. For the first layer feature maps, the pre-training
images are more chaotic and less defined, while the optimal-training images show more
distinct patterns and clearer feature representations. This suggests that the network has
learned to emphasize relevant features for the task at hand.

Similarly, the last layer feature maps exhibit a stark contrast. The pre-training images
are almost uniform with little to no distinctive features, whereas the optimal-training
images display well-defined, high-activation regions. This signifies that the network, after
training, can better identify and highlight the most critical features of the terrain.

The scale on the right indicates the level of activation, with higher values correspond-
ing to stronger activations. The optimal-training feature maps generally show higher
activation levels compared to the pre-training ones, which is a strong indicator of the
network’s enhanced feature extraction capability after training.

In our study, we employed principal component analysis (PCA) as a preliminary
method to assess the effectiveness of feature extraction by GridNet. Figure 8b presents the
PCA results of the feature vectors extracted by GridNet. The first two principal compo-
nents account for an explained variance ratio of 0.39 and 0.16, respectively, cumulatively
explaining over 50% of the variance. The scatter plot associated with these components
shows a relative dispersion of data points, lacking a clear clustering trend. This dispersion
suggests that the extracted features have a high level of complexity and may capture more
nuanced variations within the data.

Conversely, Figure 8a illustrates the PCA results of the raw grid data. Here, the
first two principal components have an explained variance ratio of 0.25 and 0.19, which
together explain less than 50% of the total variance. The scatter plot reveals a concentrated
distribution of data points, indicating a strong clustering tendency. This concentration
implies that the raw data may inherently contain less complexity or fewer distinct patterns
before the application of feature extraction techniques.

The comparative analysis of the PCA results before and after the application of Grid-
Net allows us to infer that the feature extraction process not only accounts for a greater
proportion of the variance but also increases the complexity of the feature representation.
This is indicated by the spread of data points in the scatter plot post-extraction, which
contrasts with the more clustered distribution seen in the raw data. The ability of GridNet
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to elucidate a higher amount of variance and to disperse the data points suggests that it is
capturing more significant variables within the dataset.

Figure 8. Comparison of feature map activations.

The feature extraction process through GridNet, as evidenced by the PCA, appears
to be effective in distilling important variables from the data. This is an encouraging
sign that the network can isolate and amplify aspects of the data that are most informa-
tive for subsequent analysis. The increased complexity and variance explained by the
extracted features are indicative of GridNet’s robustness in representing terrain data in
a way that is conducive to advanced terrain analysis and decision-making processes in
automated systems.

6. Conclusions

In conclusion, our E-GTN framework has proven to be a robust solution to the chal-
lenges posed by unmanned excavator operations. By integrating advanced multisensor
fusion, we have significantly enhanced the geometric representation of the terrain, which is
foundational for high-fidelity environmental reconstruction. Our GridNet has successfully
processed grid data to extract salient terrain features, demonstrating its critical role in the
reinforcement learning tasks for autonomous excavation. The decision-making module,
informed by these extracted features, has facilitated efficient and intelligent operation,
showcasing the potential of our framework to revolutionize the construction machinery
industry. The successful application of our E-GTN framework underscores its value as a
comprehensive platform for scholars and practitioners in related fields, paving the way for
future advancements in autonomous excavation technologies.

Expanding on our work, future iterations of the E-GTN framework could employ
adaptive algorithms for better performance across varied soils. Real-time learning capa-
bilities may enable self-optimizing excavators. Additionally, deploying this technology
in extreme settings, like underwater or underground, could redefine automated digging.
These forward-looking applications not only build on the current strengths of the E-GTN
framework but also chart a course for its evolution, solidifying its role as a transformative
force in the industry.
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