Forces in the Interaction of Light with Matter
Abstract
:1. Introduction
2. Optical Forces—Fundamentals
2.1. Optical Forces on an Electric Dipole
2.2. Optical Forces in Dielectric Media
2.3. Rival Optical Forces in Media
2.4. Two Types of Optical Force
3. Optical Forces in the Laser Cooling and Trapping of Atoms
3.1. Scattering Force, Doppler Cooling and Optical Molasses
3.2. The Dipole Force
3.3. Cooling Forces Arising from Polarization Gradients
4. Forces in Optical Tweezers
5. Optical Binding
6. Chiral Optical Forces
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maxwell, J. A Treatise on Electricity and Magnetism; Macmillan: London, UK, 1873; Volume 2. [Google Scholar]
- Lebedew, P. Untersuchungen über die Druckkräfte des Lichtes. Ann. Der Phys. 1901, 311, 433–458. [Google Scholar] [CrossRef]
- Nichols, E.F.; Hull, G.F. The pressure due to radiation (second paper.). Phys. Rev. (Ser. I) 1903, 17, 26. [Google Scholar] [CrossRef]
- Poynting, J. Radiation pressure. London Edinburgh Dublin Philos. Mag. J. Sci. 1905, 9, 393–406. [Google Scholar] [CrossRef]
- Minkowski, H. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten Von Der Ges. Der Wiss. Göttingen -Math.-Phys. Kl. 1908, 1908, 53–111. [Google Scholar]
- Abraham, M. Zur Elektrodynamik bewegter Körper. Rend. Del Circ. Mat. Palermo (1884–1940) 1909, 28, 1–28. [Google Scholar] [CrossRef]
- Wheeler, J.A.; Feynman, R.P. Interaction with the Absorber as the Mechanism of Radiation. Rev. Mod. Phys. 1945, 17, 157–181. [Google Scholar] [CrossRef]
- Gordon, J.P. Radiation forces and momenta in dielectric media. Phys. Rev. A 1973, 8, 14. [Google Scholar] [CrossRef]
- Burt, M.; Peierls, R.E. The momentum of a light wave in a refracting medium. Proc. R. Soc. London. Math. Phys. Sci. 1973, 333, 149–156. [Google Scholar]
- Ashkin, A.; Dziedzic, J. Radiation pressure on a free liquid surface. Phys. Rev. Lett. 1973, 30, 139. [Google Scholar] [CrossRef]
- Peierls, R.E. The momentum of light in a refracting medium. Proc. R. Soc. London. Math. Phys. Sci. 1976, 347, 475–491. [Google Scholar]
- Wong, H.K.; Young, K. Momentum of light in a refracting medium. Am. J. Phys. 1977, 45, 195–198. [Google Scholar] [CrossRef]
- Jones, R.V. Radiation pressure of light in a dispersive medium. Proc. R. Soc. London. Math. Phys. Sci. 1978, 360, 365–371. [Google Scholar]
- Gibson, A.F.; Kimmitt, M.; Koohian, A.; Evans, D.; Levy, G. A study of radiation pressure in a refractive medium by the photon drag effect. Proc. R. Soc. London. Math. Phys. Sci. 1980, 370, 303–311. [Google Scholar]
- Nelson, D. Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy. Phys. Rev. A 1991, 44, 3985. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.; Barnett, S.M.; Loudon, R. The angular momentum of light inside a dielectric. J. Mod. Opt. 2003, 50, 1555–1562. [Google Scholar] [CrossRef]
- Pfeifer, R.N.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Colloquium: Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 2007, 79, 1197. [Google Scholar] [CrossRef]
- Milonni, P.W.; Boyd, R.W. Momentum of Light in a Dielectric Medium. Adv. Opt. Photon. 2010, 2, 519–553. [Google Scholar] [CrossRef]
- Mansuripur, M. Resolution of the Abraham–Minkowski controversy. Opt. Commun. 2010, 283, 1997–2005. [Google Scholar] [CrossRef]
- Barnett, S.M.; Loudon, R. The enigma of optical momentum in a medium. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2010, 368, 927–939. [Google Scholar] [CrossRef]
- Partanen, M.; Häyrynen, T.; Oksanen, J.; Tulkki, J. Photon mass drag and the momentum of light in a medium. Phys. Rev. A 2017, 95, 063850. [Google Scholar] [CrossRef]
- Ramos, T.; Rubilar, G.F.; Obukhov, Y.N. First principles approach to the Abraham–Minkowski controversy for the momentum of light in general linear non-dispersive media. J. Opt. 2015, 17, 025611. [Google Scholar] [CrossRef]
- Brevik, I. Analysis of recent interpretations of the Abraham-Minkowski problem. Phys. Rev. A 2018, 98, 043847. [Google Scholar] [CrossRef]
- Babiker, M.; Power, W.L.; Allen, L. Light-induced torque on moving atoms. Phys. Rev. Lett. 1994, 73, 1239. [Google Scholar] [CrossRef]
- Pillet, P. Special issue on Optics and Interferometry with Atoms. J. Phys. II 1994, 4, 1877. [Google Scholar]
- Allen, L.; Lembessis, V.; Babiker, M. Spin-orbit coupling in free-space Laguerre–Gaussian light beams. Phys. Rev. A 1996, 53, R2937. [Google Scholar] [CrossRef]
- García-Segundo, C.; Ramos-Ortiz, G.; Villagrán-Muniz, M. Experimental evidence for radiation pressure on a macroscopic dielectric. Opt. Commun. 2003, 225, 115–122. [Google Scholar] [CrossRef]
- Hinds, E.A.; Barnett, S.M. Momentum Exchange between Light and a Single Atom: Abraham or Minkowski? Phys. Rev. Lett. 2009, 102, 050403. [Google Scholar] [CrossRef]
- Barnett, S.M. Resolution of the Abraham-Minkowski dilemma. Phys. Rev. Lett. 2010, 104, 070401. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ginis, V.; Lim, S.W.D.; Capasso, F. Helicity and Polarization Gradient Optical Trapping in Evanescent Fields. Phys. Rev. Lett. 2023, 131, 143803. [Google Scholar] [CrossRef]
- Babiker, M.; Andrews, D.L. Atomic and molecular manipulation using structured light. In Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Andrews, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 169–194. [Google Scholar]
- Babiker, M.; Bennett, C.R.; Andrews, D.L.; Davila Romero, L.C. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 2002, 89, 143601. [Google Scholar] [CrossRef]
- Galvez, E.J.; Glückstad, J.; Andrews, D.L. Complex Light and Optical Forces IX. In Proceedings of the SPIE; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2015; Volume 9379, p. 937901-1. [Google Scholar]
- Grimm, R.; Weidemüller, M.; Ovchinnikov, Y.B. Optical Dipole Traps for Neutral Atoms. In Advances In Atomic, Molecular, and Optical Physics; Academic Press: Cambridge, MA, USA, 2000; Volume 42, pp. 95–170. [Google Scholar] [CrossRef]
- Loudon, R. The Quantum Theory of Light; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Loudon, R. Theory of the forces exerted by Laguerre–Gaussian light beams on dielectrics. Phys. Rev. A 2003, 68, 013806. [Google Scholar] [CrossRef]
- Loudon, R.; Baxter, C. Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. Math. Phys. Eng. Sci. 2012, 468, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.V.; Richards, J. The pressure of radiation in a refracting medium. Proc. R. Soc. London. Ser. Math. Phys. Sci. 1954, 221, 480–498. [Google Scholar] [CrossRef]
- Letokhov, V.S.; Minogin, V.G. Quantum motion of atoms in the resonant field of a standing light wave. Zh. Eksp. Teor. Fiz. 1978, 74, 1318–1335. [Google Scholar]
- Letokhov, V.S.; Minogin, V.G. Laser Light Pressure on Atoms; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Stenholm, S.; Minogin, V.G.; Letokhov, V.S. Resonant light pressure due to a strong standing wave. Opt. Commun. 1978, 25, 107–110. [Google Scholar] [CrossRef]
- Letokhov, V.S.; Minogin, V.G. Laser radiation pressure on free atoms. Phys. Rep. 1981, 73, 1–65. [Google Scholar] [CrossRef]
- Samphire, P.; Loudon, R.; Babiker, M. Quantum theory of radiation-pressure fluctuations on a mirror. Phys. Rev. A 1995, 51, 2726. [Google Scholar] [CrossRef]
- Samphire, P.; Loudon, R.; Babiker, M. Radiation Pressure Effects on the Surface of a Mirror. In Proceedings of the Coherence and Quantum Optics VII: Seventh Rochester Conference on Coherence and Quantum Optics, Held at the University of Rochester, Rochester, NY, USA, 7–10 June 1995; pp. 359–360. [Google Scholar]
- Garraway, B.M.; Minogin, V.G. Theory of an optical dipole trap for cold atoms. Phys. Rev. A 2000, 62, 043406. [Google Scholar] [CrossRef]
- Mansuripur, M. Radiation pressure and the linear momentum of the electromagnetic field. Opt. Express 2004, 12, 5375–5401. [Google Scholar] [CrossRef] [PubMed]
- Loudon, R.; Barnett, S.M.; Baxter, C. Radiation pressure and momentum transfer in dielectrics: The photon drag effect. Phys. Rev. A 2005, 71, 063802. [Google Scholar] [CrossRef]
- Loudon, R.; Barnett, S.M. Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Opt. Express 2006, 14, 11855–11869. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.M.; Loudon, R. On the electromagnetic force on a dielectric medium. J. Phys. At. Mol. Opt. Phys. 2006, 39, S671. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M.; Sáenz, J.; Gómez-Medina, R.; Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 2010, 18, 11428–11443. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.; Loudon, R. Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 2010, 57, 830–842. [Google Scholar] [CrossRef]
- Sukhov, S.; Dogariu, A. Non-conservative optical forces. Rep. Prog. Phys. 2017, 80, 112001. [Google Scholar] [CrossRef] [PubMed]
- Kajorndejnukul, V.; Ding, W.; Sukhov, S.; Qiu, C.W.; Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics 2013, 7, 787–790. [Google Scholar] [CrossRef]
- Huang, H.; Ford, L.H. Vacuum radiation pressure fluctuations and barrier penetration. Phys. Rev. D 2017, 96, 016003. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, X.; Lu, W.; Ng, J.; Lin, Z. GCforce: Decomposition of optical force into gradient and scattering parts. Comput. Phys. Commun. 2019, 237, 188–198. [Google Scholar] [CrossRef]
- Sonnleitner, M.; Barnett, S.M. The Röntgen interaction and forces on dipoles in time-modulated optical fields. Eur. Phys. J. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156. [Google Scholar] [CrossRef]
- Dalibard, J.; Cohen-Tannoudji, C. Atomic motion in laser light: Connection between semiclassical and quantum descriptions. J. Phys. At. Mol. Phys. 1985, 18, 1661. [Google Scholar] [CrossRef]
- Adams, C.; Riis, E. Laser cooling and trapping of neutral atoms. Prog. Quantum Electron. 1997, 21, 1–79. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.N. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys. 1998, 70, 707. [Google Scholar] [CrossRef]
- Phillips, W.D. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 1998, 70, 721–741. [Google Scholar] [CrossRef]
- Dalibard, J.; Reynaud, S.; Cohen-Tannoudji, C. Potentialities of a new σ+-σ-laser configuration for radiative cooling and trapping. J. Phys. At. Mol. Phys. 1984, 17, 4577. [Google Scholar] [CrossRef]
- Meekhof, D.M.; Monroe, C.; King, B.E.; Itano, W.M.; Wineland, D.J. Generation of Nonclassical Motional States of a Trapped Atom. Phys. Rev. Lett. 1996, 76, 1796–1799. [Google Scholar] [CrossRef] [PubMed]
- Lembessis, V.E.; Koksal, K.; Yuan, J.; Babiker, M. Chirality-enabled optical dipole potential energy for two-level atoms. Phys. Rev. A 2021, 103, 013106. [Google Scholar] [CrossRef]
- Lembessis, V.E.; Babiker, M. Light-induced torque for the generation of persistent current flow in atomic gas Bose–Einstein condensates. Phys. Rev. A 2010, 82, 051402. [Google Scholar] [CrossRef]
- Čižmár, T.; Davila Romero, L.C.; Dholakia, K.; Andrews, D.L. Multiple optical trapping and binding: New routes to self-assembly. J. Phys. At. Mol. Opt. Phys. 2010, 43, 102001. [Google Scholar] [CrossRef]
- Lembessis, V.; Ellinas, D.; Babiker, M. Azimuthal Sisyphus effect for atoms in a toroidal all-optical trap. Phys. Rev. A 2011, 84, 43422. [Google Scholar] [CrossRef]
- Lembessis, V.E.; Babiker, M. Mechanical effects on atoms interacting with highly twisted Laguerre–Gaussian light. Phys. Rev. A 2016, 94, 043854. [Google Scholar] [CrossRef]
- Koksal, K.; Lembessis, V.E.; Yuan, J.; Babiker, M. Interference of axially-shifted Laguerre–Gaussian beams and their interaction with atoms. J. Opt. 2019, 21, 104002. [Google Scholar] [CrossRef]
- Al Rsheed, A.; Lyras, A.; Lembessis, V.E.; Aldossary, O.M. Guiding of atoms in helical optical potential structures. J. Phys. At. Mol. Opt. Phys. 2016, 49, 125002. [Google Scholar] [CrossRef]
- Carter, A.R.; Babiker, M.; Al-Amri, M.; Andrews, D.L. Transient optical angular momentum effects in light-matter interactions. Phys. Rev. A 2005, 72, 043407. [Google Scholar] [CrossRef]
- Lembessis, V.; Lyras, A.; Aldossary, O. Quantum states of a two-level atom trapped in a helical optical tube. JOSA B 2022, 39, 2319–2328. [Google Scholar] [CrossRef]
- Molloy, J.E.; Padgett, M.J. Lights, action: Optical tweezers. Contemp. Phys. 2002, 43, 241–258. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Sukhov, S.; Dogariu, A. Negative nonconservative forces: Optical “tractor beams” for arbitrary objects. Phys. Rev. Lett. 2011, 107, 203602. [Google Scholar] [CrossRef] [PubMed]
- Novitsky, A.; Qiu, C.W.; Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 2011, 107, 203601. [Google Scholar] [CrossRef]
- Ruffner, D.B.; Grier, D.G. Optical conveyors: A class of active tractor beams. Phys. Rev. Lett. 2012, 109, 163903. [Google Scholar] [CrossRef]
- Dogariu, A.; Sukhov, S.; Sáenz, J. Optically induced ‘negative forces’. Nat. Photonics 2013, 7, 24–27. [Google Scholar] [CrossRef]
- Gupta, S.; Leanhardt, A.E.; Cronin, A.D.; Pritchard, D.E. Coherent manipulation of atoms with standing light waves. Comptes Rendus L’AcadÉMie Des-Sci.-Ser. -Phys. 2001, 2, 479–495. [Google Scholar] [CrossRef]
- Paterson, L. Novel Micromanipulation Techniques in Optical Tweezers. Ph.D Thesis, University of St Andrews, St Andrews, UK, 2004. [Google Scholar]
- Moffitt, J.R.; Chemla, Y.R.; Smith, S.B.; Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 2008, 77, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Padgett, M.J.; Molloy, J.; McGloin, D. Optical Tweezers: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Jones, P.H.; Maragò, O.M.; Volpe, G. Optical Tweezers: Principles and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Li, J.; Chen, Z.; Liu, Y.; Kollipara, P.S.; Feng, Y.; Zhang, Z.; Zheng, Y. Opto-refrigerative tweezers. Sci. Adv. 2021, 7, eabh1101. [Google Scholar] [CrossRef] [PubMed]
- Volpe, G.; Maragò, O.M.; Rubinsztein-Dunlop, H.; Pesce, G.; Stilgoe, A.B.; Volpe, G.; Tkachenko, G.; Truong, V.G.; Chormaic, S.N.; Kalantarifard, F.; et al. Roadmap for optical tweezers. J. Physics: Photonics 2023, 5, 022501. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Balykin, V.; Minogin, V.; Letokhov, V. Electromagnetic trapping of cold atoms. Rep. Prog. Phys. 2000, 63, 1429. [Google Scholar] [CrossRef]
- Andrews, D.L.; Babiker, M. The Angular Momentum of Light; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Allen, L.; Barnett, S.M.; Padgett, M.J. Optical Angular Momentum; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Torres, J.P.; Torner, L. (Eds.) Twisted Photons: Applications of Light with Orbital Angular Momentum; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ritboon, A.; Croke, S.; Barnett, S.M. Optical angular momentum transfer on total internal reflection. J. Opt. Soc. Am. B 2019, 36, 482–492. [Google Scholar] [CrossRef]
- Babiker, M.; Andrews, D.L.; Lembessis, V.E. Atoms in complex twisted light. J. Opt. 2018, 21, 013001. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M.; Chaumet, P.; Rahmani, A. Near-field photonic forces. Philos. Trans. R. Soc. London. Ser. Math. Phys. Eng. Sci. 2004, 362, 719–737. [Google Scholar] [CrossRef]
- Kotsifaki, D.G.; Chormaic, S.N. Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects. Nanophotonics 2019, 8, 1227–1245. [Google Scholar] [CrossRef]
- Andrews, D.L.; Bradshaw, D.S. Optical Nanomanipulation, 2nd ed.; Institute of Physics Publishing: Bristol, UK, 2022. [Google Scholar]
- Bradshaw, D.S.; Andrews, D.L. Manipulating particles with light: Radiation and gradient forces. Eur. J. Phys. 2017, 38, 034008. [Google Scholar] [CrossRef]
- Rodríguez, J.; Davila Romero, L.C.; Andrews, D.L. Optical binding in nanoparticle assembly: Potential energy landscapes. Phys. Rev. A 2008, 78, 043805. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Optical orbital angular momentum: Twisted light and chirality. Opt. Lett. 2018, 43, 435–438. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 2019, 1, 033080. [Google Scholar] [CrossRef]
- Bradshaw, D.S.; Andrews, D.L. Chiral discrimination in optical trapping and manipulation. New J. Phys. 2014, 16, 103021. [Google Scholar] [CrossRef]
- Bradshaw, D.S.; Andrews, D.L. Electromagnetic trapping of chiral molecules: Orientational effects of the irradiating beam. JOSA B 2015, 32, B25–B31. [Google Scholar] [CrossRef]
- Andrews, D.L. Symmetry and quantum features in optical vortices. Symmetry 2021, 13, 1368. [Google Scholar] [CrossRef]
- Salam, A. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules. J. Chem. Phys. 2006, 124, 014302. [Google Scholar] [CrossRef]
- Salam, A. Molecular Quantum Electrodynamics of Radiation-Induced Intermolecular Forces. In Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2011; Volume 62, pp. 1–34. [Google Scholar]
- Rukhlenko, I.D.; Tepliakov, N.V.; Baimuratov, A.S.; Andronaki, S.A.; Gun’ko, Y.K.; Baranov, A.V.; Fedorov, A.V. Completely chiral optical force for enantioseparation. Sci. Rep. 2016, 6, 36884. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.L.; Bradshaw, D.S. Optically induced forces and torques: Interactions between nanoparticles in a laser beam. Phys. Rev. A 2005, 72, 033816. [Google Scholar]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.; Lapthorn, A.; Kelly, S.; Barron, L.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Cameron, R.P.; Barnett, S.M.; Yao, A.M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 2012, 14, 053050. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Characterizing optical chirality. Phys. Rev. A 2011, 83, 021803. [Google Scholar] [CrossRef]
- Choi, J.S.; Cho, M. Limitations of a superchiral field. Phys. Rev. A 2012, 86, 063834. [Google Scholar] [CrossRef]
- Barnett, S.M.; Cameron, R.P.; Yao, A.M. Duplex symmetry and its relation to the conservation of optical helicity. Phys. Rev. A 2012, 86, 013845. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.H. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 2015, 114, 203003. [Google Scholar] [CrossRef] [PubMed]
- Cameron, R.P.; Barnett, S.M.; Yao, A.M. Discriminatory optical force for chiral molecules. New J. Phys. 2014, 16, 013020. [Google Scholar] [CrossRef]
- Poulikakos, L.V.; Gutsche, P.; McPeak, K.M.; Burger, S.; Niegemann, J.; Hafner, C.; Norris, D.J. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 2016, 3, 1619–1625. [Google Scholar] [CrossRef]
- Schnoering, G.; Poulikakos, L.V.; Rosales-Cabara, Y.; Canaguier-Durand, A.; Norris, D.J.; Genet, C. Three-dimensional enantiomeric recognition of optically trapped single chiral nanoparticles. Phys. Rev. Lett. 2018, 121, 023902. [Google Scholar] [CrossRef] [PubMed]
- Crimin, F.; Mackinnon, N.; Götte, J.B.; Barnett, S.M. On the conservation of helicity in a chiral medium. J. Opt. 2019, 21, 094003. [Google Scholar] [CrossRef]
- Poulikakos, L.V.; Dionne, J.A.; García-Etxarri, A. Optical helicity and optical chirality in free space and in the presence of matter. Symmetry 2019, 11, 1113. [Google Scholar] [CrossRef]
- Genet, C. Chiral light–chiral matter interactions: An optical force perspective. ACS Photonics 2022, 9, 319–332. [Google Scholar] [CrossRef]
- Andrews, D.L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Chu, S.; Bjorkholm, J.E.; Ashkin, A.; Cable, A. Experimental Observation of Optically Trapped Atoms. Phys. Rev. Lett. 1986, 57, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, T.W.; Schawlow, A.L. Cooling of gases by laser radiation. Opt. Commun. 1975, 13, 68–69. [Google Scholar] [CrossRef]
- Pritchard, D.E.; Raab, E.L.; Bagnato, V.; Wieman, C.E.; Watts, R.N. Light Traps Using Spontaneous Forces. Phys. Rev. Lett. 1986, 57, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 1978, 40, 729–732. [Google Scholar] [CrossRef]
- Thirunamachandran, T. Intermolecular interactions in the presence of an intense radiation field. Mol. Phys. 1980, 40, 393–399. [Google Scholar] [CrossRef]
- Burns, M.M.; Fournier, J.M.; Golovchenko, J.A. Optical binding. Phys. Rev. Lett. 1989, 63, 1233–1236. [Google Scholar] [CrossRef]
- Taylor, J.M.; Love, G.D. Optical binding mechanisms: A conceptual model for Gaussian beam traps. Opt. Express 2009, 17, 15381–15389. [Google Scholar] [CrossRef]
- Simpson, S.H.; Zemánek, P.; Maragò, O.M.; Jones, P.H.; Hanna, S. Optical binding of nanowires. Nano Lett. 2017, 17, 3485–3492. [Google Scholar] [CrossRef]
- Andrews, D.L.; Leeder, J.M. On the interactions between molecules in an off-resonant laser beam: Evaluating the response to energy migration and optically induced pair forces. J. Chem. Phys. 2009, 130, 034504. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, D.; Giovanazzi, S.; Kurizki, G.; Akulin, V. Bose–Einstein condensates with 1/r interatomic attraction: Electromagnetically induced “gravity”. Phys. Rev. Lett. 2000, 84, 5687. [Google Scholar] [CrossRef]
- Máximo, C.E.; Bachelard, R.; Kaiser, R. Optical binding with cold atoms. Phys. Rev. A 2018, 97, 043845. [Google Scholar] [CrossRef]
- Yan, Z.; Gray, S.K.; Scherer, N.F. Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nat. Commun. 2014, 5, 3751. [Google Scholar] [CrossRef]
- Lembessis, V.E.; Babiker, M.; Baxter, C.; Loudon, R. Theory of radiation forces and momenta for mobile atoms in light fields. Phys. Rev. A 1993, 48, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 1979, 52, 133–201. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Guery-Odelin, D. Advances in Atomic Physics—An Introduction; World Scientific: Hackensack, NJ, USA, 2011; p. 767. [Google Scholar]
- Cook, R.J. Atomic motion in resonant radiation: An application of Ehrenfest’s theorem. Phys. Rev. A 1979, 20, 224–228. [Google Scholar] [CrossRef]
- Ashkin, A.; Gordon, J.P. Stability of radiation-pressure particle traps: An optical Earnshaw theorem. Opt. Lett. 1983, 8, 511. [Google Scholar] [CrossRef]
- Allen, L.; Babiker, M.; Power, W.L. Azimuthal Doppler shift in light beams with orbital angular momentum. Opt. Commun. 1994, 112, 141–144. [Google Scholar] [CrossRef]
- Franke-Arnold, S.; Leach, J.; Padgett, M.J.; Lembessis, V.E.; Ellinas, D.; Wright, A.J.; Girkin, J.M.; Öhberg, P.; Arnold, A.S. Optical ferris wheel for ultracold Atoms. Opt. Express 2007, 15, 8619–8625. [Google Scholar] [CrossRef] [PubMed]
- Aspect, A.; Dalibard, J.; Heidmann, A.; Salomon, C.; Cohen-Tannoudji, C. Cooling Atoms with Stimulated Emission. Phys. Rev. Lett. 1986, 57, 1688–1691. [Google Scholar] [CrossRef] [PubMed]
- Dalibard, J.; Cohen-Tannoudji, C. Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B 1989, 6, 2023–2045. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Canaguier-Durand, A.; Cuche, A.; Genet, C.; Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Phys. Rev. A 2013, 88, 033831. [Google Scholar] [CrossRef]
- Polimeno, P.; Iatì, M.; Degli Esposti Boschi, C.; Simpson, S.; Svak, V.; Brzobohatỳ, O.; Zemánek, P.; Maragò, O.; Saija, R. T-matrix calculations of spin-dependent optical forces in optically trapped nanowires. Eur. Phys. J. Plus 2021, 136, 1–15. [Google Scholar] [CrossRef]
- Svak, V.; Brzobohatỳ, O.; Šiler, M.; Jákl, P.; Kaňka, J.; Zemánek, P.; Simpson, S. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 2018, 9, 5453. [Google Scholar] [CrossRef] [PubMed]
- Arias-González, J.R.; Nieto-Vesperinas, M. Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A 2003, 20, 1201–1209. [Google Scholar] [CrossRef]
- Wong, V.; Ratner, M.A. Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles. Phys. Rev. B 2006, 73, 075416. [Google Scholar] [CrossRef]
- Albaladejo, S.; Marqués, M.I.; Laroche, M.; Sáenz, J.J. Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field. Phys. Rev. Lett. 2009, 102, 113602. [Google Scholar] [CrossRef]
- Bekshaev, A.Y. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 2013, 15, 044004. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014, 5, 3300. [Google Scholar] [CrossRef]
- Antognozzi, M.; Bermingham, C.; Harniman, R.; Simpson, S.; Senior, J.; Hayward, R.; Hoerber, H.; Dennis, M.; Bekshaev, A.; Bliokh, K.; et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 2016, 12, 731–735. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Lin, H.; Nie, Z.; Feng, R.; Zhao, Y.; Jia, B. Dual-point noncoaxial rotational Doppler effect towards synthetic OAM light fields for real-time rotating axis detection. Light. Adv. Manuf. 2023, 4, 348. [Google Scholar] [CrossRef]
- Andrews, D.L.; Bradshaw, D.S. Laser-induced forces between carbon nanotubes. Opt. Lett. 2005, 30, 783–785. [Google Scholar] [CrossRef]
- Andrews, D.L.; Rodríguez, D.J. Collapse of optical binding under secondary irradiation. Opt. Lett. 2008, 33, 1830–1832. [Google Scholar] [CrossRef]
- Coles, M.M.; Andrews, D.L. Chirality and angular momentum in optical radiation. Phys. Rev. A 2012, 85, 063810. [Google Scholar] [CrossRef]
- Andrews, D.L. Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and observables. J. Opt. 2018, 20, 033003. [Google Scholar] [CrossRef]
- Babiker, M.; Power, E.A.; Thirunamachandran, T. On a generalization of the Power–Zienau–Woolley transformation in quantum electrodynamics and atomic field equations. Proc. R. Soc. London. Math. Phys. Sci. 1974, 338, 235–249. [Google Scholar]
- Andrews, D.L.; Jones, G.A.; Salam, A.; Woolley, R.G. Perspective: Quantum Hamiltonians for optical interactions. J. Chem. Phys. 2018, 148, 040901. [Google Scholar] [CrossRef] [PubMed]
- Forbes, K.A.; Andrews, D.L. Chiral discrimination in optical binding. Phys. Rev. A 2015, 91, 053824. [Google Scholar] [CrossRef]
- Ayuso, D.; Ordonez, A.F.; Smirnova, O. Ultrafast chirality: The road to efficient chiral measurements. Phys. Chem. Chem. Phys. 2022, 24, 26962–26991. [Google Scholar] [CrossRef] [PubMed]
- Forbes, K.A.; Green, D. Enantioselective optical gradient forces using 3D structured vortex light. Opt. Commun. 2022, 515, 128197. [Google Scholar] [CrossRef]
- Forbes, K.A. Optical helicity of unpolarized light. Phys. Rev. A 2022, 105, 023524. [Google Scholar] [CrossRef]
- [email protected]. Tribute to Professor Rodney Loudon, 1934–2022. University of Essex News, 2023. Available online: https://www.essex.ac.uk/news/2023/02/01/rodney-loudon-tribute (accessed on 31 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lembessis, V.E.; Andrews, D.L. Forces in the Interaction of Light with Matter. Appl. Sci. 2024, 14, 7008. https://doi.org/10.3390/app14167008
Lembessis VE, Andrews DL. Forces in the Interaction of Light with Matter. Applied Sciences. 2024; 14(16):7008. https://doi.org/10.3390/app14167008
Chicago/Turabian StyleLembessis, Vasileios E., and David L. Andrews. 2024. "Forces in the Interaction of Light with Matter" Applied Sciences 14, no. 16: 7008. https://doi.org/10.3390/app14167008
APA StyleLembessis, V. E., & Andrews, D. L. (2024). Forces in the Interaction of Light with Matter. Applied Sciences, 14(16), 7008. https://doi.org/10.3390/app14167008