
Citation: Parra, D.P.; Ferreira, G.R.B.;

Díaz, J.G.; Gheorghe de Castro

Ribeiro, M.; Braga, A.M.B. Supervised

Machine Learning Models for

Mechanical Properties Prediction in

Additively Manufactured Composites.

Appl. Sci. 2024, 14, 7009. https://

doi.org/10.3390/app14167009

Academic Editors: Konstantinos

Chrissafis and Evangelia Tarani

Received: 21 June 2024

Revised: 3 August 2024

Accepted: 7 August 2024

Published: 9 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Supervised Machine Learning Models for Mechanical Properties
Prediction in Additively Manufactured Composites
Dario Prada Parra 1 , Guilherme Rezende Bessa Ferreira 1, Jorge G. Díaz 2,* , Mateus Gheorghe de Castro Ribeiro 3

and Arthur Martins Barbosa Braga 1

1 Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro 22451-900, RJ, Brazil; daprada@puc-rio.br (D.P.P.);
bessa.guilherme@aluno.puc-rio.br (G.R.B.F.); abraga@puc-rio.br (A.M.B.B.)

2 Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Guadalajara 45138, Jalisco, Mexico
3 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA;

mateusgh@stanford.edu
* Correspondence: jorgegdiaz@tec.mx

Abstract: This paper analyses mechanical property prediction through Machine Learning for continu-
ous fiber-reinforced polymer matrix composites printed using the novel Material Extrusion Additive
Manufacturing technique. The composite is formed by a nylon-based matrix and continuous fiber
(carbon, Kevlar, or fiberglass). From the literature, the elastic modulus and tensile strength were
taken along with printing parameters like fiber content, fiber fill type, matrix lattice, matrix fill
density, matrix deposition angle, and fiber deposition angle. Such data were fed to several supervised
learning algorithms: Ridge Regression, Bayesian Ridge Regression, Lasso Regression, K-Nearest
Neighbor Regression, CatBoost Regression, Decision Tree Regression, Random Forest Regression,
and Support Vector Regression. The Machine Learning analysis confirmed that fiber content is the
most influential parameter in elasticity (E) and strength (σ). The results show that the K-Nearest
Neighbors and CatBoost provided the closest predictions for E and σ compared to the other models,
and the tree-based model presented the narrowest error distribution. The computational metrics
point to a size versus prediction time tradeoff between these two best predictors, and adopting the
prediction time as the most relevant criterion leads to the conclusion that the CatBoost model can be
considered, when compared to the others tested, the most appropriate solution to work as a predictor
in the task at hand.

Keywords: additive manufacturing; mechanical properties; composites; machine learning

1. Introduction

Additive Manufacturing (AM) is a rapidly growing area [1,2]. By 2024, the market
is expected to reach USD 24 billion [3]. On the other hand, composite materials offer
the high directional strength of fiber reinforcement with the flexibility of an adaptable
matrix [2,4]. Technologies, such as the Markforged Two® printer [5], blend the best features
of composites and AM [6], giving those materials load-bearing capabilities that can match
that of Aluminum [7]. AM could be the technology that closes the gap between topological
optimization and actual fabrication [8] because of its unique ability to manufacture many
lattices and intricate geometries [9]. However, designers must have appropriate mechanical
properties to implement such a flexible technique in components.

Markforged® [5] filed a patent in 2015 for a device that used Material Extrusion (MEX)
to manufacture continuous fiber composites. A schematic of the composite MEX printing
process is shown in Figure 1. MEX, arguably the most popular of the AM technologies [10],
is a manufacturing technique in which the topology is reconstructed layer by layer from a G-
code file previously converted to the Standard Template Library language. For Markforged®

composites, this process is performed by a software in the cloud called Eiger® [5].
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Figure 1. Schematic of composite MEX printing. Adapted from [6].

The options to create a part using the Markforged® technology are broad in number
and range. Their impact has been documented [2,4,11–13]. The options are the type of
continuous fiber (carbon, Kevlar, fiberglass, and high-temperature fiberglass), fiber volume
fraction (Vf ), fiber fill type (concentric and isotropic, as seen on the top of Figure 2), the
pattern of matrix filling (hexagonal, triangular, square, as seen at the bottom of Figure 2,
and solid fill), matrix fill density, matrix deposition angle, and fiber deposition angle.
The mechanical characterization for different matrix fillings from geometry and material
properties is thoroughly reviewed in [4,11]. Markforged, the sole provider of matrix and
fiber, has characterized individual mechanical properties for matrix (Nylon and Onyx®)
and continuous fibers, as seen in Table 1. It has to be noted that Onyx® is a composite itself,
a nylon matrix reinforced with chopped carbon fiber. Thus, it shows multiple options and
ranges to configure a part.

Figure 2. Options to configure a part for fiber layout and matrix filling, adapted from [14,15].

Table 1. Mechanical properties as provided by Markforged [5]. E is elastic modulus, σ is strength,
and ϵ is strain.

Material E [GPa] σ [MPa] ϵ %

Nylon 1.7 33.5 4.5
Onyx 1.4 36 33
Standard ASTM D638 [16] ASTM D638 [16] ASTM D638 [16]
Carbon 60 800 1.5
Fiberglass 21 590 3.8
Kevlar 27 610 2.7
Standard ASTM D3039 [17] ASTM D3039 [17] ASTM D3039 [17]

Predicting the material properties is still a challenge. The available prediction models
for mechanical properties do not include all the variables [18,19], a task that has to be per-
formed experimentally [11,13,20,21] or numerically [15,18]. However, the existing numeri-
cal modeling requires highly skilled users, a deep understanding of the mechanical behavior
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of composite materials, and fairly advanced numerical modeling skills [18,19,22–24]. Such
requirements are mainly due to the composite’s nature on top of the intrinsic anisotropy of
AM. In order to ease the task, the authors of [4] suggested modeling mechanical perfor-
mance for this kind of composite as isotropic materials with bulk mechanical properties
obtained from mechanical testing and linking them to the printing variables. Therefore,
the need for a model to predict mechanical properties (strength and elasticity), including
the printing variables, or at least the most representative, arises. This way, a novice user
can design a component using a simple isotropic numerical model. The Volume Average
Stiffness (VAS) model [19] is based on the Rule of Mixtures (ROM), but it accounts for each
region of the cross-sectional area. In addition, it accounts for the infill-type adopting models
proposed by Gibson and Ashby [25] for cellular materials and the composite’s anisotropy.
Recently, the authors of [15,26] applied the VAS method, including porosity and the Tsai–
Hill equations, to predict mechanical properties. It was acknowledged that developing
a numerical model with individual properties (fiber and matrix) takes advanced skills.
The model requires a deep understanding of composite theory [27] to be adopted, which
may impede the popularization of the printing technique. On the other hand, Machine
Learning (ML) has been extensively used and applied in different areas and applications.
Therefore, ML could link printing variables and mechanical properties.

When focusing on AM, there are plenty of works that make use of data-driven methods
to predict material properties [28,29]. In conventional manufacturing, Artificial Intelligence
(AI) has been applied to predict surface roughness, welds, forging, geometric tolerance,
sheet metal, and quality control in AM parts [30].

On the other hand, AI systems have the ability to recognize patterns, identify trends
within data, and categorize them based on such patterns. Although AI may be exceptionally
good at pattern recognition, it has limits, such as sensitivity to biases in training data and its
limitation to generalize beyond known patterns. Furthermore, several works have focused
on applying ML to predict material’s mechanical response [29]. Ng et al. [28] reviewed how
authors explored the Artificial Neural Network (ANN) in ML. Tavares [31] used an ANN
to predict static properties of dual-phase steel from processing and chemical composition.
Furthermore, [32] cited several cases where ML was used for strength, stiffness, and strain
prediction. Finally, in composites, ML techniques have been used for composites, including
the manufacturing method, simulation, and mechanical testing as data input to search for a
constitutive model as a whole or a Representative Unit Cell (RUC) [33,34].

Now, more specifically in AM, ML has been used extensively as well. Zhang et al. [35]
used ANNs to predict the mechanical behavior of the Fused Deposition Modeling (FDM) of
polymer parts accounting for temperature, printing speed, and layer height. León et al. [36]
used several machine learning algorithms to predict elastic modulus and strength based
on selected printing parameters. The study concluded that fiber angle and fiber content
are the factors with the most influence on stiffness and strength. However, the R2 for their
prediction was as low as 0.19 for a fine tree network and 0.66 for the Matern 5/2 Gaussian
Process Regression model, whereas a micromechanic-based model gave a R2 of 0.74. One
can see that there is still room for improvement. Modeling mechanical properties with
the existing methods is rather complex due to the large number of variables involved (see
Figure 2). To use homogenization such as for a representative volume unit and others,
one needs advanced numerical skills. This could be a roadblock to popularizing the use
of AM composites. Therefore, the present paper attempts to ease that task by predicting
mechanical properties using ML methods.

1.1. Contributions

Based on the recently published research in the intersection of AM, ML, and mechani-
cal property prediction, one can highlight the following main contributions of this work:

• A ML pipeline that estimates mechanical properties such as the strength and elasticity
of AM composite materials reinforced with continuous fibers—carbon (CRTP), Kevlar
(KvRTP), and fiberglass (FGRTP).
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• A dataset was constructed from the peer-reviewed literature. It includes mechanical
properties (elasticity and strength), materials for continuous fibers, and printing pa-
rameters. A robust analysis and the greater reliability of the ML models that have been
tested enable the reproducibility and exploration of polymer-based AM technologies.

• In order to determine the most efficient ML models for predicting mechanical prop-
erties, this paper examines a variety of linear and nonlinear ML models. The perfor-
mance analysis reveals their strengths and weaknesses when used within the AM
context. As new algorithms are developed, they can be tested with the existing
dataset. The modeling workflow used comprises k-fold cross-validation and Monte
Carlo resampling, exploring different lightweight machine learning methods like
Bayesian Ridge Regression (BAY), CatBoost Regression (CAT), Decision Tree Regres-
sion (DTR), k-nearest Neighbors (KNN), Lasso Regression (LAS), Random Forest
Regression (RFR), Ridge Regression (RDG), and Support Vector Regression (SVR).

• The manuscript shows how decisive printing parameters are, such as deposition
angles and fiber content, for the mechanical properties of Continuous Fiber Rein-
forced Polymer Matrix Compositess (CFRPCs). Therefore, the results can be used
to optimize material properties without conducting extensive experimental cam-
paigns. The identification of such parameters should lead to a more efficient design
anddevelopment process.

Moreover, when applying ML to AM mechanical property prediction, there are im-
plications such as enhanced design capabilities (i), personalized material selection (ii),
reduction in experimental campaign development time (iii), and scalability and produc-
tion efficiency (iv). (i) A designer can maximize a CFRPC component by reducing the
uncertainty in the mechanical property prediction. This could result in the manufacture
of lightweight, high-strength components designed for tailored purposes, improving the
overall performance of AM products. (ii) This study emphasizes the importance of various
parameters, such as deposition angles and fiber content, that influence the mechanical prop-
erties of AM composites. With this in mind, a designer can select materials, in combination
with AM parameters, to customize a tailored component more effectively, thus ensuring that
the final part meets the requirements and performance standards. (iii) Experimental testing
can be costly and time-consuming. By using ML models, manufacturers can lower the
costs associated with material testing, thus speeding up the development process. (iv) The
results indicate that ML can help popularize AM processes by demystifying the knowledge
on how to best optimize printing parameters to achieve a mechanical property target.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 addresses the essential
technical background encompassing the scope of this work. Section 3 describes the methods
and dataset adopted. Finally, Section 4 shows and analyzes the results, while Section 5
summarizes this study’s main findings.

2. Technical Background
2.1. Models to Predict AM Composites’ Elasticity

To predict mechanical properties in composite materials, one can use the ROM from
individual properties of the matrix and fiber [27]. For example, the elastic modulus E of
a component is described in (1) for the direction parallel to the fiber, and in (2), for the
direction perpendicular to the fiber:

Ec1 = E f Vf + (1 − Vf )Em (1)

Ec2 =

[
Vf

E f
+

1 − Vf

Em

]−1

(2)
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where the subscript c refers to composite, f to fiber, m to the matrix, 1 to the parallel-to-
the-fiber direction, and 2 to the perpendicular-to-the-fiber direction. Furthermore, if the
porosity is to be accounted for, the elastic modulus is modified by the porosity level p1,
which is estimated at 10% [37]. Therefore, (3) shows the corrected elastic modulus.

E1 = (1 − p1)Ec1 (3)

On top of that, and because of the easiness of free-form fabricated AM components,
cellular structures are commonly used. Figure 3 shows the RUC for the three cellular
structures studied here. All lattices have a thickness t.

Figure 3. Different RUCs for infill patterns and geometrical parameters: (a) square, (b) honeycomb,
and (c) triangular.

2.1.1. Square Lattice

The square lattice represents a good balance between the orthogonal strength and
printing time. The RUC, in Figure 3a, is characterized by a square with side l. The infill
density, ρsq, can be expressed as the ratio of the filled area to the total area, and it is given
by (4), whereas the elastic modulus is given in (5) [25]. Note that density is the parameter
that defines the geometry in Eiger® software, https://www.eiger.io/.

ρsq =
−4t2l + 2tl

l2 (4)

E1 = Es
t
l
, (5)

where Es represents the elastic modulus of the solid, and E1 is the elastic modulus in
the preferred fiber direction. When the axial load is aligned with the fiber, the x and 1
directions coincide.

2.1.2. Honeycomb or Hexagonal Lattice

The honeycomb lattice was developed mainly for compression applications, yielding
a great strength-to-density ratio. The honeycomb pattern is characterized by a regular
hexagon with side l, as shown in Figure 3b, and it is widely used as a core in manufac-
turing composite panels. It has good strength with fast printing times. The mechanical
characterization of honeycomb structures can be found in [25], with elasticity presented
in (6) and density in (7):

E1 = 2.3Es

(
t
l

)3
(6)

ρHex =
2t

l
√

3
(7)

2.1.3. Triangular Lattice

The triangular lattice, as shown in Figure 3c, is used when strength is needed along
the direction of the wall. It is stronger than the rectangular pattern but requires a longer
printing time. The elasticity and density for an equilateral triangle are presented in (8)
and (9), respectively.

E1 = 1.15Es
t
l

(8)

https://www.eiger.io/
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ρTr =
2
√

3t
l

(9)

2.1.4. Solid Region

Because the solid is formed out of melted thermoplastic circular wire, there is porosity,
named p1, between adjacent extruder passes. Rodriguez et al. [37] proposed the porosity
model for such regions, shown in (10). Note that elasticity is assumed as a solid but porous
material, with p1 values reported between 15 and 20% [38].

E1 = (1 − p1)Es (10)

A comparison of Equations (5), (6) and (8) is shown in Figure 4, where the normalized
elastic modulus is plotted versus the variation in the thickness and length for the square,
triangular, and hexagonal cellular structures. The elastic modulus is higher for a thick
structure (larger t). Conversely, for a thin structure (smaller t), the triangular and square
infills perform very similarly, whereas, for thicker structures, the hexagonal (honeycomb)
becomes stiffer after a 0.65 t/L value.

Figure 4. Elastic modulus as a function of thickness over length for three different infills. Adapted
from [14].

The ROM model is simple and easy to implement but leaves out important variables
that impact the AM composite prediction performance.

2.2. Models to Predict AM Composite Strength

On the other hand, in assuming that the composite abides by Hooke’s law, strength in
the axial direction could be described by the ROM [27], as shown in (11):

σc1 = σf

[
Vf +

Em

E f
(1 − Vf )

]
, (11)

where σ is the tensile strength. Now, if we disregard the contribution of the matrix to
withstand the load, (11) can be conservatively simplified to (12).

σc1 = σf Vf (12)

The performance of the normalized composite´s normal strength, (11), using values
from Table 1 is seen in Figure 5. Firstly, one can see that the variation is linear. Secondly,
the prediction is very close for the three available fibers, especially at the upper limit of
the volumetric fiber fraction. However, FGRTP provides a slightly higher strength at lower
values because of the high rate Em/E f . Furthermore, there is evidence that an elevated
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volumetric fiber content leaves insufficient room for fiber/matrix adhesion [4,26], indicating
that the ideal Vf is between 40 and 50%.

Figure 5. Normalized strength as predicted by the ROM. Adapted from [4].

2.3. Machine Learning Models

This section describes the machine learning methods adopted in this work. Since this
is a supervised learning problem with a continuous label, only classical regression methods
were selected.

2.3.1. Linear Regression

Linear regression is one of the simplest algorithms applied to solve regression prob-
lems. It assumes that the input variables have a linear relationship with the target variable.
A straight line represents such a relationship in a two-dimensional space, i.e., when there is
only one input variable, or it can be thought of as a hyperplane when the problem consists
of more than one input variable. The mathematical representation of the linear regression
model is presented in (13) [39]:

ŷ = w0 + w1x1 + w2x2 + · · ·+ wpxp, (13)

where ŷ is the predicted value, wi denotes the coefficients of the model, and xi denotes the
variables or features. Therefore, the Linear Regression (LR) algorithm consists of finding
the coefficients of the model through an optimization process that aims to minimize a loss
function, J(yi, ŷi), defined as the sum of squares of the difference between the target and
predicted values. This optimization technique is known as Ordinary Least Squares and is
represented by (14):

J(yi, ŷi) =
n

∑
i=0

(yi − ŷi)
2 (14)

Despite being simple and efficient, such a model can become sensitive to inputs and
unstable, especially for problems with a small number of samples or fewer samples than
features. One way to overcome this problem is to adopt a modified loss function that
includes additional costs when there are many input variables. The additional portion
of the modified loss function is called a penalty, and different types of penalty can be
used, each of them defining a new algorithm included in the class of penalized linear
regression models. These algorithms include the LAS, RDG, and BAY. The LAS refers
to the penalization based on the sum of the absolute coefficient values, the so-called L1
penalty, seen in (15). On the other hand, the RDG considers the L2 penalty, which is defined
as the sum of the squared coefficient values as seen in (16).

L1penalty =
p

∑
j=0

|wj| (15)
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L2penalty =
p

∑
j=0

(wj)
2 (16)

Therefore, the modified loss functions for the RDG and LAS are defined in (18) and
(17), respectively:

JLasso = J + λ · L1penalty (17)

JRidge = J + λ · L2penalty , (18)

where λ is a hyperparameter that weights the penalty applied to the loss function. The λ
values range from 0 to ∞, where 0 cancels the penalty, and large values leads to simpler
models with fewer parameters. Furthermore, the BAY is similar to the classical RDG, with
the difference that the regularization parameter is now tuned based on the dataset under
analysis. Hence, the Bayesian model has the advantage of adapting to the data at hand, but
with the drawback of the inference being possibly time-consuming.

2.3.2. CAT Boost Regression

The CAT algorithm was recently developed by Yandex, and it is perhaps one of the
newest regression algorithms available nowadays. As the name suggests, CAT is based
on decision trees [40] and gradient boosting [41]. The major features of the algorithm are
its capacity to handle categorical variables and ordered boosting. The first refers to the
ability not needing to perform any feature transformation before the training stage, which
is generally mandatory for other algorithms. To do so, during the training stage, the CAT
algorithm uses efficient modified target-based statistics [42]. The second major feature
refers to the sequential construction of a set of base predictors so that each subsequent
decision tree has a decreased loss [42]. Moreover, unlike traditional gradient boosting
algorithms, CAT Boost grows oblivious trees as base predictors, i.e., trees with all nodes
at the same level testing the same predictor with the same condition. Therefore, such
characteristics make the CAT computationally efficient and less prone to overfitting [41].

2.3.3. K-Nearest Neighbors Regression

The K-Nearest Neighbors Regression is an instance-based algorithm primarily applied
to solve regression problems. The core idea of the algorithm is quite simple: the predicted
target value for a new instance is calculated by searching for the most similar samples in
the dataset—the so-called neighbors—and computing the mean or median target value
associated with them. Therefore, the only mathematics required are the calculus of distance
metrics to find the neighbors of the query instance. Several distance measures can be used,
such as the Euclidean (19), Manhattan (20), and Minkowski distances (21):

• Euclidean

d(xi, xj) =

√(
ar(xi)− ar(xj)

)2
(19)

• Manhattan
d(xi, xj) = |ar(xi)− ar(xj)| (20)

• Minkowski

d(xi, xj) =
(
| ar(xi)− ar(xj)|p

) 1
p , (21)

where ar(x) denotes the value of the rth feature. The most popular of them is the Euclidean
distance.

The value of k, the number of neighbors to be considered, is the only hyperparameter
of the model. It can be defined using hyperparameter tuning techniques, and typical values
range from 1 to 21. Since the model relies on calculations conducted with the entire training
data, its computational complexity considerably increases for large datasets [43].



Appl. Sci. 2024, 14, 7009 9 of 21

3. Materials and Methods
3.1. Dataset

The data used in this study consist of a combination of datasets retrieved from a
total of 26 studies recently published in the literature on composite AM. Because it is a
new technology, there are not many tests yet. As one can see from the dataset presented
in Table 2, a total of 127 samples were used in this study. Listed materials include three
different types of composite parts, namely a Nylon matrix reinforced with continuous
fibers of carbon (CRTP), Kevlar (KvRTP), and fiberglass (FGRTP). The CRTP ones represent
roughly 76% of the total (91 samples), while KvRTP and FGRTP have 28 (22%) and 23 (18%)
specimens, respectively. Eight printing properties are reported, including the type of filling
matrix, the fiber layout, the fiber angle, the matrix angle, the reinforcement material, the
elastic modulus of the fiber, the tensile strength of the fiber, and the fiber volume fraction,
Vf. Included samples are taken from the literature and journals listed on Scopus, Journal
Citation Reports, and crossed references. Samples with partial or incomplete information
or from journals not indexed on the listed databases were excluded from the study.

Table 2. Dataset table representing groups of samples retrieved from several published works. The
table shows the variations in the values of each feature used in this work.

Reference Fiber Type Fill
Pattern

Fill
Angle (◦)

Fiber
Angle (◦)

Fiber
Distrib.

Vf Properties

Blok [44] C T ±45 0, 45 NA X E1, σ1, σ1c, G, τ12
Dutra [18] C NA ±45 0, 90,±45 NA X E1, σ1, E2, σ2, E1c, σ1c, G, σ12
Klift [45] C NA 0 NA C X E1, σ1
Melenka [19] Kv NA ±45 0 NA NA E1, σ1
Dickson [46] C, Kv, FG NA NA NA C NA E1, σ1, E1 f ,σ1 f
Justo [47] C, FG NA ±45 0, 90 NA NA E1, σ, E1c, σ1c, σ2c
Al-Abadi [48] C, Kv, FG NA ±45 0, 90 C NA E1, σ1

Goh [13] C, FG NA NA 0, 90,
±45 I X J, E1 f , σ1 f

Fidan [49,50] C, Kv, FG NA NA NA NA NA E1, σ1, ϵt, SN
Todoroki [51] C NA NA 0, 90,±45 NA NA E1, σ1, ν
Araya [52] Kv R, H NA 0, 90,±45 I, C NA E1c, σ1c, E1 f ,σ1 f
González [53] C, FG T 0 0, 90,±45 C NA E1, σ1
Pertuz [54] C, FG, Kv T NA 0 I X σ1, E1, SN
Podda [55] C NA NA 0, 90 NA NA E1, σ1
Agarwal [56] FG H NA 0, 90,±45 NA NA σ1, E1, SN
Mei [57] C, FG, Kv T, H, R NA 0 C NA σ1, E1
Naranjo [58] C T NA NA NA - E1, σ1
Pyl [59] C NA NA 0 I NA σ1, E1
Saeed [60] C S 0 ±45 I X σ1, E1
Tessarin [61] C, Kv, HSHT S ±45 0 I X E1, σ1
Lawrence [62] C, FG S 0 0 I X E1, σ1
Santos [63] C, FG S 0 0 I X E1, σ1
Leon [36] C S 0 0, 90,±45 I X E1, σ1
Heitkamp [64] C, Kv S 0 0 I X E1, σ1
Bendine [65] C S 0 0 I X E1, σ1
Ojha [66] Kv S 0 0 I X E1, σ1
Siddiqui [4] C S 0 0 I X E1, σ1
Zeeshan Ali [67] C R 0 0 I X E1, σ1
Xiang [68] C R 0 ±45 C X E1, σ1
Lee [69] C, FG S 0 ±45 C X E1, σ1
Moreno-Nuñez [70] Kv R 0 ±45 C X E1, σ1
Gljuscic [71] C S 0 0 I X E1, σ1

The subscripts in Table 2 are as follows: 1 for axial, 2 for in-plane, c and f for com-
pression and flexural resistance, respectively, and NA for not available. The reported tests
are axial tension T, bending B, in-plane shear (S2), axial compression C, and fatigue SN.
The matrix fill pattern options are the following: H is hexagonal, R is rectangular, T is
triangular, and S is solid, as depicted in Figure 3. The fiber distribution options are as
follows: I for isometric and C for concentric, as shown in Figure 2, whereas Vf is the fiber
volume fraction.

3.2. Machine Learning Pipeline

The supervised learning-based modeling workflow proposed in this work is summa-
rized in Figure 6. As previously mentioned in Section 3.1, eight variables corresponding to
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the printing properties defined during the AM process were used as features. These input
variables correspond to a mix of numerical and categorical variables, and thus a prepro-
cessing step was required. During the preprocessing stage, operations like feature scaling
(numerical features) and encoding (categorical features) were performed to make the data
adequate for the predictive models. As shown in Figure 6, eight regression algorithms were
considered as candidates to serve as mechanical properties predictors. Five of these algo-
rithms were selected based on a preliminary cross-validation analysis conducted with the
help of PyCaret [72]. This low-code Python library makes automatic ML workflows and is
suitable for identifying potential models to perform the task at hand. According to the rank
established in the preliminary analysis, BAY, CAT, KNN, LAS, and RDG were the most
promising models. Thus, they were the ones selected to compound the proposed workflow.
Additionally, the other three algorithms were also considered in the analysis since they are
traditional and well established. These three additional algorithms were the DTR, RFR,
and SVR. The model construction and validation stage adopted consisted of a combination
of randomized hyperparameter tuning, repeated stratified k-fold cross-validation, and
Monte Carlo resampling. In this scheme, each candidate model was evaluated with one
hundred different and randomly split test sets. In summary, at each iteration of the Monte
Carlo Cross-validation (MCCV), the training data were used in a random search procedure
to evaluate eighty hyperparameter combinations with a 5-fold CV scheme repeated ten
times. After training, the models were fed with unseen data to compute performance
metrics. Both regression metrics, as well as computational performance ones, were stored
to compare the performances of the candidates in order to define the most suitable one.
The results of the tests are presented ahead.

Figure 6. Machine learning modeling workflow.

4. Results

As previously discussed, predicting the mechanical properties of AM composite parts
requires a deep understanding of their mechanical behavior and advanced numerical
modeling skills [18,19,22–24]. The available predictive models do not include all the
variables involved in the task. In this context, ML has proven to be a suitable tool for
building strength and elasticity predictive models, including the most representative
printing variables involved in the AM of composite parts. Hence, experimental data were
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used to evaluate the possibility of building efficient supervised learning models to predict
the mechanical properties of composites from printing variables.

4.1. Exploratory Analysis

Okafor [34] highlighted the importance of data sorting and filtering for an accurate
prediction. Recall that both categorical and numerical features are embraced in this work.
Focusing on the numerical ones, Figure 7 depicts their relation with the target variables.
Although with scattering, the figure shows that the fiber volume fraction positively corre-
lates with σ and E, when the Vf increases, the mechanical properties also increase. This
correlation is stronger for σ than for E since the Pearson correlation coefficients are equal
to 0.64 and 0.43, respectively. Such a result indicates that Vf is a good predictive variable
for the ML pipeline. Moreover, the Vf influence found here agrees with the ROM, for
E (1) and σ (11) and with the literature [36]. Finally, when there was no fiber, Zhang [35]
found that layer thickness and printing speed were the most influential parameters in
mechanical properties.

(a) (b)
Figure 7. Target variable versus fiber volume fraction: (a) depicts the correlation between σ and Vf ,
while (b) shows the correlation between E and Vf .

4.2. Numerical Results

The results regarding the performance of the models in the regression task are detailed
in the following. Table 3 presents the summary statistics of the Root Mean Squared
Error (RMSE) for the prediction of E. The results show that BAY, RDG, and LAS achieved
similar performances, as evidenced by the slight differences in the summary statistics and
the boxplots depicted in Figure 8b. Among them, the LAS had the best performance since it
achieved the lowest mean value of the RMSE. However, such a result is still unsatisfactory
since the mean RMSE value was higher than 10% of the dataset’s maximum E value. The
DTR and SVR performed a little better than the linear models but still not in a way to be
considered satisfactory. Alternatively, the RFR, KNN, and CAT stood out from the linear
models, achieving mean RMSE values of close to half of the values achieved by the linear
models. Despite the similar performances, the statistics show that the latter achieved more
consistent results with a narrower RMSE distribution, as shown in Figure 8b. Therefore,
the boosting model had the best performance in the elastic modulus prediction task. On the
other hand, the results for the σ prediction are summarized in Table 4. Similarly to what
happened for E, the linear models were the ones with the worst performance. The mean
RMSE values achieved by BAY, RDG, and LAS are almost equal to 20% of the maximum σ
value in the dataset. In this situation, CAT and RFR performed considerably better than
the linear models, DTR, SVR, and KNN. Despite the lower mean RMSE for RFR, CAT
outperformed the former with a narrower distribution; see Figure 8a.

As previously discussed, building a model for predicting the mechanical properties of
additively manufactured composites from printing properties is challenging. Therefore, it
could be expected that linear models (BAY, RDG, and LAS) would not achieve adequate per-
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formances since they cannot capture the nonlinear relationships between the input variables
(printing properties) and the mechanical properties. On the other hand, models such as
SVR and DTR can better deal with nonlinearities between input and output variables, thus
performing better than linear regression models, as shown by the metrics reported. The
RFR and CAT models performed even better because, in addition to being able to capture
nonlinear relationships, they are an ensemble of decision tree models. Ensembles generally
reduce the chance of overfitting and generate more robust predictions than single models.
KNN also performed well, given its ability to capture nonlinearities and the fact that it is
an algorithm that tends to produce good models when trained with small databases.

Table 3. RMSE summary statistics for the one hundred tests predicting E.

Model Mean Std Dev Min. 1st Quartile Median 3rd Quartile Max

BAY 16.2405 3.2572 9.4879 14.0424 15.8779 18.3325 24.2133
RDG 16.2256 3.4534 9.0721 13.8824 16.0427 18.6324 25.0582
LAS 16.1670 3.2741 8.9366 14.1336 15.6067 18.0086 23.7556
DTR 14.8774 4.3100 7.6346 12.0422 14.4884 16.7512 27.0928
SVR 11.7524 5.0485 2.9113 7.6782 12.4260 15.4035 21.4587
RFR 9.8297 3.6813 3.6341 6.8087 8.6466 12.3373 19.6891
KNN 9.8020 4.1159 3.7364 6.6482 9.3383 11.9770 23.3197
CAT 9.4446 3.3558 3.0735 7.2028 8.8084 11.7664 18.1977

Table 4. RMSE summary statistics for the one hundred tests predicting σ.

Model Mean Std Dev Min. 1st Quartile Median 3rd Quartile Max

BAY 159.7859 24.6198 131.2626 143.6800 156.5881 166.6547 258.1069
RDG 159.4300 25.2739 128.5327 143.7674 155.4155 167.4714 258.7639
LAS 159.3340 25.2431 129.0285 143.4035 155.3209 166.2181 258.7624
DTR 152.2683 45.3625 76.5504 115.0226 150.2737 170.3594 289.0174
SVR 142.2886 43.2337 71.5865 115.0798 144.5133 164.2971 258.5963
KNN 121.4163 42.1382 53.4138 91.3910 111.6907 141.3862 251.2954
CAT 114.4038 32.6867 54.2600 91.3665 109.3586 139.4164 197.8857
RFR 113.1730 36.8256 52.8864 84.8905 107.1129 136.4452 209.2337

(a) (b)
Figure 8. RMSE boxplots for (a) σ and (b) E.

4.3. Computational Performance

The models’ computational performance results are disclosed in Table 5. The predic-
tion time refers to the interval when the model calculates the value of the target variable
based on the manufacturing properties. At the same time, the size represents the amount
of space that the model occupies in a storage disk. One can notice that both metrics follow
the same pattern independently of the target variable. Despite their poor performance
discussed previously, the linear models have shown to be considerably faster and smaller



Appl. Sci. 2024, 14, 7009 13 of 21

than the KNN and CAT. The tree-based model can also be considered fast as it can make a
prediction in less than 1 ms, despite being one of the largest models. Moreover, despite
being able to make a prediction in more than 10 ms, the k-neighbor model is at least ten-fold
smaller than the ensemble. Therefore, there is a clear size versus prediction time tradeoff
between the CAT and KNN, the models with the best regression performance.

Table 5. Computational performances of the models when predicting E and σ.

Target Model Prediction Time (ms) Model Size (kB)

E BAY 0.2464 ± 0.0655 1.8690 ± 0.0000
E RDG 0.2571 ± 0.1237 1.0540 ± 0.0000
E LAS 0.3108 ± 0.2160 1.1542 ± 0.0004
E DTR 0.2475 ± 0.0485 2.6079 ± 0.0808
E SVR 0.3114 ± 0.0791 9.8657 ± 0.3070
E RFR 2.5034 ± 0.8491 323.2075 ± 107.4422
E KNN 13.2900 ± 0.3737 12.1362 ± 0.0033
E CAT 1.0333 ± 0.3281 213.9868 ± 114.2556
σ BAY 0.2542 ± 0.0797 1.8690 ± 0.0000
σ RDG 0.2395 ± 0.0714 1.0540 ± 0.0000
σ LAS 0.2494 ± 0.0535 1.1542 ± 0.0004
σ DTR 0.2458 ± 0.0525 2.5439 ± 0.1393
σ SVR 0.3184 ± 0.0753 10.5268 ± 0.0322
σ KNN 13.3308 ± 0.3256 12.1356 ± 0.0024
σ CAT 0.9430 ± 0.2397 198.7430 ± 102.1022
σ RFR 2.8011 ± 0.9439 349.6818 ± 88.7123

In summary, the linear models can serve as a baseline and have proven inadequate
for predicting the mechanical properties of AM composite parts despite having the lowest
computational complexity. On the other hand, both the KNN and CAT presented satisfac-
tory regression performances, thus being suitable for performing the task at hand. The
goal of assessing metrics like size and prediction time is to evaluate the model with the
best balance between the regression and computational performance. In this context, the
size versus time tradeoff between the tree-based and the instance-based models makes the
analysis difficult. However, in assuming that the predictive model will not be embedded
in a device with restricted hardware, the prediction time can be used as the first criterion
to define the more balanced candidate. In this sense, the CAT can be considered the most
suitable solution to use as a predictive model for estimating the mechanical properties of
AM composite parts based on their printing variables.

4.4. Detailed Results

In addition to presenting a performance for grouped data, an in-depth comparison
between the models’ predictions and experimental values for the elastic modulus separated
for each type of fiber reinforcement is shown in Figures 9 and 10 and Table 6. The plots
depicted in the figures show the predicted values on the vertical and the experimental
values on the horizontal axis. The table displays several statistics, including the Pearson
correlation coefficient (r) [73], the coefficient of determination (R2) [74], and the result of a
Student’s t-test [75] with the null hypothesis stating that there is no significant difference
between the predicted and experimental values (with 0.05 significance level). The metrics
and the adjustments between predicted and experimental values for the carbon fiber (CRTP)
highlight the poor performance of the linear models (RDG and LAS) and the Bayesian
model. For all of them, the r was inferior to 0.40, the (R2) lower than 0.20, and the null
hypothesis was rejected in the Student’s t-test. The results for SVR and DTR highlight their
average performance, while the KNN, RFR, and CAT stand out with acceptable correlation
metrics. However, since the null hypothesis was rejected in the Student’s t-test for KNN,
only the tree-based models can be considered sufficiently robust for performing the task.
The same pattern is observed for the fiberglass, where RFR and CAT stood out from the



Appl. Sci. 2024, 14, 7009 14 of 21

other models. On the other hand, for the kevlar fiber only the KNN passed the Student’s
t-test and achieved good correlation metrics.

Table 6. Detailed results for the prediction of E.

Fiber Type Metric SVR DTR RFR CAT KNN RDG LAS BAY

r 0.5835 0.6059 0.8062 0.8075 0.7972 0.3697 0.3473 0.3585
CRTP R2 0.3404 0.3672 0.6500 0.6521 0.6355 0.1367 0.1206 0.1285

Student’s t-test - - Ok Ok - - - -

r −0.0075 0.0218 0.1100 0.1091 −0.0849 0.0250 −0.0119 −0.0370
FGRTP R2 0.0001 0.3672 0.6500 0.6521 0.6355 0.1367 0.1206 0.1285

Student’s t-test - - Ok Ok - - - -

r 0.5240 0.4342 0.5789 0.6695 0.7870 0.2731 0.2546 0.2715
KvRTP R2 0.2746 0.1885 0.3351 0.4482 0.6193 0.0746 0.0648 0.0737

Student’s t-test - - - - Ok - - -

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 9. Comparison for predicted vs. experimental Elastic modulus, GPa, part 1. From the top to
the bottom, the lines display the results for BAY, CAT, DTR, and KNN. From the left to the right, the
columns display the results for CRTP, KvRTP, and FGRTP, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 10. Comparison for predicted vs. experimental Elastic modulus, GPa, part 2. From the top to
the bottom, the lines display the results for LAS, RDG, RFR, and SVR. From the left to the right, the
columns display the results for CRTP, KvRTP, and FGRTP, respectively.

On the other hand, the detailed results for the tensile strength problem are shown in
Figures 11 and 12, Table 7. Analyzing the results for the CRTP, one can see that all of the
models, with the exception of the SVR, achieved a poor performance. The support vector
was the only one to achieve r ≫ 0.5 and a reasonable (R2) despite not passing the Student’s
t-test. The same bad performance is also observed for the FGRTP case. None of the models
passed the Student’s t-test and the coefficients are far from values representing a good
prediction performance. On the other hand, for the KvRTP, most of the models achieved
good metrics, and the plots highlight a reasonable correlation, but none of them were able
to pass the Student’s t-test.
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Table 7. Detailed results for the prediction of σ.

Fiber Type Metric SVR DTR RFR CAT KNN RDG LAS BAY

r 0.6819 −0.0686 −0.1237 −0.0471 -0.1073 −0.0528 −0.0528 −0.0408
CRTP R2 0.4649 0.0047 0.0153 0.0022 0.0115 0.0028 0.0028 0.0017

Student’s t-test - Ok Ok Ok - - - -

r 0.0846 −0.0206 0.0897 0.0886 −0.0013 −0.0325 -0.0212 -0.0450
FGRTP R2 0.0072 0.0004 0.0080 0.0078 0.0000 0.0011 0.0004 0.0020

Student’s t-test - - - - - - - -

r 0.8297 0.7266 0.8532 0.8146 0.7031 0.8235 0.8235 0.8215
KvRTP R2 0.6884 0.5279 0.7279 0.6635 0.4944 0.6782 0.6782 0.6749

Student’s t-test - - - - - - - -

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 11. Predicted vs. experimental values for the Tensile strength, MPa, part 1. From the top to
the bottom, the lines display the results for BAY, CAT, DTR, and KNN. From the left to the right, the
columns display the results for CRTP, KvRTP, and FGRTP, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 12. Predicted vs. experimental values for the Tensile strength, MPa, part 2. From the top to
the bottom, the lines display the results for LAS, RDG, RFR, and SVR. From the left to the right, the
columns display the results for CRTP, KvRTP, and FGRTP, respectively.

Unlike the commonly accepted ROM, the results here show no linear dependence. The
nonlinearities induced by factors chosen by a designer, such as matrix filling or involuntary
ones intrinsic to the fabrication process, such as porosity [37] or even the effect of the
sample shape defined by the standard used on the test or the lack of adhesion between fiber
and matrix [4] might not be well represented by the ML linear models. Finding the right
combination of printing parameters will give the appropriate strength and stiffness needed
for a part while maintaining geometry and density within requirements. Additionally, it
helps maintain dimensional tolerances, which is crucial for applications that require high
precision, reduced printing time, and material consumption, which translates into lower
costs and Waste Reduction by minimizing waste produced during manufacturing.
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5. Conclusions

Predicting mechanical properties for composite materials fabricated via AM is chal-
lenging. Currently, the available predictive models do not include all the variables and
require highly skilled users with vast knowledge of composite material’s mechanical be-
havior and advanced numerical modeling skills. This work evaluated different supervised
learning models in order to check the suitability of employing ML for automatically pre-
dicting the mechanical properties of AM composite specimens. The predictive models were
trained to estimate the strength and elasticity of AM composite reinforced with fibers like
carbon, Kevlar, and fiberglass. To do so, a diverse dataset was constructed based on data
published in the literature.

The results obtained for the ML model, CAT, and the suitability of the proposed
modeling workflow for obtaining a predictive model are capable of estimating, with
reasonable performance, the mechanical properties of AM composite specimens. The best
overall performance was achieved by the CAT and KNN models, with the first standing
out since it required less time to estimate the mechanical properties of a given sample. The
model takes around 1 ms to make a prediction while achieving relatively low error rates of
9.4446 and 113.1730 for E and σ prediction, respectively.

Despite the achievements reported, there is room for improvement in future work.
The results are limited to the parameters and materials studied (nylon matrix and carbon,
Kevlar, and fiberglass fibers). With this in mind, no applications with cellular structures
such as gyroid honeycombs, foams (open- and closed-cell), lattices (grids, octets, face cubic
centered, body cubic centered, or X-shaped), and others cannot be considered to be used
in conjunction with the results found here. Other parameters, which users can tweak in
different systems, such as printing and feeding speed, cannot be included here as the Eiger®

software does not allow modification. Moreover, although the dataset comprises several
samples from different sources, it is still a small dataset from the ML perspective. For
this reason, data augmentation techniques can be explored in future work. To improve
robustness in prediction, Physics-informed Neural Networks (PINNs) [76] can be used. For
this, data could be organized in feature ranges to observe holes within that can be filled
through simulation, i.e., with the finite element method. Such numerical data can be fed to
an ML algorithm in conjunction with experimental data.

Author Contributions: Conceptualization, J.G.D.; Software, G.R.B.F. and M.G.d.C.R.; Formal analysis,
J.G.D.; Investigation, D.P.P. and G.R.B.F.; Resources, A.M.B.B.; Data curation, J.G.D.; Writing—original
draft, D.P.P., G.R.B.F., J.G.D. and M.G.d.C.R.; Writing–review and editing, J.G.D. and A.M.B.B.;
Visualization, D.P.P. and G.R.B.F.; Supervision, M.G.d.C.R.; Project administration, A.M.B.B.; Funding
acquisition, A.M.B.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon a reasonable request.

Acknowledgments: The authors express their gratitude to the Laboratório do Sensores da Fibra
Óptica (LSFO) at PUC-Rio.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Chacón, J.; Caminero, M.A.; García-Plaza, E.; Núnez, P.J. Additive manufacturing of PLA structures using fused deposition

modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157.
[CrossRef]

2. Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials,
methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [CrossRef]

3. Torries, B.; Shamsaei, N. Fatigue behavior and modeling of additively manufactured Ti-6Al-4V including interlayer time interval
effects. Jom 2017, 69, 2698–2705. [CrossRef]

http://doi.org/10.1016/j.matdes.2017.03.065
http://dx.doi.org/10.1016/j.compositesb.2018.02.012
http://dx.doi.org/10.1007/s11837-017-2625-y


Appl. Sci. 2024, 14, 7009 19 of 21

4. Díaz, J.G.; Pertúz-Comas, A.D.; González-Estrada, O.A. Mechanical properties for long fibre reinforced fused deposition
manufactured composites. Compos. Part B Eng. 2021, 211, 108657. [CrossRef]

5. Mark, G.T.; Gozdz, A.S. Three Dimensional Printer with Composite Filament Fabrication. US Patent 10,099,427, 16 October 2018.
6. Becerra, J.L.; Díaz-Rodríguez, J.G.; González-Estrada, O.A. Daño en partes de manufactura aditiva reforzadas por fibras continuas.

Rev. UIS Ing. 2020, 19, 161–176. [CrossRef]
7. Hassani-Gangaraj, S.; Moridi, A.; Guagliano, M.; Ghidini, A.; Boniardi, M. The effect of nitriding, severe shot peening and their

combination on the fatigue behavior and micro-structure of a low-alloy steel. Int. J. Fatigue 2014, 62, 67–76. [CrossRef]
8. Parrado-Agudelo, J.Z.; Narváez-Tovar, C. Mechanical characterization of polylactic acid, polycaprolactone and Lay-Fomm 40

parts manufactured by fused deposition modeling, as a function of the printing parameters. Iteckne 2019, 16, 111–117. [CrossRef]
9. Uribe-Lam, E.; Treviño-Quintanilla, C.D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of additive manufacturing for the fabrication of

cellular and lattice materials: A review. Mater. Manuf. Process. 2020, 36, 257–280. [CrossRef]
10. León-Becerra, J.S.; González-Estrada, O.A.; Pinto-Hernández, W. Mechanical characterization of additive manufacturing

composite parts. Respuestas 2020, 25, 109–116. [CrossRef]
11. Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D printing of polymer and associated composite: A review on mechanical

properties, defects and treatments. Polymers 2020, 12, 1529. [CrossRef]
12. Kabir, S.M.F.; Mathur, K.; Seyam, A.F.M. A critical review on 3D printed continuous fiber-reinforced composites: History,

mechanism, materials and properties. Compos. Struct. 2020, 232, 111476. [CrossRef]
13. Goh, G.D.; Dikshit, V.; Nagalingam, A.P.; Goh, G.L.; Agarwala, S.; Sing, S.L.; Wei, J.; Yeong, W.Y. Characterization of mechanical

properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 2018,
137, 79–89. [CrossRef]

14. Díaz-Rodríguez, J.G.; Pertúz-Comas, A.D.; Ariza-González, C.J.; Garcia-López, D.D.; Pinto-Hernández, W. Monotonic crack
propagation in a notched polymer matrix composite reinforced with continuous fiber and printed by material extrusion. Prog.
Addit. Manuf. 2023, 8, 733–744. [CrossRef]

15. Pertúz-Comas, A.D.; Díaz, J.G.; Meneses-Duran, O.J.; Niño-Álvarez, N.Y.; León-Becerra, J. Flexural Fatigue in a Polymer Matrix
Composite Material Reinforced with Continuous Kevlar Fibers Fabricated by Additive Manufacturing. Polymers 2022, 14, 3586.
[CrossRef] [PubMed]

16. ASTM638; Standard Test Method for Tensile Properties of Plastics on Mechanical Properties, Defects and Treatments. ASTM
International: West Conshohocken, PA, USA, 2014. [CrossRef]

17. ASTM3039; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West
Conshohocken, PA, USA, 2014. [CrossRef]

18. Dutra, T.A.; Ferreira, R.T.L.; Resende, H.B.; Guimarães, A. Mechanical characterization and asymptotic homogenization of
3D-printed continuous carbon fiber-reinforced thermoplastic. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 133. [CrossRef]

19. Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation and prediction of the tensile properties of
continuous fiber-reinforced 3D printed structures. Compos. Struct. 2016, 153, 866–875. [CrossRef]

20. Ansari, A.A.; Kamil, M. Performance Study of 3D Printed Continuous Fiber-Reinforced Polymxer Composites Using Taguchi
Method. J. Mater. Eng. Perform. 2022, 32, 9892–9906. [CrossRef]

21. Lupone, F.; Padovano, E.; Venezia, C.; Badini, C. Experimental Characterization and Modeling of 3D Printed Continuous Carbon
Fibers Composites with Different Fiber Orientation Produced by FFF Process. Polymers 2022, 14, 26. [CrossRef]

22. Azarov, A.V.; Antonov, F.K.; Golubev, M.V.; Khaziev, A.R.; Ushanov, S.A. Composite 3D printing for the small size unmanned
aerial vehicle structure. Compos. Part B Eng. 2019, 169, 157–163. [CrossRef]

23. Swolfs, Y.; Pinho, S.T. 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the
translaminar fracture toughness. Compos. Sci. Technol. 2019, 182, 107731. [CrossRef]

24. León-Becerra, J.; Hidalgo-Salazar, M.; González-Estrada, O.A. Progressive damage analysis of carbon fiber-reinforced additive
manufacturing composites. Int. J. Adv. Manuf. Technol. 2023, 126, 2617–2631. [CrossRef]

25. Gibson, L.J.; Ashby, M.F. Cellular Solids. Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014.
[CrossRef]

26. León-Becerra, J.; González-Estrada, O.A.; Quiroga, J. Effect of Relative Density in In-Plane Mechanical Properties of Common
3D-Printed Polylactic Acid Lattice Structures. ACS Omega 2021, 6, 29830–29838. [CrossRef]

27. Barbero, E.J. Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013.
28. Ng, W.L.; Goh, G.L.; Goh, G.D.; Ten, J.S.J.; Yeong, W.Y. Progress and Opportunities for Machine Learning in Materials and

Processes of Additive Manufacturing. Adv. Mater. 2024, 2310006. [CrossRef]
29. Zhu, S.P.; Wang, L.; Luo, C.; Correia, J.A.F.O.; Jesus, A.M.P.D.; Berto, F. Physics-informed machine learning and its structural

integrity applications: State of the art. Philos. Trans. R. Soc. A 2024, 381, 20220406. [CrossRef]
30. Gaikwad, A.; Giera, B.; Guss, G.M.; Forien, J.B.; Matthews, M.J.; Rao, P. Heterogeneous sensing and scientific machine learning

for quality assurance in laser powder bed fusion—A single-track study. Addit. Manuf. 2020, 36, 101659. [CrossRef]
31. Tavares, T.B.; Finamor, F.P.; de Sousa Zorzi, J.C. Mechanical properties prediction of dual phase steels using machine learning.

Rev. Tecnol. Em Metal. Mater. E Mineração 2022, 19, e2595. [CrossRef]
32. Jin, Z.; Zhang, Z.; Demir, K.; Gu, G.X. Machine Learning for Advanced Additive Manufacturing. Matter 2020, 3, 1541–1556.

[CrossRef]

http://dx.doi.org/10.1016/j.compositesb.2021.108657
http://dx.doi.org/10.18273/revuin.v19n2-2020018
http://dx.doi.org/10.1016/j.ijfatigue.2013.04.017
http://dx.doi.org/10.15332/iteckne.v16i2.2354
http://dx.doi.org/10.1080/10426914.2020.1819544
http://dx.doi.org/10.22463/0122820X.2189
http://dx.doi.org/10.3390/polym12071529
http://dx.doi.org/10.1016/j.compstruct.2019.111476
http://dx.doi.org/10.1016/j.matdes.2017.10.021
http://dx.doi.org/10.1007/s40964-023-00423-w
http://dx.doi.org/10.3390/polym14173586
http://www.ncbi.nlm.nih.gov/pubmed/36080661
http://dx.doi.org/10.1520/D0638-14
http://dx.doi.org/10.1520/D3039_D3039M-08
http://dx.doi.org/10.1007/s40430-019-1630-1
http://dx.doi.org/10.1016/j.compstruct.2016.07.018
http://dx.doi.org/10.1007/s11665-022-07715-2
http://dx.doi.org/10.3390/polym14030426
http://dx.doi.org/10.1016/j.compositesb.2019.03.073
http://dx.doi.org/10.1016/j.compscitech.2019.107731
http://dx.doi.org/10.1007/s00170-023-11256-w
http://dx.doi.org/10.1017/CBO9781139878326
http://dx.doi.org/10.1021/acsomega.1c04295
http://dx.doi.org/10.1002/adma.202310006
http://dx.doi.org/10.1098/rsta.2022.0406
http://dx.doi.org/10.1016/j.addma.2020.101659
http://dx.doi.org/10.4322/2176-1523.20222595
http://dx.doi.org/10.1016/j.matt.2020.08.023


Appl. Sci. 2024, 14, 7009 20 of 21

33. Liu, X.; Tian, S.; Tao, F.; Yu, W. A review of artificial neural networks in the constitutive modeling of composite materials. Compos.
Part B Eng. 2021, 224, 109152. [CrossRef]

34. Okafor, C.E.; Iweriolor, S.; Ani, O.I.; Ahmad, S.; Mehfuz, S.; Ekwueme, G.O.; Chukwumuanya, O.E.; Abonyi, S.E.; Ekengwu, I.E.;
Chikelu, O.P. Advances in machine learning-aided design of reinforced polymer composite and hybrid material systems. Hybrid
Adv. 2023, 2, 100026. [CrossRef]

35. Zhang, J.; Wang, P.; Gao, R.X. Deep learning-based tensile strength prediction in fused deposition modeling. Comput. Ind. 2019,
107, 11–21. [CrossRef]

36. Leon-Becerra, J.; González-Estrada, O.A.; Sánchez-Acevedo, H. Comparison of Models to Predict Mechanical Properties of
FR-AM Composites and a Fractographical Study. Polymers 2022, 14, 3546. [CrossRef]

37. Rodríguez, J.F.; Thomas, J.P.; Renaud, J.E. Mechanical behavior of ABS fused deposition materials modeling. Rapid Prototyp. J.
2003, 9, 219–230. [CrossRef]

38. Papon, E.A.; Haque, A. Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber
reinforced composites. J. Reinf. Plast. Compos. 2018, 37, 381–395. [CrossRef]

39. Boyd, S.; Vandenberghe, L. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; Cambridge University Press:
Cambridge, UK, 2018.

40. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering—Machine Learning, Dynamical Systems, and Control; Cambridge
University Press: Cambridge, UK, 2019.

41. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [CrossRef]
42. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
43. Kramer, O. K-Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
44. Blok, L.; Longana, M.; Yu, H.; Woods, B. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit.

Manuf. 2018, 22, 176–186. [CrossRef]
45. Klift, F.V.D.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R. 3D Printing of Continuous Carbon Fibre Reinforced

Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016, 6, 18–27. [CrossRef]
46. Dickson, A.N.; Ross, K.A.; Dowling, D.P. Additive manufacturing of woven carbon fibre polymer composites. Compos. Struct.

2018, 206, 637–643. [CrossRef]
47. Justo, J.; Távara, L.; García-Guzmán, L.; París, F. Characterization of 3D printed long fibre reinforced composites. Compos. Struct.

2018, 185, 537–548. [CrossRef]
48. Abadi, H.A.; Thai, H.T.; Paton-Cole, V.; Patel, V. Elastic properties of 3D printed fibre-reinforced structures. Compos. Struct. 2018,

193, 8–18. [CrossRef]
49. Imeri, A.; Fidan, I.; Allen, M.; Wilson, D.A.; Canfield, S. Fatigue analysis of the fiber reinforced additively manufactured objects.

Int. J. Adv. Manuf. Technol. 2018, 98, 2717–2724. [CrossRef]
50. Mohammadizadeh, M.; Imeri, A.; Fidan, I.; Elkelany, M. 3D printed fiber reinforced polymer composites - Structural analysis.

Compos. Part B Eng. 2019, 175, 107112. [CrossRef]
51. Todoroki, A.; Oasada, T.; Mizutani, Y.; Suzuki, Y.; Ueda, M.; Matsuzaki, R.; Hirano, Y. Tensile property evaluations of 3D printed

continuous carbon fiber reinforced thermoplastic composites. Adv. Compos. Mater. 2020, 29, 147–162. [CrossRef]
52. Araya-Calvo, M.; López-Gómez, I.; Chamberlain-Simon, N.; León-Salazar, J.L.; Guillén-Girón, T.; Corrales-Cordero, J.S.; Sánchez-

Brenes, O. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology.
Addit. Manuf. 2018, 22, 157–164. [CrossRef]

53. González-Estrada, O.A.; Pertuz, A.; Quiroga Mendez, J.E. Evaluation of tensile properties and damage of continuous fibre
reinforced 3D-printed parts. Key Eng. Mater. 2018, 774, 161–166. [CrossRef]

54. Pertuz, A.D.; Díaz-Cardona, S.; González-Estrada, O.A. Static and fatigue behaviour of continuous fibre reinforced thermoplastic
composites manufactured by fused deposition modelling technique. Int. J. Fatigue 2020, 130, 105275. [CrossRef]

55. Podda, F. Modellazione, Produzione e Testing di Materiali Compositi a Fibra Lunga Realizzati Mediante Additive Manufacturing
= Modelling, Production and Testing of Long Fibre Composites via Additive Manufacturing. Ph.D. Thesis, Politecnico di Torino,
Turin, Italy, 2018.

56. Agarwal, K.; Kuchipudi, S.K.; Girard, B.; Houser, M. Mechanical properties of fiber reinforced polymer composites: A comparative
study of conventional and additive manufacturing methods. J. Compos. Mater. 2018, 52, 3173–3181. [CrossRef]

57. Mei, H.; Ali, Z.; Ali, I.; Cheng, L. Tailoring strength and modulus by 3D printing different continuous fibers and filled structures
into composites. Adv. Compos. Hybrid Mater. 2019, 2, 312–319. [CrossRef]

58. Naranjo-Lozada, J.; Ahuett-Garza, H.; Orta-Castañón, P.; Verbeeten, W.M.; Sáiz-González, D. Tensile properties and failure
behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit. Manuf. 2019,
26, 227–241. [CrossRef]

59. Pyl, L.; Kalteremidou, K.A.; Hemelrijck, D.V. Exploration of specimen geometry and tab configuration for tensile testing exploiting
the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polym. Test. 2018,
71, 318–328. [CrossRef]

60. Saeed, K.; McIlhagger, A.; Harkin-Jones, E.; McGarrigle, C.; Dixon, D.; Shar, M.A.; McMillan, A.; Archer, E. Characterization of
continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Compos. Struct. 2022,
282, 115033. [CrossRef]

http://dx.doi.org/10.1016/j.compositesb.2021.109152
http://dx.doi.org/10.1016/j.hybadv.2023.100026
http://dx.doi.org/10.1016/j.compind.2019.01.011
http://dx.doi.org/10.3390/polym14173546
http://dx.doi.org/10.1108/13552540310489604
http://dx.doi.org/10.1177/0731684417750477
http://dx.doi.org/10.1186/s40537-020-00369-8
http://dx.doi.org/10.1007/978-3-642-38652-7_2
http://dx.doi.org/10.1016/j.addma.2018.04.039
http://dx.doi.org/10.4236/ojcm.2016.61003
http://dx.doi.org/10.1016/j.compstruct.2018.08.091
http://dx.doi.org/10.1016/j.compstruct.2017.11.052
http://dx.doi.org/10.1016/j.compstruct.2018.03.051
http://dx.doi.org/10.1007/s00170-018-2398-7
http://dx.doi.org/10.1016/j.compositesb.2019.107112
http://dx.doi.org/10.1080/09243046.2019.1650323
http://dx.doi.org/10.1016/j.addma.2018.05.007
http://dx.doi.org/10.4028/www.scientific.net/KEM.774.161
http://dx.doi.org/10.1016/j.ijfatigue.2019.105275
http://dx.doi.org/10.1177/0021998318762297
http://dx.doi.org/10.1007/s42114-019-00087-7
http://dx.doi.org/10.1016/j.addma.2018.12.020
http://dx.doi.org/10.1016/j.polymertesting.2018.09.022
http://dx.doi.org/10.1016/j.compstruct.2021.115033


Appl. Sci. 2024, 14, 7009 21 of 21

61. Tessarin, A.; Zaccariotto, M.; Galvanetto, U.; Stocchi, D. A multiscale numerical homogenization-based method for the prediction
of elastic properties of components produced with the fused deposition modelling process. Results Eng. 2022, 14, 100409.
[CrossRef]

62. Lawrence, B.D.; Coatney, M.D.; Phillips, F.; Henry, T.C.; Nikishkov, Y.; Makeev, A. Evaluation of the mechanical properties and
performance cost of additively manufactured continuous glass and carbon fiber composites. Int. J. Adv. Manuf. Technol. 2022,
120, 1135–1147. [CrossRef]

63. Santos, J.D.; Fernández, A.; Ripoll, L.; Blanco, N. Experimental Characterization and Analysis of the In-Plane Elastic Properties
and Interlaminar Fracture Toughness of a 3D-Printed Continuous Carbon Fiber-Reinforced Composite. Polymers 2022, 14, 506.
[CrossRef] [PubMed]

64. Heitkamp, T.; Girnth, S.; Kuschmitz, S.; Klawitter, G.; Waldt, N.; Vietor, T. Continuous Fiber-Reinforced Material Extrusion with
Hybrid Composites of Carbon and Aramid Fibers. Appl. Sci. 2022, 12, 8830. [CrossRef]

65. Bendine, K.; Gibhardt, D.; Fiedler, B.; Backs, A. Experimental characterization and mechanical behavior of 3D printed CFRP. Eur.
J. Mech. A Solids 2022, 94, 104587. [CrossRef]

66. Ojha, K.K.; Gugliani, G.; Francis, V. Tensile properties and failure behaviour of continuous kevlar fibre reinforced composites
fabricated by additive manufacturing process. Adv. Mater. Process. Technol. 2022, 10, 142–156. [CrossRef]

67. Ali, Z.; Yan, Y.; Mei, H.; Cheng, L.; Zhang, L. Effect of infill density, build direction and heat treatment on the tensile mechanical
properties of 3D-printed carbon-fiber nylon composites. Compos. Struct. 2023, 304, 116370. [CrossRef]

68. Xiang, J.; Cheng, P.; Wang, K.; Wu, Y.; Rao, Y.; Peng, Y. Interlaminar and translaminar fracture toughness of 3D-printed continuous
fiber reinforced composites: A review and prospect. Polym. Compos. 2023, 45, 3883–3900. [CrossRef]

69. Lee, G.W.; Kim, T.H.; Yun, J.H.; Kim, N.J.; Ahn, K.H.; Kang, M.S. Strength of Onyx-based composite 3D printing materials
according to fiber reinforcement. Front. Mater. 2023, 10, 1183816. [CrossRef]

70. Moreno-Núñez, B.; Abarca-Vidal, C.; Treviño-Quintanilla, C.; Sánchez-Santana, U.; Cuan-Urquizo, E.; Uribe-Lam, E. Experimental
Analysis of Fiber Reinforcement Rings’ Effect on Tensile and Flexural Properties of Onyx™–Kevlar® Composites Manufactured
by Continuous Fiber Reinforcement. Polymers 2023, 15, 1252. [CrossRef]
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