
Citation: Yang, J.; Sun, S.; Chen, J.; Xie,

H.; Wang, Y.; Yang, Z. 3D-STARNET:

Spatial–Temporal Attention Residual

Network for Robust Action

Recognition. Appl. Sci. 2024, 14, 7154.

https://doi.org/10.3390/

app14167154

Academic Editor: Douglas

O’Shaughnessy

Received: 17 July 2024

Revised: 7 August 2024

Accepted: 12 August 2024

Published: 15 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

3D-STARNET: Spatial–Temporal Attention Residual Network for
Robust Action Recognition
Jun Yang 1,2 , Shulong Sun 2,* , Jiayue Chen 1, Haizhen Xie 1, Yan Wang 1 and Zenglong Yang 1

1 Big Data and Internet of Things Research Center, China University of Mining and Technology, Beijing 100083,
China; yj@cumtb.edu.cn (J.Y.); sqt2200405085@student.cumtb.edu.cn (J.C.);
zqt2200405142@student.cumtb.edu.cn (H.X.); sqt2200405099@student.cumtb.edu.cn (Y.W.);
zqt2310405043@student.cumtb.edu.cn (Z.Y.)

2 Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management,
Beijing 100083, China

* Correspondence: sslong@student.cumtb.edu.cn

Abstract: Existing skeleton-based action recognition methods face the challenges of insufficient
spatiotemporal feature mining and a low efficiency of information transmission. To solve these
problems, this paper proposes a model called the Spatial–Temporal Attention Residual Network for
3D human action recognition (3D-STARNET). This model significantly improves the performance of
action recognition through the following three main innovations: (1) the conversion from skeleton
points to heat maps. Using Gaussian transform to convert skeleton point data into heat maps
effectively reduces the model’s strong dependence on the original skeleton point data and enhances
the stability and robustness of the data; (2) a spatiotemporal attention mechanism (STA). A novel
spatiotemporal attention mechanism is proposed, focusing on the extraction of key frames and key
areas within frames, which significantly enhances the model’s ability to identify behavioral patterns;
(3) a multi-stage residual structure (MS-Residual). The introduction of a multi-stage residual structure
improves the efficiency of data transmission in the network, solves the gradient vanishing problem
in deep networks, and helps to improve the recognition efficiency of the model. Experimental results
on the NTU-RGBD120 dataset show that 3D-STARNET has significantly improved the accuracy of
action recognition, and the top1 accuracy of the overall network reached 96.74%. This method not
only solves the robustness shortcomings of existing methods, but also improves the ability to capture
spatiotemporal features, providing an efficient and widely applicable solution for action recognition
based on skeletal data.

Keywords: action recognition; spatiotemporal attention; multi-staged residual; skeleton; 3D CNN

1. Introduction

With the development of deep learning technology, action recognition has become
an important research topic in the field of video understanding. It has extremely wide
application scenarios in the fields of autonomous driving, safety control, rail transportation,
human–computer interaction, etc. Currently, most behavior recognition methods are based
on RGB [1], skeleton [2], optical flow [3], depth map [4], radar [5], point cloud, and other
modal data or the fusion of these modalities. Skeleton data are usually robust to lighting
changes, background interference and occlusion, and their computational complexity is
much smaller than that of other modal data. Skeleton sequences also have two significant
advantages in the field of behavior recognition [6]: (1) The spatial information within the
frame contains the correlation between different joint points, and rich structural information
can be extracted. (2) The temporal information between frames preserves rich temporal
correlations, so this article conducts research based on skeletal data.

There are still many challenges in the field of action recognition using skeleton data.
These challenges include the differences in the way different individuals perform the same
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action, the complexity of complex backgrounds, and the fluctuation of lighting conditions.
One of the key issues is to effectively mine the spatiotemporal features inherent in skeleton
sequences. Currently, in the field of skeleton-based action recognition, the most popular
method is based on graph convolutional networks (GCNs) [7]. It is built based on a series
of skeleton graph sequences, where each node corresponds to a joint of the human body
and defines two types of edges: spatial edges, which conform to the natural connectivity of
joints, and temporal edges, which connect the same joints in consecutive time steps and
allow information to be integrated along the spatial and temporal dimensions to discover
action patterns in spatial and temporal dimensions. This not only improves the expression
ability of the model, but also facilitates generalization in different contexts. Although
GCN can explore action patterns in the spatiotemporal dimension, its recognition ability is
significantly affected by the coordinate distribution, so it is not robust.

To address the above problems, we proposed the Spatial–Temporal Attention Residual
Network for 3D human action recognition (3D-STARNET). In order to make the model
robust, we convert the skeleton points into heat maps through Gaussian transformation,
thus avoiding the strong dependence on the skeleton points. In order to enhance the
network’s ability to extract key frames and key regions between frames, we propose a
spatiotemporal attention mechanism (STA). In order to improve the efficiency of signal
propagation in the network, we introduced a phased residual structure (MS-Residual).
Finally, we verified 3D-STARNET on the NTU-RGBD120 dataset (see Section 4 for details),
achieving significant improvements in accuracy.

To address the above issues, we proposed a Spatial–Temporal Attention Residual
Network (3D-STARNET) for 3D human action recognition. Unlike GCN-based methods, we
transform skeleton points into heat maps instead of skeleton sequences through Gaussian
transformation. This change avoids a strong dependence on skeleton points, and this
improvement significantly enhances the robustness of the algorithm. In order to enhance
the network’s ability to extract key frames and key areas between frames, we proposed
a spatiotemporal attention mechanism (STA). In order to improve the efficiency of signal
propagation in the network, we introduced a staged residual structure (MS-Residual).
Finally, we verified 3D-STARNET on the NTU-RGBD120 dataset (see Section 4 for details),
and the accuracy was significantly improved.

2. Related Work
2.1. GCN-Based Action Recognition

Due to the significant advantages of the graph convolutional network (GCN) in pro-
cessing graph data, it is widely used in the field of skeleton-based behavior recognition.
It converts human skeleton sequences into spatiotemporal graphs and can simulate the
complex spatiotemporal structure of human joints and correlation; therefore, GCN-based
behavior recognition has become a popular research area [8]. Yan et al. [9] proposed a new
dynamic skeleton model ST-GCN that can automatically learn temporal and spatial pat-
terns from data. However, it ignores the implicit correlation between skeletons. Therefore,
Li et al. [10] proposed the action-structure graph convolutional network (AS-GCN), which
stacks graph convolution and temporal convolution as basic building blocks to learn the
spatial and temporal features of behavioral actions. While performing action recognition,
it can also predict future actions to help capture more detailed action patterns through
self-supervision. In order to preserve the loss implicit joint correlations, Peng et al. [11] pro-
posed an automatically designed GCN, explored the spatiotemporal correlations between
nodes, and constructed a search space with multiple dynamic graph modules. They also
proposed corresponding sampling and memory-efficient evolution strategies to search the
space. The resulting architecture verified the effectiveness of high-order approximation
and layer-by-layer dynamic graph modules. The G3D module proposed by Liu et al. [12]
utilizes dense cross-spacetime edges as skip connections to directly propagate informa-
tion in the space-time graph, and proposes a multi-scale aggregation scheme to reveal
the importance of nodes in different neighborhoods for effective long-range modeling.
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Tu et al. [13] designed a novel correlation-driven joint-skeleton fusion graph convolutional
network (CD-JBF-GCN) as an encoder and used a pose prediction head as a decoder to
achieve semi-supervised learning. The motion transfer between the joint stream and the
bone stream can be explored, thereby promoting the two streams to learn more discrim-
inative feature representations. In order to improve the flexibility of GCN in modeling
temporal information, Liu et al. [14] proposed a temporal decoupled graph convolutional
network (TD-GCN), which first extracts high-level spatiotemporal features from skeleton
data, and then calculates the channel-dependent and time-dependent adjacency matrices
corresponding to different channels and frames to capture the spatiotemporal dependencies
between skeleton joints. Finally, in order to fuse the topological information of adjacent
skeleton joints, the spatiotemporal features of skeleton joints are fused based on the channel-
dependent and time-dependent adjacency matrices. Wang et al. [15] proposed a dynamic
dense graph convolutional network (DD-GCN) that uses 4D adjacency modeling to con-
struct a dense graph as a comprehensive representation of motion sequences at different
levels of abstraction. Although a large number of studies have achieved promising results,
GCNs are sensitive to noise or irregular connections between skeleton key points, which
may affect the recognition accuracy, especially in complex actions.

2.2. Three-Dimensional CNN-Based Action Recognition

It is widely acknowledged that CNN has made great achievements in processing
two-dimensional images, such as object detection [16,17] and instance segmentation [18].
However, it still faces considerable challenges in tasks based on skeletons and other objects
with spatiotemporal information. In the field of skeleton-based action recognition, GCN
has always occupied a mainstream position. In order to explore the potential of 3D CNN
in capturing the spatiotemporal features of skeleton sequences, many researchers have
conducted research on action recognition based on 3D CNN.

Ji et al. [19] pioneered a new 3D CNN model for action recognition, which extracts fea-
tures from the temporal and spatial dimensions through 3D convolution, thereby capturing
motion encoding information in multiple adjacent frames. However, Ref. [19] ignored the
long-term spatiotemporal dependencies of videos. To solve this problem, Diba et al. [20]
designed a temporal 3D convolutional network that can densely and efficiently capture
short-, medium-, and long-term appearance and temporal information. Feichtenhofer
et al. [21] introduced the SlowFast network for video recognition, in which the slow path
of the network runs at a low frame rate to capture spatial semantics, and the fast path
runs at a high frame rate to capture motion with fine temporal resolution. By reducing the
channel capacity, the fast path can be made very lightweight and can fully learn temporal
information. In their subsequent work X3D [22], a tiny 2D image classification architecture
is gradually expanded in spatial, temporal, width, and depth dimensions. A simple step-
wise network expansion method is used, which expands one axis at each step, achieving
a good accuracy and complexity trade-off. In order to find a balance between model size
and inference efficiency, Yang et al. [23] proposed a skeleton-based double-feature double-
motion network (DD-NET), which achieves ultra-fast inference speed by lightweighting
the network.

In order to construct 3D input data, previous studies either converted the pose distance
matrices at different time spans into pseudo images and then stacked these pseudo images
in time series [24], or summed up the 3D skeletons to obtain 3D data [25]. However, these
methods suffer from the problem of information loss. Our study converts the skeleton
sequence into a 2D heat map and then stacks it along the time dimension to form a 3D heat
map volume to preserve all the information.

3. Proposed Methods
3.1. Model Overview

In this section, we introduce a skeleton-based 3D CNN human action recognition
model called the Spatial–Temporal Attention Residual Network for 3D human action
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recognition (3D-STARNET). Figure 1 shows the overall framework of the model. A spa-
tiotemporal attention mechanism is embedded in the model and a staged residual structure
is introduced. The spatiotemporal attention mechanism enables the network to enhance its
feature learning ability in both temporal and spatial dimensions, while the staged residual
structure improves the network’s information transmission efficiency without changing
the model’s complexity. The overall network has been significantly improved in terms of
robustness, scalability, and recognition performance. The details of 3D-STARNET will be
introduced in the following chapters.
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First, the conversion process of 2D skeleton key points to 3D heat maps is introduced,
and then the two improvements of the article are introduced: the spatiotemporal attention
mechanism and the multi-staged residual structure.

3.2. Skeleton Extraction and 3D Heat Map Generation

As the basic work of this study, the effect of skeleton key point extraction directly
affects the accuracy of action recognition. This study first uses the mmpose [26] open source
framework of openmmlab to perform top-down skeleton key point extraction, which is
used as the basic condition for downstream tasks.

Since the basic action recognition framework used by the model in this article is
posec3d [27], the data input format of its backbone network is a 3D heat map instead
of a 2D skeleton sequence. This is mainly because a 3D heat map (the 3D heat map is
the 2D heat map stacked in the time dimension so that it can be input into the 3D CNN
model) has more time dimension information than a 2D skeleton sequence, which can
better describe the temporal transformation relationship between actions. It has good
robustness when dealing with occlusion, lighting changes, and complex backgrounds, can
better handle noise and uncertainty in posture estimation, and reduces the dependence on
precise coordinates of bones. At the same time, 3D heat maps can provide the model with
more contextual information, which helps the model generalize between different scenes
and different actions.

In this framework, we first use the pose estimator mmpose [26] to extract 2D human
skeleton key points from action video clips, and then a Gaussian distribution heat map is
generated for each skeleton key point to form a K × H × W heat map, where K represents
the number of skeleton points, and H and W are the height and width of the frame,
respectively. These 2D heat maps are then stacked along the time dimension to form a 3D
heat map volume of shape K × T × H × W. Assuming that the position information of each
bone point is represented by a triple (xk, yk, ck), the k joint points are mapped to a graph
through Gaussian transformation to form a three-dimensional bone point heat map J:

Jkij = e−
(i−xk)

2+(j−yk)
2

2∗σ2 ∗ ck, (1)

Among them, xk and yk represent the position information of the k-th skeleton point,
respectively, and ck represents the confidence score of the skeleton point; this value is
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obtained during the key point extraction stage. Its value is usually between 0 and 1,
representing the accuracy of detecting the skeleton point. It affects the size of the variance.
The larger the variance, the wider the Gaussian expansion range, which will be more
advantageous in tasks with strong globality such as action recognition. And (i, j) represents
the point on the Gaussian graph, where σ represents the degree of diffusion around the key
point, ensuring that the generated Gaussian kernel can cover the area around the key point,
which will be more advantageous in tasks with strong globality such as action recognition.
Figure 2 intuitively shows the transformation from an RGB image to skeleton points and
then to a heat map.
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3.3. Spatiotemporal Attention Module

The attention mechanism is a cognitive enhancement process that enables the network
to selectively learn interesting feature areas while ignoring other less relevant features. The
input data of this paper are a continuous action video frame. The ordinary network assigns
the same weight to all frames and pixel positions within the frame, which brings great
confusion to the action recognition task. To this end, this paper proposes a spatiotemporal
attention mechanism STA, as shown in Figure 3. Our proposed spatiotemporal attention
mechanism applies attention mechanisms in both temporal and spatial dimensions to
enhance the model’s ability to identify key frames and key locations in specific frames
among consecutive video frames.

F denotes the input continuous video frames, where each frame is represented as a
feature map fi,j in Rh×w, with i = 1, 2, · · · , l indicating the time index, and j = 1, 2, · · · , c
indicating the channel index. Here, l is the total number of video frames and c is the
number of channels. Through the Spatiotemporal Attention (STA) module, F can generate
corresponding weights W =

{
wi,j

}
in both the temporal and spatial dimensions. We define

the attention function T as a mechanism to learn these weights W from F, which in turn
allows us to define the output feature O =

{
oi,j

}
in Rh×w after F has passed through the STA

module. It should also be noted that T is composed of two parts, Tt and Ts, where Tt and
Ts represent the temporal attention function and the spatial attention function, respectively.
Figure 4 shows the entire spatiotemporal attention mechanism. The construction of the
entire attention mechanism follows the principles of making the architecture simple and
effective enough and making the network robust.
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By introducing the spatiotemporal attention mechanism we proposed, the network
can recognize actions in the video by focusing on only a small part of the frames in the
video. This is difficult to do with previous 3D CNN models. Previous studies mostly
focused on spatial and channel dimensions, while giving indifferent weights to video
frames, which made it difficult for the network to have stable recognition performance and
greatly increased the processing cost of the network. The temporal attention mechanism in
the STA module can effectively enhance the model’s ability to identify key frames, thereby
more effectively extracting decisive information about video actions. Specifically, the input
feature Ft learns the weight of the time dimension through the attention function Tt. In
practical applications, since the input frame sequence is too short, it is impossible to extract
the variance information of the frame sequence. To address this problem, we use a group
convolution to expand the time channel to twice the original size to retain richer time
information. Here, the attention function Tt can be defined as a composite function that
generates temporal weights for each frame:

Tt = St ◦φt ◦ εt (2)

where St and εt represent the compression and expansion operations of the time channel,
respectively, φt represents the Relu activation function, and ◦ represents the composite
operation of multiple functions; that is, the output of one function becomes the input of the
next function.

The upper part of Figure 4 shows the detailed network framework of the temporal
attention module. The input data first undergo group convolution with a grouping of
2 to expand the temporal dimension, and then undergo BN and Relu to achieve batch
normalization of the data and introduce nonlinear features. Then, a pooling operation is
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performed on the temporal dimension, and the temporal weight is obtained through a fully
connected layer and a SoftMax activation function, and finally a weighted operation is
performed with the original input data.

The 3DCNN model also includes information about the spatial dimension. Similar to
the temporal attention mechanism, the spatial attention mechanism is used to obtain the
weights of the spatial dimension, enabling the model to focus on a certain area on a single
frame, which is also very helpful for accurately identifying behavioral actions. Specifically,
for the input feature Fs, the spatial attention mechanism learns the weights corresponding
to each channel in the spatial dimension through the attention function Ts. The spatial
attention mechanism also includes an expansion and compression operation of the spatial
dimension. The attention function Ts can also be defined as a composite function that
generates a weight for each spatial channel of each frame:

Ts = Ss ◦φs ◦ εs (3)

where Ss and εs represent the compression and expansion operations of the spatial channel,
respectively, and φs represents the Relu activation function.

The lower part of Figure 4 shows the detailed network structure of the spatial attention
mechanism. It can be easily seen that it is very similar to the temporal attention mechanism,
except that the pooling dimension in the adaptive pooling layer is different.

Finally, in order to enable the model to obtain key frames in continuous video frames
and learn key areas in a single frame, we combined temporal attention with spatial attention
to form a spatiotemporal attention module STA, as shown in Figure 4. Assuming that
output_s and output_t represent the output of spatial attention and temporal attention,
respectively, and the output represents the combination of the above two parts to represent
the output of STA. In STA, after mixed compression operations on the temporal dimension
and the spatial dimension, the ability to obtain information from a global scope is realized.

3.4. MS-Residual Structure

In order to make the model competitive in the efficient dissemination of information,
we improved the previous Resnet [28] residual block into a phased residual block, and
divided it into start block, middle block, and end block, without changing the complexity
of the model. Here, we only changed the order of the different units to promote the
dissemination of data in the network. At the same time, since a shortcut exists in the main
information dissemination path, we have also conducted research on its improvement. The
following is a detailed introduction to the improvement.

The residual structure of all layers of the traditional resnet network architecture
adopts the same unit structure, as shown in Figure 5. The propagation of information in
the residual block can be expressed as follows:

Xi+1 =

{
Xi + F(Xi, Wi), size(F(Xi, Wi)) = size(Xi)

λiXi + F(Xi, Wi), size(F(Xi, Wi)) ̸= size(Xi)
(4)

where Xi and Xi+1 represent the input and output information of the i-th residual block,
respectively, and the function F represents a learnable residual mapping function, which
represents the downsampling operation performed when the sizes of F(Xi, Wi) and Xi
are different.
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As can be seen from Figure 5, the outputs of the main branch and shortcut are added
and then processed using RELU which will cause the negative elements in the information
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to be zero, thereby causing information loss. Pre-activation [29] has improved this by
moving the BN and RELU at the end of the network to the front of the network to obtain
better performance. However, this improvement does not achieve a normalization of the
complete signal, but is only applied to the branch signal, which reduces the information
control through the network and affects the dynamic flow of the gradient. As the number
of network layers increases, the overall information lacks normalization and nonlinearity.

To address the above issues, we replace the original residual structure with a staged
residual structure [30], as shown in Figure 6. The same number and type of unit blocks as
the original residual structure, but the order of the unit blocks is changed. Specifically, in
the start stage, the last Relu operation is removed to prevent the loss of signal caused by
the zeroing of negative numbers. In the middle stage, we adopted the residual structure in
pre-activation. In the end stage, we said that BN and Relu are applied to the complete signal
to replace the last BN and Relu of each residual block in each stage, so as to effectively
control the complete signal. When the gradient of the signal becomes very large after
passing through the residual block in the initial stage, it will also be subjected to nonlinear
normalization processing using BN and Relu in the final stage to improve the nonlinear
expression ability of the model and reduce the overall signal loss.
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In the residual structure, when the dimension of the input Xi is inconsistent with the
mainstream output dimension, a shortcut projection method is used to make the second
condition in Formula (4) meet. The original ResNet’s shortcut projection is implemented
by a convolution with a kernel of 1 × 1 × 1 and a stride of 2, which is used to satisfy the
condition of adding operations with the mainstream branch. For an input dimension of
T×H×W, after the above convolution operation, the output dimension will be changed to
T
2 × H

2 × W
2 . Therefore, this convolution operation will cause about 87.5% of the information

to be lost, and the remaining 12.5% of the information will be meaningless, which is
equivalent to adding noise to the mainstream output and will have a negative impact on
network performance.

To address the above problems, we have improved the shortcut projection method,
as shown in Figure 7. In this improvement, we separated the spatial projection and
channel projection from the projection, and used MaxPooling with a stride of 1 × 2 × 2
and a kernel_size of 1 × 3 × 3 to perform projection mapping in the spatial and temporal
dimensions to emphasize the significant features in the local area, suppress unimportant
features, and increase the translation invariance of the input data. Then, a 1 × 1 × 1
convolution is applied to the channel dimension, and finally BN is applied to normalize
the data. In addition to reducing information loss, this improvement can also effectively
improve the translation invariance of the network.

The improvements we introduced above, including the improvement of residual
structure and shortcut, are all carried out without increasing the model parameters and
complexity, and the performance of the final network is also significantly improved.
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4. Experiments

We comprehensively evaluate our proposed 3D-STARNET architecture on NTU-
RGBD120 and analyze the performance of each improvement.

4.1. Datasets and Evaluation Metrics

The NTU-RGBD120 [31] dataset is a large-scale 3D human action recognition dataset
developed to address some limitations in existing action recognition benchmarks, including
the lack of large-scale training samples, the limited number of different categories of actions,
the insufficient diversity of camera viewpoints, the limited changes in environmental
conditions, and the insufficient diversity of human subjects. It also provides multiple data
modalities, including RGB, skeleton points, depth map, and infrared.

In this study, we only used the skeleton modality. In the action category, we selected
12 actions, including throwing, kicking something, squatting down, moving heavy objects,
cross arms, falling, punching other person, kicking other person, pushing other person,
wielding knife towards other person, hitting with body, grabbing other person’s stuff. The
action description is shown in Table 1. In addition, in order to verify the generalization
ability of the model, we also used another dataset—UCF101 [32]. UCF101 is a real action
dataset that provides 13,320 videos from 101 action categories. We used acc/top1 as the
accuracy indicator of the model, and used the confusion matrix to intuitively understand
the recognition effect of the model.

The improvements we introduced above, including the improvement of residual
structure and shortcut, are all carried out without increasing the model parameters and
complexity, and the performance of the final network is also significantly improved.

Table 1. Action number and description.

Number Action Description Number Action Description

A throwing G punching other person
B kicking something H kicking other person
C squatting down I pushing other person
D moving heavy objects J wielding knife
E cross arms K hitting with body
F falling L grabbing stuff

4.2. Implementation Details

We used Python to develop programs and build models based on the pytorch frame-
work, running them on a server with an RTX 4090 GPU and training them on the behavior
recognition framework MMAction2. For the 3D CNN model, our model is divided into
three stages, with four, six, and three basic network blocks, respectively. The basic network
block is the bottleneck block of resnet. For the proposed spatiotemporal attention, we set
each network block to achieve a balance between performance and model size. For the
second improvement point, since the size of the model does not change, we made improve-
ments at each stage. For input data, we used RepeatDataset as a wrapper to repeat the
dataset and reshape the 3D heat map to 48 × 56 × 56. In this study, we used the stochastic
gradient descent (SGD) optimizer to train the deep learning model, and the total number
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of training rounds was set to 30 rounds in order to achieve fast and stable convergence.
The configuration of the optimizer includes the learning rate set to 0.01, the momentum
parameter set to 0.9, and the weight decay parameter set to 0.0003, which is a regularization
method to help prevent the model from overfitting. In addition, in order to effectively
control the gradient explosion problem that may occur during training, we introduced the
gradient clipping technique, in which the maximum L2 norm of the gradient is limited
to 40.

4.3. Experiments on the NTU-RGBD120 Dataset

We experimented with the 3D-STARNET model on the NTU-RGBD120 and UCF101
dataset, using acc/top1 as the model’s accuracy metric, and compared it with other ad-
vanced CNN-based and GCN-based behavior recognition models. As shown in Table 2,
our model is ahead of them in terms of accuracy.

Table 2. Comparison of different methods on NTU-RGBD120 and UCF101 from acc/top1.

Model Acc/Top1 (NTU-RGBD120) Acc/Top1 (UCF101)

posec3d [27] 93.03% 93.10%
x3d [22] 94.07% 91.13%

2s-agcn [2] 92.97% 85.22%
Stgcn [8] 93.62% 90.79%

3D-STARNET 96.74% 93.96%

Figure 8 uses a confusion matrix to intuitively reflect the detection results of our
model on the 12 types of actions in the validation set. A to L in this figure represent the
12 categories mentioned above; please refer to Table 1 for details.
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4.4. Ablation Experiments

In this section, we conducted sufficient ablation experiments to verify the effectiveness
of various improvements in 3D-STARNET. The results of the ablation experiments are
shown in Table 3.

Table 3. Ablation experiment results.

Model Acc/Top1 (NTU-RGBD120) Acc/Top1 (UCF101)

Posec3d 93.03% 93.10%
Posec3d + ST-Module 96.15% + 3.12% 93.12% + 0.02%

Posec3d + MS-Residual 95.51% + 2.48% 93.60% + 0.5%
3D-STARNET 96.74% + 3.71% 93.96% + 0.86%
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First, the original ResNet Bottleneck backbone network was improved by changing it
to a staged residual structure. With the number of parameters unchanged, the accuracy
was improved by 2.48% on the NTU-RGBD120 dataset and by 0.5% on the UCF01 dataset.
Another experiment introduced the spatiotemporal attention module into the ResNet
network model, which achieved a 3.12% accuracy improvement on the NTU-RGBD120
dataset and kept the accuracy basically the same on the NCF101 dataset. Finally, the above
two improvements were introduced on the basis of ResNet, which improved the overall
network in terms of information transmission efficiency and model feature focusing ability,
achieving 3.71% and 0.86% accuracy improvements in the two datasets, respectively.

5. Conclusions

The focus of this study is to use skeleton data to identify human behavior. We
introduced the skeleton-based action recognition model 3D-STARNET to achieve a robust
detection of action. Firstly, 3D heat maps were used instead of 2D skeleton sequences
as the input of the model to reduce the strong dependence on skeleton points. Secondly,
we proposed a spatiotemporal attention mechanism to improve the model’s information
processing and feature extraction capabilities in the spatiotemporal dimension. Finally, we
introduced a multi-stage residual structure to achieve efficient information transmission
without changing the computational complexity. We verified it on the NTU-RGBD120
dataset, and the overall accuracy reached 96.74%, which has broad application prospects
in monitoring and early warning, safety prevention and control, rail transit, and human–
computer interaction.

Although 3D-STARNET has achieved remarkable results in action recognition, we
hope that the model has generalization capabilities in action recognition in different envi-
ronments and different complexities. Future research can further explore the performance
of the model in diverse scenarios and explore the fusion of skeletal data with other types
of data, such as RGB images or depth information, to further improve the accuracy and
robustness of behavior recognition.
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