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Abstract: Calculating the hydro-mechanical coupling stress-intensity factor (SIF) is an important basis
for conducting safety evaluations in geotechnical engineering. The current methods used to calculate
hydro-mechanical coupling multi-crack SIFs have difficulties concerning their complicated solution
processes and unsuitable stress field expressions. In this paper, a new semi-analytical method is
proposed based on a new hydro-mechanical coupling stress function and the extended reciprocal
theorem of the work integral formula to calculate hydro-mechanical coupling multi-crack SIFs, which
can be verified by comparison with the results available in the literature. The new semi-analytical
method is applicable to an arbitrary number of cracks under arbitrary hydro-mechanical coupling
loading and facilitates a more effective representation of the water pressure effect on the stress field.
Moreover, the influence of the integral path and loading conditions is also discussed, and the results
revealed an integral path radius of r2 < 0.75 mm when the crack spacing b is 1.5 mm. When σy and
Ph are constant at 15 MPa, the SIFs are almost the same for different σy/Ph, while the maximum
circumferential stresses at r = 0.25 mm are 15.79 MPa, 20.83 MPa, and 25.78 MPa.

Keywords: hydro-mechanical coupling; extended semi-weight function method; multi-crack; stress-
intensity factor; stress function

1. Introduction

Hydraulic cracks are prevalent in geotechnical engineering, and water pressure can
cause the tensile stress at the crack tip to significantly increase compared to normal cracks,
leading to easier crack initiation. Furthermore, under the action of hydraulic pressure
and far-field external loads, hydraulic cracks will rapidly initiate, expand, and connect,
eventually forming a crack network and increasing the difficulty of conducting geotechnical
safety assessments. Crack networks are a considerable threat to the safety of hydraulic engi-
neering (such as in the case of dams [1] and hydraulic tunnels [2]); however, their formation
has a positive significance in terms of improving the efficiency of mining engineering (such
as in the context of shale gas extraction [3], geothermal energy development [4], and CO2
geological storage [5]). Whether in the case of anti-cracking in hydraulic engineering or
cracking in mining engineering, hydro-mechanical coupling stress-intensity factor (SIF)
calculations for multiple cracks are the basis of the analyses. SIF calculations can be used
to differentiate crack initiation mechanisms (including crack initiation load and initiation
angle) under hydro-mechanical coupling conditions in geotechnical engineering and can
also be used to determine whether a crack network will form in the engineering struc-
ture, thus providing a theoretical basis for conducting safety evaluations in the context
of geotechnical engineering. Therefore, it is of great significance to study the calculation
methods used for hydro-mechanical coupling SIFs for multi-cracks.
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Currently, the calculation method used in the case of multi-crack SIFs focuses mainly
on mechanical loading. Chen and Chang [6] used the alternating method and the iterative
method to solve multi-crack SIFs under load on the crack surface. Niu and Wu [7] used the
dislocation theory and the superposition method to obtain multi-crack SIFs under far-field
compressive stress. Rohde et al. [8] adopted the energy method to calculate multi-crack
SIFs in symmetrical structures. However, these methods have limitations since they are
applicable only to specific structural and loading situations. In order to overcome these
problems, scholars have conducted further research. Wang and Atluri [9] proposed the
Schwartz–Neumann alternating method to determine the SIFs of co-linear cracks with
arbitrary boundary conditions. Hejazi et al. [10] and Kachanov [11] used the Laplace
transform method and the extended superposition method to obtain the SIFs for arbitrarily
distributed multi-cracks, respectively. Gorbatikh et al. [12] modified Kachanov’s method
based on the assumption of non-uniform terms and obtained the SIFs for multi-cracks with
small spacings. Nevertheless, since these complex auxiliary functions (e.g., the Laplace
transform function, the dislocation density function, and the alternating transform function)
depend on the loading conditions, they are difficult to apply when solving cases involving
complex hydro-mechanical coupling loading.

The calculation methods used to solve multi-crack hydro-mechanical coupling SIFs
rely mainly on numerical methods. Sapora et al. [13] developed a numerical model to
analyze hydro-mechanical coupling SIFs and initiation lengths based on finite fracture
mechanics (FFMs). Zhang et al. [14] adopted the second-order numerical manifold method
and the singular boundary element method to calculate hydro-mechanical coupling SIFs
under seepage conditions. Zhao et al. [15] established a new finite element model based on
the equivalence theory and calculated hydro-mechanical coupling SIFs with wing cracks.
Wu et al. [16] used the virtual crack closure technique (VCCT) to calculate the hydraulic
coupling stress-intensity factors for arbitrarily shaped cracks. Cheng et al. [17] adopted
the level set method to describe holes and cracks in a numerical model and combined it
with the extended finite element method (XFEM) to obtain hydro-mechanical coupling
SIFs. However, since the computational accuracy of the numerical method depends on
the refinement of the crack-tip element, it is difficult to obtain accurate computational
results when the spacing of multiple cracks is small (i.e., it is difficult to refine the crack-
tip element).

In order to improve the calculation accuracy of the numerical methods, some semi-
analytical methods have been investigated. Yi et al. [18] proposed an integral equation
method to calculate hydro-mechanical coupling SIFs based on the elementary solutions and
superposition principle, which is suitable for multiple crack–hole problems. Shen et al. [19]
used Kachanov’s method and the superposition method to derive the SIF formulas for
multi-cracks and combined them with the numerical method to obtain hydro-mechanical
coupling SIFs. Integral methods [20–22] are widely used to calculate stress-intensity factors,
usually for problems involving free crack surfaces (i.e., the crack surface without force).
Karlsson and Backlund [23] developed a modified J-integral for internally loaded cracks in
two-dimensional (2D) cases, and their work was extended by Song and Rahman [24] to
three-dimensional (3D) cases to calculate hydro-mechanical coupling SIFs. However, with
the above semi-analytical method, the greater the number of cracks, the more complicated
the calculation process, and the stress field does not satisfy the loading condition of the
hydraulic pressure on the crack surface. The modified semi-weight function method is
a calculation method used for single cracks (a crack surface without force); it has the
advantages of having a uniform expression and simple calculation process [25], and it can
be extended to calculate multi-crack hydro-mechanical coupling SIFs (the crack surface
with hydraulic pressure) while retaining those advantages.

In this paper, an extended semi-weight function method is first proposed based on the
new hydro-mechanical coupling stress function and the extended reciprocal theorem of
the work integral formula. Then, two examples are used to verify the effectiveness of the
extended semi-weight function method. Finally, the effects of integral paths and hydro-
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mechanical coupling loading conditions are analyzed in order to provide a theoretical basis
for conducting safety evaluations in geotechnical engineering.

2. New Extended Semi-Weight Function Method for Calculating SIFs under
Hydro-Mechanical Coupling

Since the commonly used stress function of a crack tip is derived from the free crack
surface conditions (i.e., the normal and shear stresses on the crack surface are equal to zero),
it is difficult to obtain the correct stress field at the crack tip, even if the crack SIFs under
hydro-mechanical coupling can be calculated through the use of various methods (i.e., the
normal stress on the crack face is not equal to zero). Therefore, in order to overcome this
problem and obtain more accurate SIFs and stress fields, we first need to propose a new
crack-tip stress function that is applicable to the hydro-mechanical coupling conditions.

In addition, based on the advantages of the modified semi-weight function method
independent of a crack’s geometrical configuration (i.e., the calculation formula is indepen-
dent of the number of cracks), it is necessary only to derive the formula for calculating the
SIFs of a single hydro-mechanical coupling crack, which can then be directly applied to
calculate the SIFs in a case with multiple cracks (as demonstrated in Example 2 in Section 3).

2.1. Derivation of New Stress Function for Hydro-Mechanical Coupling Cracks

Figure 1 shows an infinite plate with a crack under a uniform hydraulic pressure
Ph on the crack surface, where a rectangular coordinate (xoy) and a polar coordinate (roθ;
anti-clockwise θ is defined as positive) are set at the right tip of the crack with the X-axis
along the direction of the original crack surface.
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Figure 1. Calculation model of hydro-mechanical coupling stress function.

According to Williams expansion, the common stress fields at the crack tip of a polar
coordinate system are expressed as follows:

σr = −λrλ−1[(λ + 1)(A sin(λ + 1)θ + B cos(λ + 1)θ) + (λ − 3)(Cin(λ − 1)θ + D cos(λ − 1)θ)]
σθ = λ(λ + 1)rλ−1[A sin(λ + 1)θ + B cos(λ + 1)θ + C sin(λ − 1)θ + D cos(λ − 1)θ]
τrθ = −λrλ−1[(λ + 1)(A cos(λ + 1)θ − B sin(λ + 1)θ) + (λ − 1)(C cos(λ − 1)θ − D sin(λ − 1)θ)]

(1)

where A, B, C, and D are undetermined weight functions, and λ is the crack-tip singular-
ity index.

For single material cracks, the singularity index is usually taken as λ = 0.5. In this case,
by substituting θ = π and θ = −π into the second term of Equation (1), the following can
be obtained:

σθ(θ = π) = 3
4
√

r (−A − C)
σθ(θ = −π) = 3

4
√

r (A + C)
(2)
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However, the boundary condition σθ(θ = π) = σθ(θ = −π) = Ph is required under
hydraulic pressure Ph. Obviously, the crack-tip stress function under hydro-mechanical
coupling needs to be modified due to the fact that Equation (2) cannot satisfy this bound-
ary condition.

Assuming a new stress function F(r, θ, Ph), its relationship with the stress field and
displacement field needs to be satisfied:

σr =
1
r2

∂2F(r,θ,Ph)
∂θ2 + 1

r
∂F(r,θ,Ph)

∂r

σθ = ∂2F(r,θ,Ph)
∂r2

τrθ = − ∂
∂r

(
1
r

∂F(r,θ,Ph)
∂θ

) (3)

 2Gur = − ∂F(r,θ,Ph)
∂r +

(
1 − υ

1+υ

)
r ∂ψ1

∂θ

2Guθ = − 1
r

∂F(r,θ,Ph)
∂θ +

(
1 − υ

1+υ

)
r2 ∂ψ1

∂r

(4)

where G is the shearing modulus, υ is Poisson’s ratio, and the relationship between F(r, θ,
Ph) and ψ1 can be defined as follows:

∇2F(r, θ, Ph) =
∂

∂

(
r

∂ψ1

∂θ

)
(5)

The stress function F(r, θ, Ph) must satisfy the biharmonic equation:

∇2
(
∇2F(r, θ, Ph)

)
= 0 (6)

To make the stress field in Equation (3) satisfy the hydro-mechanical coupling crack
boundary condition,

σθ(θ = π) = Ph, σθ(θ = −π) = Ph
τrθ(θ = π) = 0, τrθ(θ = −π) = 0

(7)

The expression for a new hydro-mechanical coupling crack tip F(r, θ, Ph) can be
obtained by substituting Equation (7) into Equations (3) and (4) and integrating to solve, as
follows:

F(r, θ, Ph) = rλ+1
[

A sin(λ + 1)θ + B cos(λ + 1)θ + C sin(λ − 1)θ + D cos(λ − 1)θ + r−λ+1 Ph
2

]
(8)

2.2. Determination of Weight Function and Semi-Weight Function for Hydro-Mechanical
Coupling Crack

According to the derivation of the new hydro-mechanical coupling stress function F(r,
θ, Ph) in Section 2.1, the corresponding stress and displacement fields are shown as follows:

σr = −λrλ−1[(λ + 1)(A sin(λ + 1)θ + B cos(λ + 1)θ) + (λ − 3)(Cin(λ − 1)θ + D cos(λ − 1)θ)] + Ph

σθ = λ(λ + 1)rλ−1[A sin(λ + 1)θ + B cos(λ + 1)θ + C sin(λ − 1)θ + D cos(λ − 1)θ] + Ph

τrθ = −λrλ−1[(λ + 1)(A cos(λ + 1)θ − B sin(λ + 1)θ) + (λ − 1)(C cos(λ − 1)θ − D sin(λ − 1)θ)]

ur = −rλ[(λ + 1)(A sin(λ + 1)θ + B cos(λ + 1)θ) + (λ − κ)(C sin(λ − 1)θ

+D cos(λ − 1)θ]/(2G) + (λ + 1)(1 + κ + (κ − 3)λ)Phr/(16Gλ)

uθ = −rλ[(λ + 1)(A cos(λ + 1)θ − B sin(λ + 1)θ) + (λ + κ)(C cos(λ − 1)θ

−D sin(λ − 1)θ]/(2G)

(9)

where

κ =

{
3 − 4υ

(3 − υ)/(1 + υ)
for plane strain
for plane stress

(10)
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The stress in Equation (9) also satisfies the boundary conditions. By substituting
Equation (9) into Equation (3), the following can be obtained:

A sin(λ + 1)π + B cos(λ + 1)π + C sin(λ − 1)π + D cos(λ − 1)π = 0
(λ + 1)(A cos(λ + 1)π − B sin(λ + 1)π) + (λ − 1)(C cos(λ − 1)π − D sin(λ − 1)π) = 0

−A sin(λ + 1)π + B cos(λ + 1)π − C sin(λ − 1)π + D cos(λ − 1)π = 0
(λ + 1)(A cos(λ + 1)π + B sin(λ + 1)π) + (λ − 1)(C cos(λ − 1)π + D sin(λ − 1)π) = 0

(11)

In order to solve the undetermined weight function (A, B, C, and D), the sub-matrix
method is used [25]. First, by rewriting Equation (9) into a matrix form, the following can
be obtained:

−N1S
{

C
D

}
= N2S

{
A
B

}
N1TST

{
C
D

}
= −N2TST

{
A
B

} (12)

where Ni (i = 1, 2), S, and T are second-order coefficient matrices, and their definitions are
as follows:

N1 =

[
1 0
0 λ − 1

]
N2 =

[
1 0
0 λ + 1

]
S =

[
sin λπ cos λπ
cos λπ − sin λπ

]
T =

[
1 0
0 −1

] (13)

Then, by selecting {A, B}T as the basic undetermined weight function and combining
the two equations in Equation (12), the following can be calculated:(

−N1TSTS−1N−1
1 N2S + N2TST

){A
B

}
= 0 (14)

To calculate the non-zero solutions of the basic undetermined weight function (A and
B), the determinant for the coefficient matrix of Equation (14) must satisfy the condition of
being equal to 0, as follows:

4 sin(2λπ)2 = 0 (15)

Obviously, Equation (15) is the characteristic equation fused to solve the singularity
index (λ) of the crack tip.

Finally, according to the definition of the stress-intensity factor, there are

K1 = lim
r→0

( r1−λσθ

∣∣∣
θ=0

), K2 = lim
r→0

( r1−λτrθ

∣∣∣
θ=0

) (16)

Thus, the basic weight functions A and B can be obtained by substituting Equations
(9) and (12) into Equation (16):

A = −K2, B =
K1

3
(17)

and {C, D}T can be solved using Equation (12).
Similar to the weight function (A, B, C, and D), the key to calculating the semi-weighted

function (A′, B′, C′, and D′) is to replace −λ with λ in Equation (8) to obtain the correspond-
ing stress field and displacement field, as follows:
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σ′
r = λr−λ−1[(λ − 1) (A′sin(λ − 1)θ − B′cos(λ − 1)θ)

+(λ + 3)(C′sin(λ + 1)θ − D′cos(λ + 1)θ)]+Ph
σ′

θ = −λ(λ − 1)r−λ−1[A′sin(λ − 1)θ − B′cos(λ − 1)θ
+C′sin(λ + 1)θ − D′ cos(λ + 1)θ]+Ph

τ′
rθ = −λr−λ−1[(λ − 1) (A′ cos(λ − 1)θ + B′ sin(λ − 1)θ)

+(λ + 1)(C′ cos(λ + 1)θ + D′ sin(λ + 1)θ)]
u′

r = −r−λ[(λ − 1)(A′sin(λ − 1)θ − B′cos(λ − 1)θ)
+(λ + κ)(C′sin(λ + 1)θ − D′cos(λ + 1)θ)]/(2G)

u′
θ = r−λ[(λ − 1)(A′ cos(λ − 1)θ + B′ sin(λ − 1)θ)

+(λ − κ)(C′ cos(λ + 1)θ + D′ sin(λ + 1)θ)]/(2G)

(18)

The boundary conditions (Equation (7)) are also satisfied by the stresses in Equation
(18) and can be expressed in a matrix form:

N2S’
{

C
D

}
= −N1S’

{
A
B

}
−N2S”

{
C
D

}
= N1S”

{
A
B

}
S’ = ST, S” = TS

(19)

By substituting Equation (19) into the stress-intensity factor definition formula, the
following can be obtained:

A1 = Q2, B1 = −3 Q1 (20)

where Q1 and Q2 are arbitrary real numbers, meaning the SIFs in a semi-weight function.

2.3. Calculation of Hydro-Mechanical Coupling Stress-Intensity Factors

To calculate hydro-mechanical coupling SIFs (Figure 2) using the modified semi-weight
function method, an arbitrary closed region Ω for the reciprocal theorem should be selected
that contains the crack surface (Φ1 and Φ2) and internal and external circles Γ1 and Γ2 (with
the same center of coordinate origin and radii r1 and r2).
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Figure 2. Integral path.

Since the existing modified semi-weight function method is applicable mainly to free
surface conditions (p = 0 and p′ = 0 on the integration paths Φ1 and Φ2), the reciprocal
theorem for the work integral formula can be simplified as follows:∫

Γ1

p′iui − piu′
ids =

∫
Γ2

piu′
i − p′iuids (21)

where p and u and p′ and u′ are the stress and displacement expressed by the weight
function (without superscript “ ′ ”) and the semi-weight function (with superscript “ ′ ”),
respectively.
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It can be seen that Equation (21) does not adhere to the case of hydro-mechanical
coupling loading cracks (p ̸= 0, p′ ̸= 0 and the path integrals on Φ1 and Φ2 cannot be ne-
glected). Therefore, Equation (21) needs to be extended and expressed in a polar coordinate
form, which can be obtained as follows:

∫
Γ1

(
σ′

rur + τ′
rθuθ − σru′

r − τrθu′
θ

)
ds +

∫
Φ1+Φ2

(
σ′

θuθ + τ′
rθur − σθu′

θ − τrθu′
r
)
ds

=
∫
Γ2

(
σ′

rur + τ′
rθuθ − σru′

r − τrθu′
θ

)
ds

(22)

For the left side of Equation (22) (i.e., integral path Γ1, Φ1, and Φ2), by substituting
σ′

r, σ′
θ , τ′

rθ , u′
r, and u′

θ , represented by the semi-weight function, and σr, σθ , τrθ , ur, and uθ ,
represented by the weight function, the following can be obtained:∫

Γ1

(
σ′

rur + τ′
rθuθ − σru′

r − τrθu′
θ

)
ds +

∫
Φ1+Φ2

(
σ′

θuθ + τ′
rθur − σθu′

θ − τrθu′
r
)
ds

= δ1Q1K1 + δ2Q2K2 + δ3K1Phr1.5
2 + δ4Q1Phr0.5

2

(23)

where δi (i = 1, 2, 3, 4) represents the integration coefficients related to the material parameter
(G, κ); Ph is the hydraulic pressure of the crack surface; and r2 is the radius of the external
integrate path Γ2.

The calculation of the undetermined SIFs can be simplified by arbitrarily selecting two
groups with different Q1 and Q2:{

Q1 = 1
δ1

Q2 = 0
and

{
Q1 = 0
Q2 = 1

δ2

(24)

For the right side of Equation (22) (i.e., integral path Γ2), substitute two groups of σ′
r,

σ′
θ , τ′

rθ , u′
r, and u′

θ , represented by the semi-weight function (determined using Equations
(18) and (24)), and σr, τrθ , ur, and uθ , determined by finite element calculation, and calculate
in combination with Equation (23) to solve hydro-mechanical coupling SIFs (K1 and K2):

K1 + δ3K1Phr1.5
2 + δ4

δ1
Phr0.5

2 =
∫
Γ2

(σ′
r,1ur + τ′

rθ,1uθ − σru′
r,1 − τrθu′

θ,1)ds

K2 + δ3K1Phr1.5
2 =

∫
Γ2

(σ′
r,2ur + τ′

rθ,2uθ − σru′
r,2 − τrθu′

θ,2)ds
(25)

where the subscripts “ ,1 ” and “ ,2 ” correspond to two different groups of Q1 and Q2
(Equation (24)), respectively.

In summary, the detailed procedure used to solve the hydro-mechanical coupling SIFs
by adopting the extended semi-weight function method is as follows:

(1) Substitute the material parameters (G, κ) into Equation (15) to obtain the stress field
singularity (λ);

(2) Substitute λ into Equations (9), (12), (18) and (19) to solve Equation (22);
(3) Calculate σ′

r, σ′
θ , τ′

rθ , u′
r, and u′

θ in terms of the semi-weight functions by combining
Equations (18) and (24), and the σr, τrθ , ur, and uθ obtained using finite element software
for the right side of Equation (22);

(4) Substitute the stress and displacement fields determined by the semi-weight func-
tion and finite element results into Equation (25) to calculate the hydro-mechanical cou-
pling SIFs.

3. Verification of the Extended Semi-Weight Function Method under Hydro-Mechanical
Coupling

In this section, two different examples (one crack under hydro-mechanical coupling
and arbitrary multi-cracks under hydro-mechanical coupling) are selected to demonstrate
the validity of the new semi-analytic method and its applicability to multi-crack problems.
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3.1. Example 1 (One Crack under Hydro-Mechanical Coupling)

Figure 3a shows a square plate (L × L = 200 m × 200 m) with a central inclined crack
of length a (a = 16 m) under uniform hydraulic pressure (Ph = 12 MPa) and bi-directional
pressure (σx = 6 MPa, σy = 12 MPa), where the angle between the crack and the X-axis is
β (β = 0◦, 20◦, 40◦, 60◦, 80◦, and 90◦). To compare these results with those in the existing
literature, let the elastic modulus be E = 6 GPa and Poisson’s ratio be υ = 0.2. Figure 3b
shows the finite element model used to calculate the far-field of stress and displacement
(Equation (25)).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 

 

(a) Structural model (b) Finite element model 

Figure 3. Calculation model of Example 1. 

Table 1 lists the calculation results of the hydro-mechanical coupling SIFs (K1) and 
the results in the existing literature obtained through the use of the analytical method [26] 
and the XFEM [17], respectively. It can be seen that the results of our new semi-analytical 
method are in good agreement with the results from the literature. 

Table 1. Calculation results of hydro-mechanical coupling SIFs (K1) via different methods. 

β Analytical Method [26] XFEM [17] Present 
0° 30.0773 30.0795 30.1446 
20° 27.7302 27.7338 27.9503 
40° 21.7938 21.7941 21.9319 
60° 15.0386 15.0398 15.1547 
80° 10.6345 10.6371 10.8092 
90° 10.0218 10.0265 10.1654 

3.2. Example 2 (Arbitrary Multi-Cracks under Hydro-Mechanical Coupling) 
For comparison with the calculation results available in the literature [19], Figure 4a 

shows a square plate (L × L = 150 mm × 150 mm) with two arbitrary cracks of length a (a = 
30 mm) under a bi-directional pressure (σx = 6 MPa, σy = 10 MPa), where crack AB is sub-
jected to a uniform hydraulic pressure (Ph = 1.3 MPa) and crack CD is a free crack. The 
material parameters are E = 9.08 GPa and υ = 0.29. Table 2 lists the relative horizontal (Dh) 
and vertical (Dv) distances between the midpoints of cracks AB and CD, the angle between 
crack AB and the X-axis (β), and the relative inclination angle between cracks AB and CD 
(α) for different calculation models. Figure 4b shows the finite element model used to cal-
culate the far-field of stress and displacement (Equation (25)). 

Figure 3. Calculation model of Example 1.

Table 1 lists the calculation results of the hydro-mechanical coupling SIFs (K1) and
the results in the existing literature obtained through the use of the analytical method [26]
and the XFEM [17], respectively. It can be seen that the results of our new semi-analytical
method are in good agreement with the results from the literature.

Table 1. Calculation results of hydro-mechanical coupling SIFs (K1) via different methods.

β Analytical Method [26] XFEM [17] Present

0◦ 30.0773 30.0795 30.1446
20◦ 27.7302 27.7338 27.9503
40◦ 21.7938 21.7941 21.9319
60◦ 15.0386 15.0398 15.1547
80◦ 10.6345 10.6371 10.8092
90◦ 10.0218 10.0265 10.1654

3.2. Example 2 (Arbitrary Multi-Cracks under Hydro-Mechanical Coupling)

For comparison with the calculation results available in the literature [19], Figure 4a
shows a square plate (L × L = 150 mm × 150 mm) with two arbitrary cracks of length a
(a = 30 mm) under a bi-directional pressure (σx = 6 MPa, σy = 10 MPa), where crack AB
is subjected to a uniform hydraulic pressure (Ph = 1.3 MPa) and crack CD is a free crack.
The material parameters are E = 9.08 GPa and υ = 0.29. Table 2 lists the relative horizontal
(Dh) and vertical (Dv) distances between the midpoints of cracks AB and CD, the angle
between crack AB and the X-axis (β), and the relative inclination angle between cracks AB
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and CD (α) for different calculation models. Figure 4b shows the finite element model used
to calculate the far-field of stress and displacement (Equation (25)).
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Table 2. Structural parameters for different calculation models.

No. Dh (mm) Dv (mm) α (◦) β (◦)

1 10 40 85 5
2 10 40 50 5
3 10 30 85 5

Table 3 lists the SIFs of a multi-crack under hydro-mechanical coupling as well as
the results in the existing literature obtained via the complex function and superposition
method [19]. It was also found that the SIFs calculated using our new semi-analytical
method for the case of a multi-crack under hydro-mechanical coupling agree with those
in the existing literature, which not only validates the effectiveness of the semi-analytical
method but also demonstrates the advantage provided by the independence of our auxiliary
function (semi-weight function and weight function) from structural parameters.

Table 3. Calculation results of hydro-mechanical coupling SIFs via different methods.

Point A B C D

No.1

Shen [19] K1 (MPa·mm0.5) −59.76 −60.83 −43.09 −41.95
K2 (MPa·mm0.5) −3.19 −4.22 3.18 −3.90

Present
K1 (MPa·mm0.5) −60.24 −61.51 −43.7 −42.13
K2 (MPa·mm0.5) −3.23 −4.32 3.11 −3.79

No.2

Shen [19] K1 (MPa·mm0.5) −57.21 −58.38 −54.82 −48.94
K2 (MPa·mm0.5) −1.02 −6.27 11.36 13.19

Present
K1 (MPa·mm0.5) −58.17 −58.99 −55.25 −49.73
K2 (MPa·m0.5) −0.97 −6.07 11.48 13.30
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Table 3. Cont.

Point A B C D

No.3

Shen [19] K1 (MPa·mm0.5) −59.65 −65.14 −43.36 −40.86
K2 (MPa·mm0.5) −1.35 −3.39 −1.43 −9.82

Present
K1 (MPa·mm0.5) −60.13 −65.72 −44.11 −41.68
K2 (MPa·mm0.5) −1.27 −3.28 −1.27 −9.55

4. Results and Discussion

In order to study the factors that influence hydro-mechanical coupling SIFs, take a
square plate with two horizontal co-linear cracks of length a and spacing b under hydro-
mechanical coupling loading, with different radii of integral paths (r2) and loading condi-
tions (σy and Ph).

4.1. Effect of Integral Paths

Since the new semi-analytic method contains an additional integration of the crack
surface part (integral paths Φ1 and Φ2) compared to the modified semi-weight function
method, it is necessary to investigate the effect of the integral paths on the calculation results.

Figure 5a shows a square plate (L × L = 100 mm × 100 mm) with a central co-linear
double hydraulic crack of length a (a = 20 mm) and spacing b (b = a/2) under hydraulic
pressure (Ph = 10 MPa) and far-field tensile stress (σy = 5 MPa); the material parameters are the
same as those applied in Example 2. Figure 5b shows the corresponding finite element model,
and Table 4 lists five groups of calculated SIFs (K1) for different external circular integral radii
r2 (i.e., different integral lengths for integral paths Φ1 and Φ2 in Equation (23)).
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Table 4. Hydro-mechanical coupling SIFs (K1) for different external integral radii (r2).

b/6 b/3 b/2 2b/3 5b/6

Point A 92.151 92.153 92.150 92.152 92.152
Point B 99.259 99.257 99.260 100.924 101.812

It can be found that the K1 of the non-adjacent crack tip (point A) remains almost the
same, while the K1 of the adjacent crack tip (point B) is almost unchanged in the range of
r2 < b/2 and slightly increased in r2 > b/2. This is because when the external integral path
Γ2 of point B is closer to the other crack tip (point C) in the range of r2 > b/2, the stress and
displacement on the outer integral path are more affected by the singularities of the other
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crack tip (point C). Furthermore, point C has a greater effect on the SIFs of point B than that
of point A, which is similar to the results available in the literature [25]. Therefore, to obtain
more effective results, a reasonable range of the external integral radius (r2) for solving the
multi-crack problem through the use of the extended semi-weight function method is r2 < b/2.

4.2. Effect of Loading Conditions

Considering that the stress field corresponding to the hydro-mechanical coupling
stress function contains the related term of hydraulic pressure (Equation (9)), its effect on
the calculation results of the SIFs and stress field needs to be investigated under different
hydro-mechanical coupling loadings.

The calculation model used is the same as that described in Section 4.1, and three different
groups of hydro-mechanical coupling loading conditions are given (Ph = 15 MPa, σy = 0 MPa;
Ph = 10 MPa, σy = 5 MPa; Ph = 5 MPa, σy = 10 MPa). Table 5 and Figure 6 provide the calculated
SIFs and stress component (σθ) for different loading conditions, respectively.

Table 5. Hydro-mechanical coupling SIFs (K1) for different loading conditions.

Ph = 15 MPa
σy = 0 MPa

Ph = 10 MPa
σy = 5 MPa

Ph = 5 MPa
σy = 10 MPa

Point A 92.151 92.151 92.150
Point B 99.301 99.259 99.224
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Figure 6. The stress component (σθ) for different loading conditions at r = b/6.

It can be seen that for this calculation model, when the sum of Ph and σy is constant, the
SIF calculation results are similar regardless of the single values of Ph and σy. Furthermore,
the same stress field can also be obtained by using the stress field definition of the common
stress function [27] (Equation (26)) under different loading conditions.

σθ = K1√
2πr

cos3 θ
2 − 3

2
K2√
2πr

sin θ cos θ
2

τrθ = 1
2

K1√
2πr

sin θ cos θ
2 + 1

2
K2√
2πr

cos θ
2 (3 cos θ − 1)

(26)

Obviously, the stress fields of the crack tip calculated when using Equation (26) are
inconsistent with the actual situation; moreover, they do not satisfy the hydraulic loading
conditions at the crack surface (σθ is zero instead of Ph). On the contrary, when substituting
the SIFs (Table 4) into the stress field defined by the hydro-mechanical coupling stress
function (Equation (9)), it can be seen that there are significant differences in the magnitude
of stress components under different loading conditions (Figure 6), and the boundary
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conditions can be satisfied. Therefore, more effective stress field results can be obtained by
adopting our hydro-mechanical coupling stress function in the case of hydro-mechanical
coupling loading.

5. Conclusions

(1) An extended semi-weight function method for calculating the hydro-mechanical
coupling SIFs of arbitrary multi-cracks has been proposed by deriving the new hydro-
mechanical coupling stress function and the extended reciprocal theorem of the working
integral formula (suitable for arbitrary loads on crack surfaces), which has been subse-
quently verified via comparison with the results available in the literature.

(2) Compared with the existing methods, the extended semi-weight function method
has the advantages of a uniform auxiliary function form, providing a simple solution.
Furthermore, a more effective crack-tip stress field can be calculated (the normal stress at
the crack face is equal to the hydraulic pressure) when using the new hydro-mechanical
coupling stress function than can be obtained using the current methods (the normal stress
at the crack face is equal to zero).

(3) For hydraulic multi-cracks, the SIFs of adjacent crack tips (i.e., crack tips that
are closer to other cracks) are more affected by the external integral path compared to
non-adjacent crack tips (i.e., crack tips that are further away from other cracks) due to
the smaller distance of the external integral path from other crack tips. For the case of
a = 3 mm (crack length) and b = 1.5 mm (cracks spacing), the SIFs of adjacent crack tips
and non-adjacent crack tips are almost unchanged in the range of r2 < 0.75 mm, and the
reasonable range of r2 is r2 < 0.75 mm when obtaining effective stress-intensity factors
using the extended semi-weight function method.

(4) For cases where the hydraulic pressure (Ph) is in the same direction as the far-field
stress (σy), there is no significant difference in the SIFs at the crack tip regardless of the
single value of Ph and σy when their sum is constant. However, the stress components (σθ)
at r = 0.25 mm calculated using the extended semi-weight function method are 15.79 MPa,
20.83 MPa, and 25.78 MPa under Ph = 15 MPa and σy = 0 MPa, Ph = 10 MPa and σy = 5
MPa, Ph = 5 MPa and σy = 10 MPa, respectively (the stress field obtained by the common
stress function is the same), which are more consistent with the actual situation.
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