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Abstract: The integration of edge computing with IoT (EC-IoT) systems provides significant im-
provements in addressing security and privacy challenges in IoT networks. This paper examines the
combination of EC-IoT and artificial intelligence (AI), highlighting practical strategies to improve
data and network security. The published literature has suggested decentralized and reliable trust
measurement mechanisms and security frameworks designed explicitly for IoT-enabled systems.
Therefore, this paper reviews the latest attack models threatening EC-IoT systems and their impacts
on IoT networks. It also examines AI-based methods to counter these security threats and evaluates
their effectiveness in real-world scenarios. Finally, this survey aims to guide future research by
stressing the need for scalable, adaptable, and robust security solutions to address evolving threats in
EC-IoT environments, focusing on the integration of AI to enhance the privacy, security, and efficiency
of IoT systems while tackling the challenges of scalability and resource limitations.

Keywords: edge computing; internet of things (IoT); artificial intelligence (AI); machine learning;
deep learning; cybersecurity; trust measurement; data privacy

1. Introduction

The internet of things (IoT) is a paradigm that refers to embedded computing devices
interconnected within the existing internet infrastructure in a unique and identifiable way,
enabling them to collect and exchange data without human intervention. This technology
extends the internet’s capabilities beyond traditional computing devices to a wide range
of physical objects equipped with sensors and software, allowing them to communicate
and interact with their environment. As the IoT evolves, it reshapes our interactions with
the physical world through seamless connectivity and communication between objects,
systems, and people. The vast potential for innovation and disruption across industries and
sectors indicates a future where the digital and physical domains are intricately intertwined.
Currently, the development of the IoT is rapidly advancing due to the integration of hard-
ware and software, combining smart devices with sensing, processing, and communication
capabilities [1]. This has led to a vast intelligent computing platform, connecting billions of
devices to address real-world challenges [2].

Another rapidly growing sector in the IoT is its hardware capabilities. Proper hardware
is essential for IoT systems, as initial design robustness is crucial for reliability. IoT chips
are used in devices and facilitate network functionality, providing key features such as
data sensing, wireless connectivity, data processing, energy efficiency, and security. IoT
chips come in various types: processors, sensors, connectivity ICs, memory chips, and
logic device chips. In AI-based IoT, essential chips include the system on chip (SoC),
microcontroller units (MCUs), communication, and sensor chips. The SoC handles data
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processing, the MCU gathers data and executes commands, the communication chip
manages data transmission, and the sensor chip detects external signals [3,4].

As an up-and-coming technology, the IoT can potentially revolutionize domains such
as intelligent buildings, smart cities, healthcare, industries, and environmental monitor-
ing [5]. The IoT has already been expanded to cover diverse applications, including smart
grids, manufacturing processes, and product supply chains, demonstrating its integration
into various aspects of society [6]. The future of IoT communication infrastructure is ex-
pected to sustain innovative applications in smart cities, smart grids, smart industries, and
intelligent healthcare, emphasizing the potential of IoT technologies [7].

Figure 1 illustrates the current state of the IoT architecture. This IoT architecture
integrates several critical components to effectively manage and utilize connected devices’
data. At its core, “things”—objects equipped with sensors and actuators—collect and
act on data. These objects can range from household appliances to industrial machinery,
with sensors sometimes positioned remotely to monitor the surrounding environment.
Data flows from these things to the cloud via gateways, which facilitate connectivity
and preprocess and filter data to reduce the volume sent to the cloud while transmitting
control commands from the cloud to the things. A cloud gateway further compresses
these data and ensures secure transmission to IoT servers, adapting to different protocols
as necessary. Within the cloud, a streaming data processor manages data transfer to a
data lake and controls applications, ensuring there is no data loss or corruption. The data
lake stores vast amounts of raw device data, which, when needed, are transferred to a big
data warehouse, where they undergo further filtering and structuring for detailed analysis.
Data analysts utilize this structured data to extract insights, identify trends, and improve
system efficiency. Moreover, machine learning (ML) is employed to develop sophisticated
models for control applications, which are regularly updated based on new data to enhance
decision-making processes.

Figure 1. IoT architecture.

The IoT’s ability to connect objects to the internet and enable autonomous decisions in
smart environments highlights its significant impact [8]. This connectivity has introduced
new paradigms, such as the internet of spatial things, focusing on everyday objects in the
IoT era [9]. As the number of IoT devices continues to increase, they generate massive
amounts of data, leading to concerns regarding data privacy and network costs in the
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current cloud-centric approach for extensive data analysis [10]. As the data transmission
between cloud services and devices increase, service providers require the expansion of
infrastructure, leading to system vulnerabilities for attacks.

EC-IoT has gained attention for enhancing IoT services by leveraging edge computing
capabilities to help mitigate the growing data generation of these IoT networks. Edge
computing processes data closer to end users, improving response times, reducing latency,
and offloading computational tasks to edge nodes near IoT devices [11]. This integration has
led to innovative strategies such as edge intelligence-aided IoT networks, which accelerate
IoT services by deploying edge intelligence near IoT devices [12–15].

A key advantage of EC-IoT is providing location-aware services and optimizing re-
source allocation by offloading tasks from resource-limited IoT devices to powerful edge
servers [16]. Edge computing also facilitates collaborative computing using a range of het-
erogeneous smart devices, enhancing overall IoT network efficiency [17]. This integration
enables smart IoT devices at the edge of wireless networks to perform collaborative ML
tasks using locally collected data, leading to the edge learning paradigm [18,19].

EC-IoT systems are designed to address security and privacy challenges in IoT net-
works. Researchers have proposed decentralized and reliable trust measurement mecha-
nisms for EC-IoT to enhance data and network security [20]. Security frameworks have been
developed to ensure secure communication and data processing in IoT-enabled healthcare
systems [21,22].

Additionally, various approaches have been explored to improve EC-IoT services.
These include IoT service slicing and task offloading for edge computing [23], IoT ecosys-
tem modeling for design quality metrics [24], autonomic blockchain-based services for IoT
device integration and payment [22], and service discovery approaches for IoT [25]. Further
research into accountable anonymous access architectures for IoT networks [26], elastic
IoT fog frameworks for AI services [27], and multi-perspective trust management frame-
works for crowdsourced IoT services [27] could provide valuable insights into enhancing
IoT services.

In this survey, we aim to provide a review of recent techniques related to the security
of EC-IoT systems, specifically focusing on AI-based approaches. Due to growing concerns
about the power and infrastructure needed to host large AI models on centralized servers,
leading AI companies are moving towards smaller models that can run on microcontrollers
or SoC-based systems. These systems can be placed closer to data-generating devices like
IoT devices, making edge computing a strong candidate for such deployments. Therefore,
it is imperative to begin researching improved security infrastructure for these EC-IoT
systems to stay ahead of potential threats. This article aims to provide a detailed expla-
nation of the current security concerns of EC-IoT and the countermeasures proposed in
the literature.

In summary, this paper has the following contributions:

• Classification of current threats to EC-IoT systems.
• Analysis of the current countermeasures.
• Analysis of the AI-based countermeasures.
• Challenges in incorporating AI in protecting EC-IoT systems.

The survey is organized as follows. Section 2 discusses the related work on EC-IoT
security. Section 3 explores edge computing and related paradigms. Section 4 explores
the integration of edge computing with IoT, highlighting its advantages and applications.
Section 5 categorizes and analyzes various attacks on edge-based IoT systems. Section 6
investigates AI-based countermeasures for these attacks, discussing different ML and deep
learning (DL) techniques. Section 7 addresses the open challenges and future research
opportunities in enhancing EC-IoT security. Finally, Section 8 presents the conclusions.

2. Related Work

While the research and development of edge and IoT system security is primarily in
its early stages, numerous researchers have reviewed existing IoT security countermeasures
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in recent years to provide a roadmap for future work. Due to the diverse nature of IoT
network hardware, intruders may create dynamic threats to take control of authorized com-
munications or hardware devices. This section briefly examines the current state-of-the-art
papers on IoT and edge security, highlighting recent attacks, threats, and countermeasures.
A quick summary of these analyzed articles can be found in Table 1, including their focus,
issues discussed, countermeasures described, and the future challenges provided.

The authors of [28] explored several critical issues related to IoT security within
edge computing, such as resource constraints, insufficient security, high latency in cloud
computing, and the complexity and heterogeneity of IoT devices. They underscored
the importance of securing the edge layer, developing robust security solutions for edge
devices, and ensuring secure communication between network components. The authors
also emphasized the need for lightweight protocols and secure operating systems tailored
for resource-constrained IoT devices.

A comprehensive survey on IoT security by the authors of [29] identified critical threats
like privacy issues, authentication challenges, and information storage vulnerabilities. They
categorized various physical, network, middleware, and gateway attacks. To address these
challenges, the authors proposed scalable and adaptable security solutions leveraging
technologies like blockchain, fog computing, and ML to enhance security and privacy while
addressing scalability and resource constraints.

Focusing on secure healthcare data aggregation and transmission in IoT environ-
ments, the authors of [30] identified significant security and privacy concerns, such as
data aggregation risks, transmission security, and data integrity issues. They suggested
countermeasures, including data encryption, privacy preservation mechanisms, and robust
authentication protocols. The potential of edge and fog computing to reduce latency and
improve data processing efficiency was also highlighted, which is crucial for securely
handling large volumes of healthcare data.

The application of ML and DL methods for IoT security was explored by the authors
of [31], addressing the complexity and vulnerability of IoT systems. They discussed vari-
ous attack surfaces and security threats, such as eavesdropping, DDoS attacks, and data
tampering. The authors proposed leveraging supervised, unsupervised, and reinforcement
learning techniques for anomaly detection and predictive analytics. Emphasizing the
importance of scalable and adaptable ML/DL models, they aimed to handle the dynamic
nature of IoT environments and ensure data privacy and security during processing.

The works reviewed in [32] integrated LoRa technology with edge computing to
tackle IoT challenges. They highlighted the limitations of cloud-based computing, the
need for low-power, long-range communication, and scalability issues. The proposed edge
computing architecture aims to reduce latency by processing data locally. The discussion
also included application-specific enhancements in smart cities, industrial IoT, and smart
agriculture, stressing regulatory compliance and implementing security measures like
AES-128 encryption as essential for ensuring data integrity and confidentiality.

Addressing secure data analytics in edge computing, the authors of [33] focused on the
trade-offs between security and efficiency. They examined the trustworthiness of networked
devices, usage privacy, and correctness of data computation as significant challenges.
Proposing lightweight security mechanisms, effective trust management models, and
privacy-preserving techniques, the authors aimed to ensure secure data analytics. They
also emphasized the need for scalable security frameworks and the integration of ML to
enhance security measures in edge computing environments.

The research conducted in [11] analyzed security and privacy issues in
edge computing-assisted IoT. Highlighting new attack surfaces introduced by the dis-
tributed nature of edge computing, they noted vulnerabilities due to limited computational
resources and data proximity to end-users. The authors suggested solutions, including
scalable and lightweight security mechanisms, dynamic trust management systems, and
standardization protocols to enhance security and privacy in EC-assisted IoT systems.
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Exploring the potential of reinforcement learning (RL) for IoT security, the authors
of [34] discussed various IoT security challenges, including diverse attack vectors and
resource constraints. They highlighted RL’s ability to adapt parameters and dynamically
solve optimization problems with minimal information. They proposed RL-based security
solutions that scale to handle many IoT devices and massive data volumes while addressing
real-time adaptation and data privacy concerns.

The authors of [35] surveyed AI methods for securing IoT services in edge computing.
Identifying the vulnerabilities of edge nodes, including their distributed layout, limited
computational resources, and heterogeneous environments, they proposed integrating AI
with blockchain to enhance IoT security. This integration addresses the high computation
and communication costs and evolving threat adaptation, and it ensures efficient AI-based
security schemes.

Examining DL-based security behavior in IoT environments, in ref. [36], the authors
focused on security and privacy concerns due to limited resources and the ad hoc nature
of IoT systems. They discussed the complexity of IoT systems and the need for advanced
security methods. The authors proposed developing resource-efficient and adaptable DL
models, handling heterogeneous data, and implementing lifelong learning to adapt to new
security threats continuously.

The authors of [37] reviewed IoT security threats and applications, categorizing physical,
software, network, and encryption attacks. They highlighted challenges like battery con-
sumption, limited memory, and open-range operations. The authors suggested integrating
fog computing, ML, edge computing, and blockchain technologies to enhance IoT security,
emphasizing scalability, resource constraints, interoperability, and real-time adaptation.

Conducting a comprehensive survey on cybersecurity in IoT-based cloud comput-
ing, in ref. [38], the authors identified vital security concerns such as data breaches, data
loss, unauthorized access, network vulnerabilities, and insider threats. They proposed
countermeasures, including robust data encryption, multi-factor authentication, intrusion
detection systems, and user education programs.

The research in ref. [39] surveyed security vulnerability analysis, discovery, detection,
and mitigation in IoT devices. The authors discussed the IoT architecture, potential attack
surfaces, and methodologies for identifying and detecting vulnerabilities. Mitigation
strategies, such as side-channel signal analysis, policy-based mechanisms, secure firmware
updates, and robust encryption methods, were reviewed.

Providing an extensive survey on security architectures for edge computing-based
IoT systems, Fazeldehkordi and Gronli [19] addressed issues related to resource man-
agement, security and privacy, and advanced communication technologies such as 5G.
They proposed future research directions focused on balancing security and efficiency,
creating effective trust models, ensuring usage privacy, supporting mobility and scalability,
designing lightweight security mechanisms, and ensuring verifiable computation.

The authors of [40] examined edge-computing architectures for IoT applications, em-
phasizing the importance of addressing the latency and bandwidth issues inherent in
cloud-centric models. They discussed security and privacy concerns, scalability, interoper-
ability, and data management challenges. The proposed solutions included lightweight
encryption techniques, trust management frameworks, anomaly detection systems, edge
analytics, and decentralized data storage.

In [41], the authors explored process automation in an IoT–Fog–Cloud ecosystem,
highlighting challenges related to the high latency in cloud computing, big data man-
agement, real-time processing, and heterogeneity of devices. Their proposed solutions
included enhancing fog layer resiliency, efficient big data processing, addressing hetero-
geneity, ensuring scalability, and improving interoperability. The authors emphasized the
importance of automating functions within the ecosystem to enhance efficiency, reduce
latency, and manage complex environments.

The authors of [42] surveyed cyberthreats and countermeasures in industrial IoT (IIoT)
systems. They discussed vulnerabilities due to the complex integration of hardware and
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software and various types of cyberthreats such as phishing, ransomware, protocol attacks,
supply chain attacks, and systems attacks. The paper suggested countermeasures, including
phishing detection tools, next-generation firewalls, ML techniques, secure communication
protocols, and blockchain-based solutions.

The authors of [43] identified the high data generation, limited computational power,
and substantial energy demands of IoT devices as significant issues in examining the
challenges and strategies for enhancing energy efficiency in IoT environments. The energy-
intensive operations of edge, fog, and cloud computing exacerbate these challenges. To
address these, they proposed energy-aware architectures—cluster-based, centralized, and
distributed—and techniques like data compression, the use of low-power hardware, energy-
aware scheduling, task offloading, and energy harvesting. The study further discussed
future challenges such as scalability, adaptability, integration of renewable energy, and
maintaining security and privacy without compromising cost and practical implementation.

Exploring the evolving security demands of systems of internet of things devices
(SIoTD), the authors of [44] proposed adaptive, edge-based solutions to tackle these chal-
lenges. They identified complex security requirements, diverse and sophisticated cy-
berthreats, intermittent connectivity, significant data privacy concerns, latency issues, and
the impracticality of centralized security measures as core challenges. To effectively address
these issues, the authors advocated for shifting security processes closer to the data sources
through edge-based processing, which reduces latency and enhances data privacy.

Discussing the critical need for robust security mechanisms and forensic capabilities
within the expansive networks of the IoT, the authors of [45] identified significant challenges
in protecting the decentralized and distributed entities such as devices, the data these
devices generate, and the digital evidence arising from data interactions, which are often
inadequately secured by traditional centralized security frameworks. The paper also
explored the role of mobile edge computing (MEC) in bringing computing resources closer
to IoT devices to minimize latency and enhance communication while highlighting the
security vulnerabilities inherent in the decentralized MEC-enabled IoT systems, including
physical access to devices and data tampering.

The surveys analyzed in our paper emphasize various AI approaches for detecting
or countering cyberattacks in IoT environments. However, these studies often underscore
persistent challenges related to scalability, resource constraints, and the dynamic nature of
IoT systems. Our paper focuses on the specific paradigm of edge computing-assisted IoT
(EC-IoT) incorporated with AI, highlighting its potential to enhance security measures in
these environments. The key contributions of our review include the following:

• Exploring the emerging paradigm of EC-IoT: We explore how EC-IoT integrates AI to
improve the efficiency and responsiveness of IoT systems.

• Discussing current threats and their effects on EC-IoT: We analyze the specific security
challenges posed by integrating edge computing with IoT and the implications of
these threats.

• Analyzing countermeasures in the current literature: We review existing solutions, partic-
ularly AI-based techniques, that address the security issues within EC-IoT frameworks.

• Proposing future directions to improve countermeasures for these threats: We sug-
gest research avenues focused on developing scalable, efficient, and robust security
solutions that can adapt to the evolving landscape of IoT threats and vulnerabilities.
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Table 1. Related work on edge computing-assisted IoT security.

Article Main Focus Issues Discussed Countermeasures/Solutions Future Challenges

[43] Energy efficiency Network congestion, power limits Energy-aware techniques Scalability, renewable integration, ML enhancement

[44] IoT security Connectivity, privacy, latency Edge processing, ML models Hyperparameter tuning, complex topologies

[45] Blockchain forensics IoT security, MEC, blockchain Blockchain integration Scalability, delay optimization, mobility

[46] Resource-limited IoT Security vulnerabilities IoT proxy, VPN, IPS Anomaly detection, live traffic analysis

[42] IIoT security Cyberthreats Phishing, ransomware, protocol attack countermeasures Unconventional attack methods

[41] IoT–fog–cloud High latency, big data Fog computing Fog resiliency, big data management

[36] Security analysis IoT security, privacy Deep learning Efficiency, adaptability, heterogeneity

[39] Vulnerability analysis Attack surfaces Firmware updates, secure boot Device heterogeneity, lightweight security

[35] AI for security Edge node vulnerability AI integration, blockchain Computation costs, evolving threats

[34] RL for IoT Security challenges, RL RL-based solutions Scalability, resource constraints

[28] Edge security Resource constraints, edge vulnerability Edge security architectures Securing edge layer, data quality

[32] LoRa edge integration Cloud limits, low-power, long-range Edge integration, regulatory compliance Scalability, data privacy, standardization

[33] Secure analytics Security trade-offs, trust, privacy Lightweight security, trust management Advanced trust models, scalable frameworks

[29] IoT security IoT threats, attack types Blockchain, fog computing, ML, edge computing Scalability, resource constraints

[40] Edge architectures IoT edge architecture, challenges Security, data management, scalability Resource constraints, evolving threats

[31] ML/DL methods Complexity, vulnerability, attack surfaces ML/DL techniques, anomaly detection Scalability, data privacy, standardization

[38] Cybersecurity Data, network, service security Data encryption, IDPS, secure software Scalability, privacy concerns

[37] IoT security IoT threats, attack types Fog computing, ML, edge, blockchain Scalability, real-time adaptation

[30] Secure aggregation Security, privacy in healthcare IoT Data encryption, secure aggregation Device heterogeneity, dynamic trust

[11] Edge security Security, privacy risks, attacks Secure updates, IDS, lightweight cryptography Scalability, dynamic trust management

[19] Security architectures Resource management, privacy Packet filters, firewalls, IDS Balancing security, trust management
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3. Edge Computing and Related Paradigms

This section examines the current technologies associated with edge computing and its
related paradigms. We will also investigate how these technologies impact the IoT networks
that edge computing capabilities assist. This discussion aims to clearly understand the
technological landscape, including the advances and challenges faced in integrating edge
computing with IoT systems.

3.1. Edge Computing

Edge computing is a computing paradigm that involves deploying computing re-
sources at the edge of the network, closer to where the data are generated, processed,
and consumed. This technique aims to reduce latency, ease traffic on the network, and
meet the computational requirements of applications that demand low latencies [47]. It
is considered an open platform that extends cloud computing capabilities by providing
services close to users through IT infrastructure at the network edge [48]. Edge computing
architecture involves placing tiny data centers at the network edge to enhance and extend
cloud computing capabilities [49].

Edge computing utilizes advanced technologies such as deep learning to improve
its applications. Researchers are increasingly exploring the intersection of deep learning
and edge computing, as evidenced by existing surveys [50]. Moreover, edge computing is
closely linked to other concepts such as fog computing, mobile edge computing (MEC),
and mobile cloud computing (MCC), each with its own unique architectural features
and areas of focus [29,51]. Security and privacy protection are crucial aspects of edge
computing. Ensuring the security and privacy of computation and data management at
the edge and in the cloud is a critical requirement [52]. Researchers have highlighted the
importance of addressing security issues in supporting technologies for edge computing,
including challenges and opportunities related to security and convergence with blockchain
technologies [53].

3.2. Cloud Computing

Cloud computing has gained significant traction in recent years. It provides users with
access to a shared pool of configurable computing resources over the internet, enabling
ubiquitous, convenient, and on-demand network access to a wide range of services [54].
This model integrates various computing, storage, and software resources through dis-
tributed, utility, and parallel computing. Cloud computing has become widely adopted in
academia and industry due to its ability to reduce computing and storage costs for users
while enhancing ease of use.

One of the key features of cloud computing is its ability to provide remote computing
resources to consumers and businesses, allowing them to leverage powerful computational
capabilities without the need for extensive local infrastructure [55]. Cloud computing
architectures typically involve centralized data centers that host and manage these re-
sources, offering users scalability, flexibility, and cost-effectiveness [56]. By distributing
cloud services over the internet, cloud computing enables users to access applications, store
data, and perform computational tasks without being tied to specific physical locations.

Cloud computing has also paved the way for innovations in various domains, such as
mobile edge computing, where cloud resources are extended to the edge of the network
to provide services closer to mobile devices [57]. Additionally, cloud computing has
been instrumental in developing collaborative computing systems that leverage local
computing, edge cloud, and central cloud resources to optimize task offloading and resource
allocation [58].

3.3. Fog Computing

Fog computing has emerged as a solution to address the challenges posed by tra-
ditional cloud computing models. It involves extending computing resources closer to
the edge of the network, thereby reducing latency and improving efficiency [59]. This
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approach enables offloading storage, networking, and processing tasks to the edge, catering
to the intensive computational demands and stringent latency requirements of modern
applications [59]. By bringing computational servers closer to users, fog computing aims to
minimize latency and enhance the quality of service for delay-sensitive applications [60].
Moreover, fog computing is instrumental in improving the accessibility of IoT resources by
extending the data management capabilities of the cloud [61].

Like with any network-based paradigm, the security and privacy challenges associated
with fog computing cannot be overlooked. As fog computing involves sharing data with
the cloud for decision-making, there is an increased vulnerability regarding sensitive data
sharing, necessitating robust security measures [62]. Researchers have highlighted the
importance of addressing security and privacy concerns in fog computing to ensure the
integrity and confidentiality of data [63]. Integrating fog computing with technologies like
blockchain has been explored to enhance security and privacy-preserving mechanisms in
fog-to-things environments [64]. Additionally, fog computing has been identified as a key
technology in healthcare data aggregation and transmission in IoT, emphasizing the critical
need for secure and efficient data handling in sensitive domains [30].

3.4. Mist Computing

Mist computing leverages the computing and storage capabilities of nodes, hubs, and
gateways in the intermediate layers between Fog/Cloud and Edge. It is often implemented
to optimize resources at the extreme edge, where static and mobile IoT devices act as
thin servers and clients in fully distributed architectures [65]. Mist computing is often
considered a subset of fog computing, operating on resource-constrained equipment like
single-board computers. The concept of mist computing fills the need for specialized and
dedicated nodes closer to end-users, especially with the adoption of fog computing, which
emphasizes geographically dispersed, low-latency computational resources [53].

In practical applications, mist computing finds relevance in various domains. For
instance, mist computing frameworks have been proposed to remotely monitor healthcare
conditions like Parkinson’s disease [66]. Mist computing architectures have also been
integrated into energy-efficient and high-security frameworks for IoT-enabled innovative
environments [67]. Additionally, mist computing plays a role in improving the performance
of cloud computing, as it brings resources closer to end-users, thereby enhancing overall
system efficiency.

3.5. Cloudlet Computing

Cloudlet computing is a critical innovation within the edge computing spectrum. This
concept revolves around deploying high-performance computing resources close to end-
users, offering enhanced computational and storage services [68]. Imagined as miniature yet
potent clusters, cloudlets are equipped with specialized computation and storage facilities.
Strategically placed near user-centric locales like commercial buildings and shopping malls,
they are engineered to support myriad functions such as data processing, computational
offloading, and content caching [69]. These entities act as trusted and resource-dense nodes,
optimally situated at the network’s edge to ensure seamless internet connectivity [70].

The essence of cloudlet computing lies in its ability to transcend the inherent limita-
tions associated with traditional cloud computing frameworks, particularly the challenge
of their high latency, which becomes acute in internet of things (IoT) applications [71].
Cloudlets are pivotal in empowering mobile devices, which often suffer from resource
limitations, enabling them to offload heavy computational loads. This capability is indis-
pensable for applications that demand prompt data processing [59]. Despite their ability
to meet the burgeoning demand for computational resources, spurred by the exponential
increase in connected devices, cloudlets must also navigate the potential for overburdening
due to this rising demand [72].
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3.6. Multi-Access Edge Computing (MEC)

Multi-access edge computing (MEC) is another paradigm that extends cloud comput-
ing capabilities to the edge of the network. The concept of MEC was introduced by the
European Telecommunications Standards Institute (ETSI) Mobile Edge Computing Indus-
try Specification Group (MEC iSG) to encompass the benefits of various access technologies
such as 4G, 5G, Wi-Fi, and fixed access [73].

MEC is vital in optimizing mobile resources by hosting computationally intensive
applications, processing extensive data locally before transmitting it to the cloud, and
offering cloud computing capabilities within the radio access network (RAN) close to
users citesanti2021. By leveraging computing, communication, and caching (3C) resources
at the network edge, MEC is positioned as a critical enabler for next-generation networks.
This architecture reduces latency, saves energy, and enhances the network’s bandwidth
efficiency [74].

MEC also enables the deployment of context-aware services and supports intelligent
computation offloading, which is essential for handling the computational tasks of mobile
devices by offloading them to MEC servers [75,76]. Integrating MEC with emerging tech-
nologies like 5G and the internet of things further enhances its capabilities, making it a
critical component for applications such as mobile augmented reality (MAR) [77]. Addi-
tionally, MEC facilitates the implementation of AI-driven systems with UAV assistance in
dynamic environments, addressing challenges through efficient resource utilization at the
network edge [78].

4. Edge Computing-Based IoT

EC-IoT involves using edge computing paradigms such as fog computing, multi-access
edge computing, and cloudlet to manage security-critical and time-sensitive data generated
by IoT devices [19]. This strategy consists of deploying computing resources in close
proximity to IoT devices for tasks such as data filtering, preprocessing, and aggregation.

The process is mainly conducted by designing the IoT layer sitting at the bottom of
the architecture, while the resource providers are at the network edge. Edge computing
optimizes IoT data processing [79]. In this architecture, IoT devices collect data from their
environment, which is then processed locally on edge devices instead of being sent directly
to distant cloud servers. This local processing capability allows for real-time data analysis
and decision-making, which is critical in applications requiring immediate action such as
autonomous driving, real-time health monitoring, and smart city infrastructure [80].

Similarly, edge computing-based IoT offers enhanced security features by limiting the
amount of sensitive data transmitted over the network, thus reducing exposure to potential
cyberthreats. It also supports more scalable deployments by distributing processing tasks
across numerous edge devices, alleviating the load on central servers and reducing network
congestion. One example would be facilitating vehicles’ quick and accurate localization
through IoT sensors and radar systems [81]. EC-IoT has a wide range of applications.
While hidden in plain sight, these applications exist in extensive healthcare and urban
applications, ensuring timely and accurate data processing [82] of these applications. In
urban planning, the optimization of ecological landscape structures through EC-IoT has
positively impacted biodiversity indices, highlighting the effectiveness of edge computing
in diverse applications [83].

Figure 2 depicts the high-level three-layer architecture of the EC-IoT paradigm. The
basic composition is the same as the conventional edge computing structure, with IoT
devices being a part of the end-user subset of the edge computing layer. On the other hand,
the edge computing layer does not exist for the standard IoT architecture. The things layer
forms the foundation and comprises physical devices and sensors that collect environmental
data. These can range from simple embedded systems to advanced industrial machinery,
generating crucial operational data. Directly above this, the edge layer includes edge nodes
and gateways that perform preliminary data processing tasks such as filtering, aggregation,
and local analysis. This layer plays a pivotal role in reducing latency by handling data
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close to their origin, thus enabling quick local responses and minimizing the volume of
data transmitted upwards. At the top, the cloud layer handles more complex processing
tasks and storage needs that are less time-sensitive but require substantial computational
resources. It manages advanced analytics, machine learning operations, and extensive data
storage, providing centralized control over applications distributed across numerous edge
devices. This structured approach ensures that each layer optimizes the processing and
utility of the data in EC-IoT systems, enhancing overall efficiency and scalability.

Figure 2. High-level depiction of edge computing combined with IoT.

4.1. Advantages of EC-IoT

AI-based security countermeasures enhance the protection of both EC-IoT and non-
EC-based IoT systems, but their impacts vary significantly due to data processing and
architecture differences. In EC-IoT systems, AI-driven security solutions operate at the
edge, enabling real-time threat detection and response. This proximity to data generation
points ensures the swift identification and elimination of potential attacks, reducing the
window of vulnerability. Localized AI models also enhance data privacy by eliminating
the need to move sensitive information to centralized servers, thereby lowering the risk of
interception and unauthorized access. Conversely, AI-based security measures primarily
function within centralized cloud environments in non-EC-based IoT systems. While this
allows for deploying more sophisticated and resource-intensive AI models, it introduces
higher threat detection and response latencies due to the time required to transmit data to
and from the cloud. This centralized approach can also create a single point of failure, where
a successful attack on the cloud infrastructure can compromise the entire IoT network.
Given these differences, EC-IoT systems offer several advantages. The following are the
main advantages that make EC-IoT stand out.

Reduced latency and improved bandwidth utilization: Edge computing processes
data locally at the edge of the network, close to where they are generated. This proximity
significantly cuts down the latency involved in sending data to a central server for process-
ing. A primary advantage of this approach is the capability to perform tasks with a reduced
latency, lower energy consumption, and more efficient use of network bandwidth [84]. This
reduces the bandwidth requirements and alleviates congestion in network traffic, which is
particularly important with the increasing number of IoT devices generating vast amounts
of data [84].

Increased reliability and scalability: Edge computing enables devices to operate in-
dependently of the cloud, which increases the system’s reliability. In scenarios where
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connectivity to a central server might be compromised or unavailable, edge devices can
continue to function effectively, making decisions based on real-time data. Deploying edge
computing devices across different locations is scalable, as it distributes the processing
load. It allows for incremental additions without the need for significant infrastructure
overhauls, which is ideal for scaling up IoT applications [13].

Context-aware computing and real-time data processing: Edge computing facilitates
real-time data processing by eliminating the delays associated with transmitting data to
remote servers, which is vital for applications that depend on instant data analysis and
action. It enables edge devices to make decisions locally based on real-time environmental
data, resulting in more context-sensitive and responsive computing solutions. This capa-
bility is particularly advantageous for sectors like smart city infrastructure and healthcare
monitoring systems, where timely and relevant data are crucial [85,86].

4.2. AI in the Realm of EC-IoT

With current advancements in AI and the hardware that supports AI applications,
EC-IoT has seen new technologies and concepts that improve and expand the current
capabilities. A few of the major concepts that have been introduced with AI into EC-IoT
systems are listed below:

Edge Intelligence (EI): EI represents a significant advancement in EC-IoT systems,
where AI computations are performed locally on edge devices. This reduces the depen-
dency on centralized cloud servers, thereby minimizing latency and bandwidth usage
while enhancing real-time processing capabilities [42,87]. By enabling local AI process-
ing, EI allows IoT devices to handle complex tasks independently, making systems more
responsive and efficient [88].

Real-time data processing: Real-time data processing is a core benefit of integrating AI
into EC-IoT systems. By processing data at the network edge, latency is significantly re-
duced, which is crucial for applications requiring immediate responses such as autonomous
vehicles and industrial automation [42,89]. This decentralized approach also distributes AI
tasks across edge devices, improving system robustness and scalability by avoiding single
points of failure [87].

Enhanced security and privacy: Keeping data at the edge enhances security and
privacy by reducing the risk of data breaches during transmission to central servers [42,87].
AI-based anomaly detection systems at the edge can monitor and detect unusual patterns
or behaviors, providing early warnings for potential security threats, thus bolstering overall
system security [89].

Advanced, scalable, and flexible AI architectures: AI on the edge supports advanced
applications like real-time image and video processing, which are essential for smart
surveillance, augmented reality, and natural language processing, enhancing real-time
voice recognition and user interaction with IoT devices [89]. Integrating AI into EC-
IoT systems introduces automation and intelligence, significantly enhancing the quality
of service (QoS) and user experience [42]. This synergy enables smart and automated
systems to deliver superior performance and reliability. Furthermore, federated learning
in EC-IoT systems allows AI models to be trained across multiple edge devices without
transferring data to a central server. This approach not only enhances data privacy and
reduces transmission costs but also fosters secure and efficient AI deployment in IoT
environments [88]. These advancements collectively drive the evolution of EC-IoT systems,
making them more responsive, efficient, and secure.

5. Attacks on Edge-Based IoT

EC-IoT systems face a wide range of attack types, as depicted in Figure 3. While the
current advancements in AI technology have significantly improved cybersecurity, they are
particularly effective against specific categories of attacks. This paper focuses on analyzing
AI-based solutions to defend against the following types of attacks. We aim to demonstrate
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AI’s practical applications and benefits in enhancing edge network security by narrowing
our focus to the following list of specific threats;

• Network-level attacks
• Application-level attacks
• Data-level attacks
• Access control attacks
• Protocol-based attacks
• Side channel attacks
• Supply chain attacks
• Social engineering attacks

Figure 3. Edge-based IoT attack model with examples of each sub-model.

5.1. Network-Level Attacks

Distributed denial of service (DDoS) attacks and man-in-the-middle (MitM) attacks
are significant network-level threats in EC-IoT environments. DDoS attacks overwhelm a
network or system with traffic, rendering it inaccessible to legitimate users. In the context
of EC-IoT, the decentralized nature of edge nodes can make them susceptible to DDoS
attacks due to the distributed architecture [90]. These attacks can disrupt the availability of
IoT services and compromise the network’s reliability [91].

On the other hand, MitM attacks occur when a malicious actor intercepts and poten-
tially alters the communication between two parties without their knowledge. In EC-IoT
networks, where devices are wirelessly connected to the edge of the network, attackers
can exploit the wireless nature of the communication to carry out MitM attacks [92]. These
attacks can lead to unauthorized access to sensitive data transmitted between IoT devices
and the edge network, posing a severe security risk [21].

Both DDoS and MitM attacks exploit vulnerabilities in the network infrastructure of
EC-IoT systems. DDoS attacks target service availability by flooding the network, while
MitM attacks focus on intercepting and manipulating data in transit. Understanding these
attack vectors is crucial for developing robust security measures to safeguard EC-IoT
environments against malicious activities.
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5.2. Application-Level Attacks

At the application level, malware and botnets are significant threats in EC-IoT envi-
ronments. Malware, defined as malicious software aiming to disrupt, damage, or gain
unauthorized access to a computer system, can infect IoT devices at the application level,
compromising their functionality and potentially spreading across the network [93]. Mal-
ware exploits vulnerabilities in IoT devices to steal sensitive data, disrupt operations, or
take control of devices for malicious purposes.

Botnets are networks of compromised devices controlled by a central server, often
utilized to launch coordinated attacks. In EC-IoT settings, insecure IoT devices can be
manipulated by attackers to form botnets, enabling various malicious activities such as
DDoS attacks, data theft, and malware dissemination [94]. Botnets utilize the computational
power of multiple devices to magnify the impact of attacks, posing a potent threat in
EC-IoT environments.

Both malware and botnets target the application layer in EC-IoT systems, exploiting
vulnerabilities in IoT devices to compromise security and integrity. Understanding these
threats is crucial for developing robust security measures to safeguard EC-IoT environments
from the harmful effects of malware infections and botnet attacks.

5.3. Data-Level Attacks

Data interception and injection are two of the most prominent attacks at the data
level in EC-IoT networks. Data interception involves unauthorized access to data during
transmission between IoT devices and the edge network. Attackers can eavesdrop on
communication channels to intercept sensitive information, jeopardizing the confidentiality
and integrity of the data [95]. This attack can result in the theft of sensitive data, like
personal information or proprietary business data, presenting a substantial security risk in
EC-IoT systems. On the other hand, data injection attacks entail malicious actors inserting
false or unauthorized data into the communication flow between IoT devices and the
edge network. By injecting manipulated data packets, attackers can mislead IoT devices
or the edge network into making incorrect decisions or taking malicious actions based
on falsified information [96]. Data injection attacks can lead to system malfunctions,
unauthorized access, or the manipulation of critical processes, undermining the reliability
and trustworthiness of the entire IoT ecosystem.

5.4. Access Control Attacks

Access control attacks in EC-IoT systems, such as password attacks and privilege
escalation, pose significant security risks. Password attacks involve unauthorized individu-
als attempting to gain access to IoT devices or edge nodes by exploiting weak or default
passwords. Attackers may use brute force attacks, dictionary attacks, or password spraying
to guess or crack passwords, allowing them to gain unauthorized access to sensitive data or
control over IoT devices [92]. Password attacks pose a significant threat to the security and
integrity of EC-IoT systems, as compromised passwords can lead to unauthorized access
and potential data breaches. Privilege escalation is another security threat where attackers
exploit vulnerabilities in the system to elevate their privileges beyond what is intended.
In EC-IoT environments, privilege escalation can enable attackers to gain higher access
levels than they are authorized, granting them control over critical functions or sensitive
data [39]. By exploiting weaknesses in access control mechanisms, attackers can manipulate
the system to their advantage, potentially causing significant harm to the IoT ecosystem.
Both password attacks and privilege escalation underscore the importance of robust access
control mechanisms in securing EC-IoT environments.

5.5. Protocol-Based Attacks

Protocol-based attacks in EC-IoT target vulnerabilities in communication protocols
to compromise the security and integrity of the network. One common type of attack
is the abuse of IoT communication protocols, leading to threats like AR-DDoS attacks.
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These attacks exploit protocols such as constrained application protocols (CoAPs), simple
service discovery protocols (SSDPs), and simple network management protocols (SNMPs)
to disrupt services and compromise the availability of IoT systems [39].

Additionally, attacks can target the data transmission protocols used in IoT environ-
ments. Communication technologies like cellular networks, WiFi, ZigBee, and Bluetooth
follow IoT or data transmission protocols such as the hypertext transfer protocol (HTTP)
and message queuing telemetry transport (MQTT). Attackers may exploit vulnerabilities
in these protocols to intercept or manipulate data, leading to unauthorized access or data
breaches [35]. Also, attacks at the network layer of IoT systems can involve routing attacks,
DoS attacks, and attacks on neighbor discovery protocols. In routing attacks, malicious
devices redirect messages to incorrect paths, while DoS attacks flood the network with
excessive data to cause congestion and resource exhaustion. Attacks on neighbor discovery
protocols aim to disrupt the discovery process and compromise network integrity [42].

5.6. Side-Channel Attacks

Side-channel attacks in EC-IoT exploit unintended information leakage from the phys-
ical implementation of a system. These attacks target side-channel information such as
power consumption, electromagnetic emissions, or timing variations to infer sensitive data
like encryption keys or confidential information [39]. By analyzing these side-channel
signals, attackers can extract valuable information without directly accessing the crypto-
graphic algorithms or keys, compromising the system’s security. Additionally, side-channel
attacks can leak hardware information, such as sounds or power consumption, to extract
critical data like encryption keys [39]. Attackers leverage this leaked information to gain
unauthorized access to IoT devices or edge nodes, potentially leading to data breaches or
unauthorized control over the system. The hidden connections between publicly available
side-channel data and sensitive information make side-channel attacks a potent threat in
EC-IoT environments [19].

5.7. Supply Chain Attacks

Supply chain attacks in EC-IoT systems involve malicious actors targeting vulnerabili-
ties in the supply chain to compromise the security and integrity of the network. These
attacks can occur at various supply chain stages, from the manufacturing of IoT devices
to the distribution and deployment phases. Attackers may infiltrate the supply chain to
introduce counterfeit components, tamper with hardware or software, or implant malware
into devices before they reach end-users [42]. By exploiting weaknesses in the supply chain,
attackers can compromise the confidentiality, availability, and authenticity of IoT devices,
potentially leading to data breaches, service disruptions, or unauthorized access to sensitive
information. Supply chain attacks pose a significant threat to the overall security of EC-IoT
ecosystems, highlighting the importance of ensuring the integrity and security of every
component within the supply chain [41].

5.8. Social Engineering Attacks

Social engineering attacks in EC-IoT systems involve manipulating individuals to
disclose sensitive information or perform actions compromising the network’s security.
Attackers exploit human psychology and trust to deceive users into providing confiden-
tial data, such as login credentials or personal information. These attacks often involve
impersonation, pretexting, phishing emails, or phone calls to trick individuals into disclos-
ing valuable information [37]. Social engineering attacks can bypass traditional security
measures and gain unauthorized access to IoT devices or edge nodes by exploiting human
vulnerabilities rather than technical weaknesses. Attackers may use social engineering
tactics to gain entry into secure areas, extract sensitive data, or manipulate individuals
into executing malicious actions that could compromise the integrity of the entire IoT
ecosystem [38].
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6. Countermeasures in EC-IoT

Machine learning and deep learning are increasingly being utilized to enhance security
measures in the internet of things (IoT) ecosystem, particularly in edge and edge-assisted
IoT environments. Recent trends show a significant focus on leveraging advanced learning
algorithms to strengthen security protocols in IoT systems.

Research has demonstrated a growing interest in using machine learning and deep
learning techniques for IoT security [31]. These methods provide unique capabilities to
address security challenges by effectively detecting anomalies and potential threats [97].
Additionally, integrating edge computing and blockchain with machine learning and deep
learning has been suggested as a robust approach to ensuring reliable and efficient IoT
security [98].

In the realm of IoT security, deep learning has shown promise in detecting cyberattacks
and malicious devices within IoT networks [99]. Furthermore, advancements in federated
learning, transfer learning, and deep learning are paving the way for more sophisticated
models that are capable of autonomously identifying cyberthreats in diverse IoT-driven
edge networks [100].

To enhance security in edge-assisted IoT environments, intelligent intrusion detection
systems based on federated learning have been proposed [101]. Customized intrusion
detection models utilizing federated transfer learning are emerging as a trending approach
to designing tailored security solutions for heterogeneous IoT networks [102].

Moreover, the convergence of blockchain, machine learning, fog computing, and edge
computing is being considered as a potential solution to bolster IoT security [62]. Studies
have also emphasized the significance of hybrid approaches combining supervised learning
and optimization algorithms for optimal detection of IoT cyberattacks [103].

6.1. Non-AI Methods

Traditional countermeasures are vital for ensuring comprehensive security in EC-
IoT environments. These methods form a robust defense framework. For instance, a
2023 survey emphasized the critical role of traditional methods like firewalls, VPNs, and
IDS in preventing unauthorized access and safeguarding data integrity [104]. Another
study explored the effectiveness of robust encryption techniques and regular software
updates in maintaining IoT security amidst evolving threats [105]. Additionally, network
segmentation and multi-factor authentication significantly enhance security by isolating
potential breaches and reducing unauthorized access [106].

Curated, problem-focused countermeasures are widely accepted as industry stan-
dards. Although these countermeasures are primarily developed for large, non-EC-IoT
networks, they can still perform satisfactorily in EC-IoT networks. Traditional countermea-
sures reduce dependency on technologies such as ML or DL, ensuring that basic security
measures are always in place. The authors of ref. [46] suggested employing a virtual private
network (VPN) terminator system and an intrusion prevention system (IPS) with oblivious
authentication to detect connected devices.

The authors of ref. [107] recommended integrating IOTA and attribute-based encryp-
tion for access control in IoT to mitigate unauthorized resource access. The research in
ref. [108–110] explored blockchain-based solutions to mitigate DDoS attacks in IoT settings.
The work in ref. [111] introduced privacy-preserving and security measures in SDN-based
IoT, while the research in ref. [112] proposed a moving target defense (MTD) strategy for
IoT cybersecurity.

6.2. AI Methods

The era of AI has also revolutionized the approach to securing EC-IoT environments.
AI methods, particularly ML and DL, offer advanced solutions for detecting and preventing
diverse security threats by identifying subtle patterns and anomalies that traditional meth-
ods might miss. This proactive defense is crucial, as ML has become integral to IoT security
systems, helping to detect attacks, authenticate users, and categorize suspicious activities.
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DL is also experiencing an exponential transition into automation applications, promising
higher performance and lower complexity. However, this transition involves complex data
processing, which can be time-consuming and costly. Many studies focus on supervised
learning, often overlooking techniques like unsupervised and reinforcement learning and
critical methodologies such as transfer, federated, and online learning [113,114]. Table 2
summarizes existing ML and DL-based techniques for detecting attacks and their advan-
tages and disadvantages. Future research should explore unsupervised, reinforcement, and
hybrid learning models and integrate new methodologies to enhance IoT security against
adversarial threats.

Table 2. ML and DL-based countermeasures for different attack types in EC-IoT.

Attack Type AI Application Advantages Disadvantages

Network-level CNNs, RNNs (LSTMs) High accuracy in detecting anomalies,
real-time analysis

Significant computational resources
required, complex model training

Application-level Autoencoders, GANs Effective anomaly detection, can
simulate attack scenarios

Significant training time, needs large
labeled datasets

Data-level RNNs, VAEs Good at detecting temporal anomalies,
handles high-dimensional data

Potential for high false positive rates,
requires continuous training

Access control LSTMs, DBNs Detects complex user behavior patterns,
adaptive authentication

High computational cost, complex
implementation

Protocol-based
attacks

Autoencoders, GANs Detects protocol-specific anomalies,
improves IDS robustness

Requires extensive training data,
computationally intensive

Side channel CNNs, RNNs Effective analysis of side channel
signals, real-time detection

Significant computational power
needed, difficult to implement

Supply chain Autoencoders, GANs Detects anomalies in supply chain data,
simulates attack scenarios

High resource requirements, requires
continuous updates

Social engineering RNNs, DNNs Analyzes communication patterns,
detects phishing attempts

High false positive rate, requires large
amounts of training data

6.2.1. Machine Learning

ML methods are essential in enhancing the security of EC-IoT systems by providing
robust mechanisms for detecting and mitigating various attacks. For network-level attacks,
support vector machines (SVMs) are used for binary classification of normal versus attack
traffic, while random forests analyze various features of network traffic to classify and
detect anomalies [42,115]. In application-level attacks, decision trees apply rule-based
detection by identifying decision rules from training data, and naive Bayes classifiers use
probabilistic classification to detect anomalies [42,115].

For data-level attacks, K-nearest neighbors (KNN) detect data points that deviate
significantly from the norm, and principal component analysis (PCA) is employed for
dimensionality reduction and anomaly detection [42,115]. Logistic regression is applied
for binary classification of access attempts in access control attacks, while random forests
analyze features of access attempts to detect anomalies [42,115].

In protocol-based attacks, SVMs classify normal and anomalous protocol usage
patterns, and decision trees create rule-based models to detect deviations in protocol
usage [42,115]. For side-channel attacks, PCA is used for dimensionality reduction and
anomaly detection, while KNN identifies anomalous side-channel signals that deviate from
normal patterns [42,115].

Supply chain attacks are countered by random forests, which classify and detect
anomalies in supply chain processes, and logistic regression, which models and detects
deviations in supply chain activities [42,115]. Social engineering attacks are addressed
using naive Bayes classifiers for probabilistic classification of communication content to
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detect phishing attempts, and SVMs analyze the features of communications to classify
and detect social engineering attacks [42,115].

6.2.2. Deep Learning

DL methods play a critical role in enhancing the security of EC-IoT systems by provid-
ing sophisticated mechanisms to detect and mitigate various types of attacks. Convolutional
neural networks (CNNs) are used to analyze network traffic patterns, identifying anoma-
lies indicative of network-level attacks such as SYN flooding and de-synchronization [115].
Recurrent neural networks (RNNs), including long short-term memory networks (LSTMs),
are effective for time-series analyses of network traffic, enabling the detection of temporal
anomalies [42]. Autoencoders, another DL method, are utilized for detecting anomalies in
application-layer data by reconstructing normal patterns and identifying deviations, mak-
ing them effective against application-layer attacks [42]. Generative adversarial networks
(GANs) are employed to simulate attack scenarios and improve the robustness of intrusion
detection systems (IDS) via training on both normal and adversarial examples [115].

For data-level attacks, RNNs and variational autoencoders (VAEs) are used to detect
data anomalies over time and in high-dimensional data, respectively, helping to identify
tampered or unauthorized data entries [42,115]. Access control attacks are mitigated using
LSTM networks and deep belief networks (DBNs), which model complex user behavior
patterns and detect deviations indicative of unauthorized access [42,115]. Protocol-based
attacks are countered using autoencoders for detecting anomalies in protocol-specific data
and GANs for generating synthetic attack data to improve IDS robustness [42,115].

To address side-channel attacks, CNNs analyze side-channel signals like power con-
sumption and electromagnetic emissions to detect anomalies, while RNNs perform tempo-
ral analyses of these signals to identify patterns indicative of attacks [42,115]. For supply
chain attacks, autoencoders detect anomalies in supply chain data, identifying tampered or
counterfeit components, and GANs simulate supply chain attack scenarios to enhance de-
tection capabilities [42,115]. Lastly, RNNs and deep neural networks (DNNs) are employed
to analyze communication patterns and detect social engineering attacks such as phishing
emails and other deceptive tactics [42,115–119].

7. Open Challenges and Future Research Opportunities

The implementation of EC-IoT security faces several critical challenges, including
power constraints, memory limitations, data privacy, and ethical concerns, as well as local
processing risks and training constraints. Addressing these challenges requires a proper
understanding of the new and emerging technologies and the development of new, robust
solutions designed to meet the specific needs of EC-IoT systems. Therefore, this section
discusses some future research directions and emerging trends aimed at tackling these chal-
lenges through innovative solutions. The issues discussed in this section are summarized
in Table 3. The table highlights the importance of ongoing research and development to
ensure that EC-IoT systems can operate efficiently and securely. By exploring advanced
methodologies and cutting-edge technologies, we aim to provide a roadmap for addressing
these critical challenges, ultimately fostering a more resilient and secure EC-IoT ecosystem.
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Table 3. Summary of challenges and future research directions for EC-IoT security.

Challenge Description Future Research Directions

Power constraints Limited processing power in edge devices requires solutions
like model pruning, on-device learning, and federated learn-
ing (FL), which can reduce data transmission but require
complex implementation.

• Develop advanced pruning algorithms to maintain accuracy
• Enhance model efficiency with quantization and knowledge distillation
• Design energy-efficient FL algorithms
• Integrate edge caching and opportunistic computing

Training constraints Task offloading helps with intensive tasks but depends on network
reliability and may introduce latency. Edge-centric training can
enhance autonomy and efficiency.

• Create efficient task offloading strategies
• Develop edge-centric training techniques to reduce cloud dependency

Memory limitations Quantization reduces memory usage but can affect model precision.
Mixed precision training can optimize performance and memory
efficiency.

• Enhance post-training quantization methods
• Develop mixed precision training techniques

Local processing risks Hybrid processing ensures real-time processing and reduces la-
tency but requires sophisticated architecture.

• Develop optimized hybrid architectures
• Implement dynamic task allocation algorithms

Data privacy Edge–cloud collaboration enhances data safety but can introduce
latency and requires robust communication channels.

• Enhance secure multi-party computation methods
• Leverage blockchain technology for secure data transactions

Ethical concerns AI integration in EC-IoT raises ethical concerns such as potential
bias, transparency, accountability, and informed consent.

• Address AI bias and ensure fairness
• Ensure transparency and accountability in AI decision-making
• Ensure informed consent and clear communication
• Develop ethical guidelines prioritizing user well-being
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Power constraints: The challenge of limited processing power in edge devices necessi-
tates innovative solutions like model pruning, which reduces model size and complexity.
However, it may lead to accuracy loss and requires careful tuning. Future research should
focus on developing sophisticated pruning algorithms, such as structured and adaptive
pruning, that maintain accuracy while reducing size [31,120]. Also, quantization and knowl-
edge distillation can enhance model efficiency. On-device learning optimizes energy usage
and improves device longevity but is limited by capabilities and may need frequent updates.
Efficient on-device learning algorithms should be designed for low power consumption
without sacrificing performance [11,20]. Federated learning (FL) reduces data transmission
needs, enhancing privacy and efficiency, but requires complex implementation. Research
should develop energy-efficient FL algorithms to minimize power consumption by opti-
mizing communication protocols and reducing update frequencies [35,120]. Hierarchical
FL structures can balance power consumption and computational load. Integrating edge
caching and opportunistic computing can reduce energy demands while maintaining a
robust performance.

Training constraints: Task offloading helps offload intensive tasks to the cloud while
retaining critical processing at the edge, but it depends on network reliability and may in-
troduce latency. Future research should focus on creating efficient task offloading strategies
that minimize latency and maximize the utilization of edge and cloud resources [31,35].
Developing edge-centric training techniques that focus on maximizing the training capabili-
ties of edge devices while minimizing dependency on cloud resources can also be beneficial.
These techniques can enhance the autonomy and efficiency of edge networks, ensuring
robust performance even with limited cloud interactions.

Memory limitations: Quantization is a method used to address memory limitations by
lowering memory usage and enabling efficient computation on edge devices. However,
this can potentially reduce model precision and affect performance. Future research could
enhance post-training quantization methods to maintain a higher model accuracy while
reducing memory usage [11,28]. Another promising area is mixed precision training,
where lower precisions are used during less-critical training phases and higher precisions
are used for essential computations. This balance can help optimize performance and
memory efficiency, making deploying sophisticated models on resource-constrained edge
devices feasible.

Local processing risks: Hybrid processing ensures real-time processing, reduces la-
tency, is resource-intensive, and requires sophisticated architecture. Future research should
focus on developing optimized hybrid architectures that efficiently distribute processing
tasks between edge and cloud-based methods based on real-time requirements and resource
availability [20,35]. Implementing dynamic task allocation algorithms that can adapt to
changing network conditions and processing loads is also crucial. These algorithms can
ensure optimal performance and resource utilization, providing a balanced approach to
processing that leverages the strengths of edge and cloud resources.

Data privacy: Edge–cloud collaborations balance the load between the edge and cloud,
enhancing data safety but potentially introducing latency issues and requiring robust com-
munication channels. Enhancing secure multi-party computation methods can ensure data
privacy during collaborative processing between edge and cloud processes [28,39]. Lever-
aging blockchain technology to create secure and immutable records of data transactions
between edge devices and the cloud can enhance overall security. This integration can
provide a decentralized and transparent approach to data management, reducing the risk
of data breaches and ensuring the integrity of data exchanges.

Ethical concerns: The integration of AI in EC-IoT raises significant ethical concerns
due to the quantity of data these networks handle. These concerns must be carefully
assessed and addressed to ensure responsible and fair use of technology. One primary
ethical issue is the potential for bias and unfairness in AI algorithms, which can perpetuate
or amplify existing biases in the data, leading to discriminatory outcomes [1,2]. Guar-
anteeing transparency and accountability in AI-based decision-making processes is also
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essential; stakeholders must be able to understand and audit the decisions made by these
systems to foster trust and accountability [5]. Additionally, informed consent is essential
for maintaining user trust and compliance with data protection regulations, requiring clear
communication to users about the data being collected and their intended use [6]. Ethical
guidelines must prioritize user well-being, avoid harm, and respect user autonomy to
ensure that AI technologies contribute positively to society [7]. Addressing these ethical
concerns is vital for the responsible deployment of AI in EC-IoT systems, guiding future
research toward developing fair, transparent, and accountable AI frameworks [8].

8. Conclusions

This paper explores the integration of EC-IoT systems with AI to address significant
security and privacy challenges in IoT networks. It discusses fundamental concepts,
recent advancements, and various approaches for improving EC-IoT security, emphasizing
AI-based threat detection and mitigation techniques. This paper introduces the most
current threats, their effects on EC-IoT systems, and a taxonomy of AI-based security
models, highlighting their effectiveness in enhancing EC-IoT security. It also provides a
concise discussion on implementing and optimizing AI algorithms tailored for edge-based
IoT environments. Finally, it outlines open challenges and potential research directions
to inspire future research and practical applications in the evolving landscape of EC-
IoT security.
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