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Abstract: Topology optimization focuses on the conceptual design of structures, characterized by a
large optimization space and a significant impact on structural performance, and has been widely
applied in industrial fields such as aviation and aerospace. However, most topology optimization
methods prioritize structural stiffness and often overlook stress levels, which are critical factors in
engineering design. In recent years, explicit topology optimization methods have been extensively
developed due to their ability to produce clear boundaries and their compatibility with CAD/CAE
systems. Nevertheless, research on incorporating stress constraints within the explicit topology
optimization framework remains scarce. This paper is dedicated to investigating stress constraints
within the explicit topology optimization framework. Due to the clear boundaries and absence of
intermediate density elements in the explicit topology optimization framework, this approach avoids
the challenge of stress calculation for intermediate density elements encountered in the traditional
density method. This provides a natural advantage in solving topology optimization problems
considering stress constraints, resulting in more accurate stress calculations. Compared with existing
approaches, this paper proposes a novel component topology description function that enhances
the deformability of components, improving the representation of geometric boundaries. The lower-
bound Kreisselmeier–Steinhauser aggregation function is employed to manage the stress constraint,
reducing the solution scale and computational burden. The effectiveness of the proposed method is
demonstrated through two classic examples of topology optimization.

Keywords: topology optimization; stress concentration; explicit components; stress aggregation
function; method of moving asymptotes

1. Introduction

Since Bendsoe and Kikuchi proposed the topology optimization method based on
homogenization theory [1] in 1988, the theoretical framework of continuum topology
optimization has garnered significant attention from scholars. A series of effective topology
optimization methods have subsequently emerged. Topology optimization has gradually
become one of the most challenging subjects in structural mechanics.

Currently, topology optimization is primarily categorized into two main approaches.
The first approach is based on material distribution, known as implicit topology optimiza-
tion methods, and includes the solid isotropic material with penalization (SIMP) method
[2] and the evolutionary structural optimization (ESO) method [3]. These methods utilize
finite elements as independent design variables, which often result in the emergence of gray
elements and jagged boundary issues, as illustrated in Figure 1a. Additionally, because
the geometric description differs significantly from that of CAD modeling systems, the
optimization results usually necessitate complex model reconstruction. The second ap-
proach is based on boundary descriptions and includes the level-set method (LSM) [4] and
the moving morphable components (MMC)/voids (MMV) method [5,6]. These methods
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directly capture structural boundary characteristics, thereby facilitating the acquisition of
topological structures with smooth, well-defined boundaries, as depicted in Figure 1b.

Figure 1. Comparison of two types of topology optimization methods applied to the short beam
example. (a) Optimization results obtained using the implicit topology optimization method.
(b) Optimization results obtained using the explicit topology optimization method.

However, although the level-set method is based on boundary descriptions, it utilizes
a node-based implicit level-set function to describe the geometry, which significantly differs
from the explicit geometric representation used in CAD modeling systems. Therefore, it is
also considered an implicit topology optimization method. In 2014, Professor Xu Guo’s
team introduced the moving morphable components method, which employs a set of
deformable components as building blocks for topology optimization. By optimizing the
shape, orientation, and layout of these components, the optimal structural topology is
identified. Since it utilizes the same explicit geometric representation as CAD modeling
systems, the boundaries are explicitly extractable, and the optimization results can be di-
rectly integrated with CAD systems, pioneering the explicit topology optimization method.
For further details on the development status of the MMC method, the authors recommend
reading the review article in [7]. In recent years, many scholars have integrated implicit
and explicit topology optimization methods to leverage the strengths of both, proposing a
SIMP-MMC hybrid algorithm [8,9], as illustrated in Figure 2.

Figure 2. Schematic diagram illustrating the SIMP-MMC hybrid algorithm. (a) The initial force path,
derived from the SIMP method, is extracted and mapped onto the component layout. (b) The final
optimized result obtained using the MMC method [8].

By first utilizing the fast search capability of the SIMP method, the primary force trans-
fer path of the structure can be identified after a few initial iterative steps. Subsequently, a
contour extraction algorithm is employed to map the SIMP optimization results to the initial
layout of the MMC components, thus addressing the issue of initial layout dependency in
the MMC method and enhancing its solution speed and convergence stability.

However, incorporating stress constraints has consistently been a challenging issue
in the field of topology optimization. Introducing stress constraints into the optimization
model can lead to several significant challenges. Firstly, there is the phenomenon of stress
singularities, which has been observed for many years in truss topology optimization
designs involving stress constraints. Cheng and Jiang explained this phenomenon as due
to the discontinuous nature of stress constraints, where optimization algorithms cannot
completely eliminate some low-density areas, thus failing to achieve a genuinely optimal
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topology [10]. Several effective methods have been proposed to address this issue, including
ϵ-relaxation [11] and the smooth envelope function (SEF) [12]. Secondly, the local nature
of stress constraints poses a considerable computational burden. The typical practice is to
use aggregation functions to consolidate local stress constraints into a global constraint,
significantly reducing the number of constraints. The constraint functions commonly
applied in the literature include the Kreisselmeier–Steinhauser (KS) function [13] and the
P-norm [14]. Additionally, the optimization method based on the SIMP model faces the
challenge of defining stress constraints for intermediate-density elements. While stress
constraints can be clearly defined for elements with relative densities of 0 or 1, defining
stress constraints for intermediate-density material elements remains a topic of discussion.
Most studies address this by establishing a stress interpolation function, characterizing
it as the relationship between element stress and design variables. However, the form of
the stress interpolation function directly affects the effectiveness of stress constraints, and
applying such functions may make the optimized design more sensitive to initial designs
and parameter selection, potentially increasing the uncertainty of optimization results.

To address these issues, researchers have extensively studied the L-shaped beam as a
classic test case, as illustrated in Figure 3.

Figure 3. The designs of the L-shape beam in recent research. (a) Optimized result obtained by
Dixiong Yang et al. using the implicit topology optimization method in 2018 [15]. (b) Optimized
result obtained by Senhora et al. using the implicit topology optimization method in 2020 [16].
(c) Optimized result obtained by Xiaoya Zhai et al. using the implicit topology optimization method
in 2021 [17]. (d) Optimized result obtained by Gustavo Assis da Silva et al. using the implicit topology
optimization method in 2021 [18]. (e) Optimized result obtained by Shanglong Zhang et al. using the
explicit topology optimization method in 2017 [19]. (f) Optimized result obtained by Weisheng Zhang
et al. using the explicit topology optimization method in 2018 [20]. (g) Optimized result obtained by
Pooya Rostami et al. using the explicit topology optimization method in 2021 [21].

Dixiong Yang et al. proposed a stress correction scheme based on the Stability Transfor-
mation Method (STM) and indicated that the KS stress function based on the STM exhibits
a faster convergence rate in topology design [15], as demonstrated in Design A in the figure
above. Senhora et al. introduced a method to effectively address stress constraint issues
with a large number of constraints by modifying the penalty term and the objective function
term of the augmented Lagrangian function [16], as shown in Design B. In Design C, Xiaoya
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Zhai and colleagues adopted a similar concept and proposed an auxiliary stress variable
linked to actual variables through equality constraints. The augmented Lagrangian format
was utilized, combining the equality constraints into the objective function as linear and
quadratic terms. The auxiliary stress variable and the density variable are treated as two
sets of optimization variables, referred to as design and stress-alternating optimization [17].
Gustavo Assis da Silva et al. compared local and global stress constraint strategies in topol-
ogy optimization. The global stress strategy is based on the P-mean aggregation function,
and extensive parameter studies were conducted for L-shaped design problems [18], with
one of the results shown in Design D.

Unlike the more mature developments in implicit topology optimization methods,
explicit topology optimization methods considering stress constraints are still in their initial
stages. Explicit topology optimization methods, characterized by geometric parametriza-
tion, allow for the explicit realization of structural boundaries with clear borders. This
means that the problem of calculating stress in intermediate-density elements is avoided,
offering significant potential to improve the accuracy of boundary stress calculations and
reduce computational complexity. Shanglong Zhang et al. were the first to include stress
constraints in structural topology optimization involving discrete geometric parts. By pro-
jecting the explicit and analytical geometric description of components onto a continuously
varying density field, they inherited the convenience and advantages of density-based
topology optimization [19], as shown in Design E. Weisheng Zhang et al. proposed a solu-
tion to the stress constraint problem based on the moving morphable voids method (MMV),
achieving an optimized design with clear and explicitly parameterized boundaries using a
limited number of finite-element analysis degrees of freedom and optimization variables
[20], as seen in Design F. Design G was obtained by Pooya Rostami et al. They proposed
a new component topology description function based on polar coordinates under the
framework of the moving morphable components (MMC) method, which has a strong
curve expression ability. Global and local volume constraints are introduced in the explicit
topology optimization framework, which holds significant engineering relevance [21].

The primary focus of this paper is on addressing stress constraint issues using ex-
plicit topology optimization methods. Within the framework of the moving morphable
components (MMC) method, a topology description function with robust deformation
capability was developed, and the lower-bound Kreisselmeier–Steinhauser function was
utilized to aggregate stress constraints. Compared to existing methods for topology opti-
mization considering stress constraints, this paper avoids the issue of intermediate-density
elements through the use of an explicit topology optimization method, resulting in more
accurate stress calculations. Additionally, a new component topology description function
with enhanced deformation capability is introduced to improve geometric representation.
Furthermore, the ends of the components are curved to prevent issues such as sharp con-
nections at straight ends, which can lead to stress concentration. The proposed method
was proven effective in classical L-shaped and T-shaped beam case studies.

The structure of the remainder of the paper is as follows. Section 2 elaborates on
the basic concept of the MMC method and the proposed topology description function.
The formulation of the topology optimization problem and the aggregation treatment of
stress constraints are presented in Section 3. Sensitivity analysis is conducted in Section 4.
Representative examples are provided in Section 5, demonstrating the effectiveness of the
method. Finally, a summary is provided in Section 6.

2. MMC Topology Optimization Framework and Geometrical Description
2.1. MMC Topology Optimization Method

The MMC method is a novel topology optimization framework proposed by Professor
Guo Xu in 2014. The basic idea of this topology optimization method is illustrated in
Figure 4. This method uses components described by explicit geometric information as
structural primitives. By updating the design variables that control the movement and
deformation of the components, the component layout is gradually optimized to achieve
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the optimal structural configuration. Due to the parametric description of structural
components used in the MMC method, the structural boundaries are clear and explicitly
extractable, facilitating easy integration of the optimization results with CAD/CAE systems.
Additionally, the design variables are a set of parameters that control the movement and
deformation of the components, independent of the finite-element mesh. Compared
with the SIMP method, the number of design variables is greatly reduced, improving
solution efficiency.

Figure 4. Schematic diagram of topology optimization of the short beam example based on the MMC
method. (a) Initial layout of the components. (b) Movement and deformation of the components
during the early stages of the optimization process. (c) Movement and deformation of the components
during the later stages of the optimization process. (d) Optimized layout of the components.

Unlike the SIMP method, which describes material distribution through changes in
element density, the MMC method describes material distribution through the topology
description function (TDF) of the component.

Φ(x) > 0, i f x ∈ Ωs,
Φ(x) = 0, i f x ∈ ∂Ωs,
Φ(x) < 0, i f x ∈ D \ Ωs.

, (1)

In Equation (1), x is a point in the design domain D, and Ωs is the area occupied by the solid
material component. There are n components in the design domain, and the global topology
description function can be defined as Φ(x) = max(ϕ1(x), . . . , ϕi(x), . . . ϕn(x)), i = 1, . . . , n,
representing the component number. The topology description function of the i-th component
is expressed as follows: 

ϕi(x) > 0, i f x ∈ Ωi,
ϕi(x) = 0, i f x ∈ ∂Ωi,
ϕi(x) < 0, i f x ∈ D \ Ωi.

(2)

In Equation (2), Ωi is the area occupied by the i-th component. Since the pioneering
work of Professor Guo Xu in 2014, many scholars have proposed various component
topology description functions [22–26]. These functions have the ability to deform in
different directions and dimensions, enhancing the expression of geometric boundaries
and enabling the algorithm to search for the optimal structure more freely.
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However, if the end of the component is a straight line, it will lead to some inevitable
problems. As shown in Figure 5, in the intersection area of the components, the boundary
can become difficult to express. Additionally, the internal angle where the components
connect should ideally be a smooth curve to reduce stress concentration, but this is difficult
to achieve with components that have a straight end.

Figure 5. Schematic diagram of component connection at the end of a straight line.

2.2. A New Topology Description Function

To address the above-mentioned problems, this paper proposes a new component
topology description function. Compared with those proposed by Guo and Zhang [27],
the straight line at the end of the component in this function can be bent and deformed,
greatly enhancing the component’s deformation ability. The mathematical model of this
component topology description function can be expressed as follows:

ϕi(x, y) =
(

x′

g(y′)

)m

+

(
y′

f (x′)

)m

− 1, (3)

{
x
y

}
=

[
cosθi sinθi
−sinθi cosθi

]{
x − x0i
y − y0i

}
, (4)

In Equation (3), ϕi(x, y) represents a superellipse level-set function, where m is a
parameter controlling the shape of the superellipse. By adjusting the value of m, vari-
ous shapes, ranging from a circle to a rectangle, can be generated and described. As m
approaches infinity, the superellipse approximates a rectangle [28]. Building upon the
research of various pioneers [5,27,29], we select m = 6 in this paper. Equation (4) is used
for coordinate transformation to convert the global coordinate to the local coordinate of the
component. (x0i, y0i) is the central coordinate of the i-th component, and θi is the inclination
angle of the i-th component. The shape of the component is jointly controlled by f (x′) and
g(y′), as shown in Equations (5) and (6).

f (x′) =
ti1 + ti2 − 2ti3

2l2
i1

x′2 +
ti2 − ti1

2li1
x′ + ti3, (5)

g(y
′
) =


√

r2
i − (y′ − yr

0i)
2 + xr

0i, i f li1 < li2,

li1, i f li1 = li2,

−
√

r2
i − (y′ − yr

0i)
2 + xr

0i, i f li1 > li2.

(6)

In Equation (5), ti1, ti2, and ti3 are half of the thicknesses at three positions of the
component, li1 is half of the length on the central axis of the component, and li2 is half
of the length on both sides of the component, as shown in Figure 6. Here, we assume
that the lengths on both sides of the component are equal. (xr

0i, yr
0i) and ri are the central

coordinates and radius of the arc at the end of the i-th component, respectively. They can
be calculated as follows:
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xr
0i =

l2
i1

2(li2−li1)
,

yr
0i =

l2
i2+t2

i1
2 ,

r2
i = (xr

0i + li2)2 + (yr
0i + ti1)

2. (7)

Figure 6. Parametric description of the variability of the shape of the components.

In this way, each component has eight variables (x0, y0, l1, l2, t1, t2, t3, θ), and by opti-
mizing the values of these variables, the movement and deformation of the component can
be controlled. As shown in Figure 7, different variable values result in various component
shapes (the variables [l1, l2, t1, t2, t3] controlling the length and thickness of the component
take values of (a) [0.09, 0.05, 0.07, 0.11, 0.09], (b) [0.09, 0.05, 0.09, 0.09, 0.11], (c) [0.09, 0.05,
0.11, 0.07, 0.09], (d) [0.05, 0.09, 0.09, 0.09, 0.05], and (e) [0.09, 0.09, 0.09, 0.09, 0.09]). It can be
observed that this TDF effectively enhances the deformation ability of the component.

Figure 7. Component deformation diagrams with different parameters.

3. Problem Formulation
3.1. Problem Statement and Mathematical Formulation

The compliance minimization problem with global stress constraints and global vol-
ume constraints can be expressed as shown in Equation (8).

FindDg = ((D1)
T , (D2)

T , . . . , (Dn)T)T ,
min : C =

∫
D H

(
Φ
(

x, Dg
))

f j · udV +
∫

Γt
t · udS,

s.t.

∑n
j=1
∫

D H
(
Φ
(
x, Dg

))
Ẽ:ε(u):ε(v)dV

=
∫

D H
(
Φ
(
x, Dg

))
f · vdV +

∫
Γt

(
Φ
(
x, Dg

))
t · vdS, ∀v ∈ uad,∫

D H
(
Φ
(

x; Dg
))

dV ≤ V̄,
g(u, Dg) ≤ 0,
D ⊂ uD, u = u, onΓu

(8)

In the above equation, Dg is the vector of the global design variables for all components
(n components) in the design domain. f j and t are the volume force and surface traction,
respectively, and u and v are the displacement fields. u is the prescribed displacement
on the Dirichlet boundary Γu. The Neumann boundary condition is represented as Γt. ε
represents the second-order linear strain tensor. In this formula, Ẽ = E/(1 + ν)[I + ν/(1 −
2ν)δ⊗ δ], where E is the Young’s modulus, ν is the Poisson’s ratio, and I and δ represent the
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fourth-order and second-order unit tensors of the identity, respectively. Φ is the topology
description function of all components mentioned in Section 2, V̄ is the prescribed global
volume constraint, and g(u, Dg) is the prescribed global stress constraint, which is discussed
in detail in the subsequent sections. The Heaviside function used in Equation (8) is defined
as follows:

H(ϕ) =


1 ϕ > λ
3(1−ξ)

4

(
ϕ
λ − ϕ3

3λ3

)
+ 1+ξ

2 −λ ≤ ϕ ≤ λ

ξ else

(9)

In Equation (9), λ and ξ are parameters that control regularization and singularity,
respectively. The finite-element analysis unit in this paper adopts the widely used four-
node rectangular element and uses the ersatz material model [30] to obtain the Young’s
modulus of the element by interpolating the TDF values at the four nodes of the element
as follows:

Ee =
E
(

∑4
i=1
(

H(ϕe
i )
)q
)

4
, (10)

Equation (10) establishes the relationship between the geometric model and the finite-
element model, where Ee is the Young’s modulus of the element e. E is the Young’s modulus
of the solid material. ϕe

i , i = 1, ..., 4, represents the values of the TDF at the four nodes of
element e, and q is the penalty parameter, typically chosen as q ≥ 1 [30]. In the present study,
the value of q is set to 2 in accordance with established research precedents [24,25,31]. This
treatment greatly enhances computational efficiency, thereby reducing computational costs.

3.2. Global Stress Control

In the studies of other pioneering researchers, most stress constraints are as follows:

gj =
|σj|
σlim

− 1 ≤ 0, 1 ≤ j ≤ ne (11)

In Equation (11), σlim is the stress limit of the structure, and ne is the number of solid
elements. To address the difficulties caused by considering the stress constraint problem
mentioned in Section 1, this paper uses the well-known lower-bound KS aggregation
model. Alexander Verbart et al. proved that using the lower-bound KS function can be
considered a special case of using the original upper-bound KS function to aggregate
constraints combined with ε − relaxation, and thus, no additional relaxation techniques are
required [32]. They pointed out that the value in the aggregation parameter P ∈ [20, 40]
can achieve the best results. The lower-bound KS function is expressed as follows:

ΨL
KS = ΨU

KS −
1
P

ln(N) =
1
P

ln
(

1
N

ΣN
i=1eP fi

)
. (12)

In the above equation, P represents the aggregation parameter, and N denotes the
number of elements. Utilizing Equation (12), we can reformulate the global stress constraint
described in Equation (11) accordingly.

gj =
1
P

ln

(
1
N

N

∑
i=1

ePḡi

)
≤ 0, (13)

where

ḡi = H
(
Φ(x; Dg)

)(σVM,i

σlim
− 1
)

(14)
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In Equation (14), σVM,i is the von Mises stress calculated at the center of the i-th
element, which is defined as follows:

σVM,i =
(

σT
i Vσi

)1/2
, (15)

where

V =

 1 −1/2 0
−1/2 1 0

0 0 3

 (16)

σi = C0Bui (17)

σi = C0 is the stress–strain matrix related to Young’s modulus E and Poisson’s ratio, B
is the strain-displacement matrix, and ui is the displacement vector of the i-th element.

4. Sensitivity Analysis

In this paper, the method of moving asymptotes (MMA) is selected as the nonlinear
optimization solver. Since the design variables in the components can be accurately de-
scribed, the sensitivity values of the objective function and the volume constraint function
are similar to those solved in the literature [5,27,29,33,34], and are not discussed in detail in
this paper. The corresponding variable sensitivity value of g(y′) in the constructed TDF
(taking li1 < li2 as an example) can be expressed as follows:

∂g(y′)
∂x0

= −
sin θi(y′ − yr

0i)√
r2

i − (y′ − yr
0i)

2
(18)

∂g(y′)
∂y0

=
cos θi(y′ − yr

0i)√
r2

i − (y′ − yr
0i)

2
(19)

∂g(y′)
∂l1

=
li1li2(xr

0i + li2)

(li2 − li1)2
√

r2
i − (y′ − yr

0i)
2
+

li1li2
(li2 − li1)2 (20)

∂g(y′)
∂l2

=
(xr

0i + li2)(1 −
l2
i1

2(li2−li1)2 ) + li2(ti1 + y′)√
r2

i − (y′ − yr
0i)

2
−

l2
i1

2(li2 − li1)2 (21)

∂g(y′)
∂t1

=
yr

0i + ti1(y′ − y2
0i + 1))√

r2
i − (y′ − yr

0i)
2

(22)

∂g(y′)
∂θ

=
(y′ − yr

0i)[cos θi(x − x0i) + sin θi(y − y0i)]√
r2

i − (y′ − yr
0i)

2
(23)

The derivation process of the variable sensitivity value corresponding to the global
stress constraint is as follows:

∂σVM

∂σ
=

1
2
(σTVσ)−

1
2 2σTV = σ−1

VMσTV, (24)

∂σVM
∂d

=
∂σVM

∂σ

∂σ

∂d
= σ−1

VMσTV
∂σ

∂d
(25)

∂σVM
∂d

=
1
4

σ−1
VMσTVEBL

n

∑
e=1

4

∑
i=1

H(ϕe
i )

∂U
∂d

, (26)
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In Equation (26), L is the selection vector used to extract the corresponding displace-
ment vector of the cell from the global displacement vector. The term ∂U

∂d can be derived
from the balance equation F = KU by taking a partial derivative with respect to d.

∂U
∂d

= − K−1 ∂K
∂d

U, (27)

K =
NE

∑
i=1

KeEe =
NE

∑
i=1

4

∑
j=1

Ke
E(H(ϕe

j ))
q

4
, (28)

In the above equation, the expression for the global stiffness matrix K is calculated. ke
represents the element stiffness matrix, and Ee denotes the Young’s modulus of the element,
as determined in Equation (10). Substituting Equation (28) into Equation (27) yields the
following result:

∂U
∂d

= −(E
NE

∑
e=1

4

∑
i=1

ke
H(ϕe

i )
q

4
)−1(E

NE

∑
e=1

4

∑
i=1

keq
∂H(ϕe

i )

∂d
H(ϕe

i )
q−1

4
)U, (29)

By substituting Equation (29) into Equation (26), we obtain

∂σVM,i

∂d
=

1
4

σ−1
VM,iσ

T
i VEBiLi

NE

∑
e=1

4

∑
i=1

H(ϕe
i )[−(E

NE

∑
e=1

4

∑
i=1

ke
H(ϕe

i )
q

4
)−1(E

NE

∑
e=1

4

∑
i=1

keq
∂H(ϕe

i )

∂d
H(ϕe

i )
q−1

4
)U], (30)

Upon deriving the above equation, the sensitivity of the global stress constraint
function can be streamlined using the following adjoint equation:

Kλ = σ−1
VM,iσ

T
i VEBiLi

(∑NE
e=1 ∑4

i=1 H(ϕe
i (x))) σVM

σlim
exp(p(∑NE

e=1 ∑4
i=1 H(ϕe

i (x)))( σVM
σlim

− 1))

∑N
i=1 exp(p( σVM

σlim
− 1))

, (31)

The sensitivity of the global stress constraint function can be expressed as follows:

∂g
∂d

=
( σVM

σlim
− 1) exp(p( σVM

σlim
− 1)∑NE

e=1 ∑4
i=1 H(ϕe

i (x)))

∑N
i=1 exp(p( σVM

σlim
− 1))

+
1
4

λ
NE

∑
e=1

4

∑
i=1

H(ϕe
i )
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5. Numerical Solution Aspects

In this paper, two classical cases of L-shaped and T-shaped beams are used to test
the effectiveness of the proposed method. In every instance, the material properties, load
parameters, and geometric data are selected to be dimensionless, as the primary objective
of this study is to evaluate the numerical performance of the proposed algorithm. The
Young’s modulus E of the material is 1, and the Poisson’s ratio ν is 0.3. In the two cases, the
aggregation parameter is set to P = 20. The calculation platform uses the MATLAB R2019a
version, with an Intel i5 CPU and 16 GB of RAM (Intel, Santa Clara, CA, USA). The MMA
optimizer code used was proposed by Svanberg [35], and its parameter settings are shown
in the Table 1.

Table 1. MMA optimizer parameter settings.

epsimin raa0 albefa asyinit asyincr asydecr

10−10 0.01 0.4 0.1 0.8 0.6

5.1. L-Shaped Beam

The design domain and boundary conditions of the L-shaped beam example are
shown in Figure 8a. A fixed constraint is applied to the top of the beam, and a downward
force F = 1 is applied to the center of the right side. Obviously, stress concentration will
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occur in the right-angle area. The finite-element analysis uses a four-node rectangular
bilinear element with an element size of 0.025 and a total of 4096 elements.

Components are essential as the fundamental building blocks of the MMC method.
With a smaller number of components, the limited descriptive ability of the geometry may
fail to identify effective force transfer paths, causing the optimization process to oscillate
significantly and leading to non-convergence. Conversely, a higher number of compo-
nents introduces a large number of design variables, resulting in excessive computational
demand. Considering both convergence and computational efficiency, this paper adopts
16 components. The initial layout of the components is shown in Figure 8b, and the initial
parameters of each component are set to ini_val = [0.33 0.20 0.08 0.08 0.04]. In addition,
each component also includes three parameters representing the position and angle, for a
total of 8 parameters. Thus, the solution dimension of the problem is 128 design variables.
The value of the upper limit of the global volume constraint is set to V = 0.4, and the upper
limit value of the global stress constraint is set to δlim = 70, which is the same as the setting
in some other literature [15,36].

Figure 8. The design area and the initial layout of the components of the L-shaped beam.

Figure 9d shows the final result of the optimization. After approximately 70 iterations,
it converges stably, satisfying the volume constraint and the global stress constraint, with
the minimum compliance being 178.288. Benefiting from the advantage that the MMC
method can be directly integrated into the CAD/CAE system, the geometric boundary
information is transmitted to ABAQUS. Based on the method mentioned in ABAQUS
[37], the obtained geometric boundary, the created finite-element mesh (a hybrid mesh
dominated by quadrilaterals with an element size of 0.025, consisting of 1622 elements in
Figure 9b and 1703 elements in Figure 9e), and the plotted von Mises stress distribution
are shown in Figure 9. These results compare scenarios with and without considering the
stress constraint.

From the analysis results in Figure 9, it is evident that after adding the global stress
constraint, the angle at the corner of the L-shaped beam becomes larger, and the stress
concentration at the corner is significantly improved. While maintaining structural stiffness
(the structural compliance only increases by 7.23%, from 166.261 to 178.288), the local
maximum stress value of the structure is significantly reduced (the maximum von Mises
stress value is reduced by 49.47%, from 137.640 to 69.548). Additionally, the overall stress
distribution of the structure is more uniform. The iterative convergence curves of the
objective function and the constraint function are shown in Figure 10.
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Figure 9. Comparison of the optimization results before and after adding stress constraints, including
the finite-element mesh and stress distribution calculated from ABAQUS.

Figure 10. The iterative convergence curves of the objective function and the constraint function of
the L-shaped beam.

The iterative curve shows that in the early stages of optimization, the components
search for the optimal structural form with large-scale movement and deformation, causing
significant oscillations in the objective function and the constraint function. However,
the compliance of the structure exhibits an overall downward trend. As optimization
progresses, the objective function and the constraint function gradually stabilize and
converge. Some key iterative steps in the optimization process are shown in Figure 11.
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Figure 11. Some key iterative steps in the optimization process of the L-shaped beam

5.2. T-Shaped Beam

To further test the effectiveness of the algorithm, this paper selects a T-shaped beam
with symmetrical load and boundary conditions as an example, as shown in Figure 12a.
The upper end of the T-shaped beam is fixed, and a downward force F = 1N is applied
at the center of both ends of the beam. Similar to the L-shaped beam, stress concentration
will occur at the two right-angle corners. Because the boundary conditions and loads
of the beam are symmetrical, it can be predicted that the optimized structure will also
exhibit symmetry, thereby further testing the feasibility and convergence of the algorithm.
Similarly, the finite-element analysis uses a four-node rectangular bilinear element with an
element size of 0.025, totaling 5632 elements.

Figure 12. The design area and the initial layout of the components of the T-shaped beam.

Using the same initial values of the components as mentioned above ( ini_val =
[0.33, 0.20, 0.08, 0.08, 0.04]), a total of 22 components are used, and the initial layout
of the components is shown in Figure 12b, with a total of 176 design variables. After
approximately 100 iterations, it converges stably, and the final result of the optimization is
shown in Figure 13d, with a minimum compliance of 164.125. Using the same treatment
method as mentioned above (a hybrid mesh dominated by quadrilaterals with an element
size of 0.025, consisting of 2187 elements in Figure 13b and 2246 elements in Figure 13e), the
optimization result is compared with the result obtained without adding stress constraints.
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Figure 13. Comparison of the optimization results before and after adding stress constraints, including
the finite-element mesh and stress distribution calculated from ABAQUS.

After adding the stress constraint, the angles at the right-angle corners on both sides
of the T-shaped beam become gentler, and the stress concentration phenomenon is signif-
icantly improved. Additionally, the structure still maintains a high degree of symmetry.
While maintaining the stiffness of the structure (the structural compliance only increases
by 6.69%, from 164.125 to 175.108), the overall stress level is greatly reduced (the maximum
von Mises stress is reduced by 57.56%, from 160.900 to 102.120). The iterative curves of the
objective function and the constraint function for this case are shown in Figure 14.

Figure 14. The iterative convergence curves of the objective function and the constraint function of
the T-shaped beam.

As shown in Figure 14, after the initial stage of component movement and deformation,
both the objective function and the constraint function accurately converge. Compared
with the iterative process of the L-shaped beam, the T-shaped beam has more complex
working conditions, resulting in a relatively slower speed of iterative convergence. Some
key iterative steps in the optimization process are shown in Figure 15.
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Figure 15. Some key iterative steps in the optimization process of the T-shaped beam.

6. Conclusions

This paper proposes a two-dimensional topology optimization scheme that considers
global stress constraints within the framework of the MMC method. A novel topology
description function for the component is proposed, enhancing its deformation ability.
Compared to a component with a straight-line end, this function provides a better and
more reasonable representation of the geometric boundary at the intersection of the com-
ponents. The global stress constraint is managed using the lower-bound KS aggregation
function, and the proposed method is validated through two classical numerical exam-
ples. In the two classical numerical examples, while maintaining structural stiffness, the
increase in the compliance value does not exceed 8%, and the maximum von Mises stress is
reduced by about 50%, successfully addressing the stress concentration issue. In addition,
the overall stress distribution is more uniform. However, the authors observed some
unsmooth, sawtooth-shaped boundary phenomena in the fillet expression, which may
require introducing functions within the framework to smooth the boundary. As described
in the literature [8], the minimum size of the structure is precisely controlled by setting the
minimum spacing between the end features of the components to ensure their complete
connection. Furthermore, the use of non-uniform rational B-spline (NURBS) curves or
other advanced curve-fitting techniques to describe component boundaries, along with
improvements to existing topology description functions to further enhance the geometrical
descriptive capability of the components, should also be considered. Additionally, during
the debugging process, the authors found that the MMC method is highly dependent
on the initial values of the component variables, the initial layout, and certain param-
eters in the MMA algorithm. Some empirical changes may worsen the convergence of
the algorithm. Combining parameter selection with existing intelligent algorithms, such
as deep learning, might achieve better results. Similar ideas can be found in the liter-
ature [38]. The current research aims to preliminarily address stress constraints within
the explicit topology optimization framework, demonstrating the substantial potential
of explicit topology optimization methods in tackling stress-related challenges through
two classical examples. Future research should focus on effectively mitigating stress con-
centration within the MMC framework to achieve smoother boundary representations
and on developing a rational parameter selection mechanism to enhance optimization
efficiency, both of which remain challenging and significant topics. From the perspective
of the authors, addressing the challenges identified in existing studies by introducing
advanced boundary description methods, optimization algorithms, and parameter-tuning
techniques could be highly promising. Future research will further explore these aspects
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to enhance practical applicability in engineering, thereby advancing the field of structural
topology optimization.
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