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Abstract: Three-dimensional reconstruction based on optical satellite images has always been a
research hotspot in the field of photogrammetry. In particular, the 3D reconstruction of building
areas has provided great help for urban planning, change detection and emergency response. The
results of 3D reconstruction of satellite images are greatly affected by the input images, and this
paper proposes an improvement method for 3D reconstruction of satellite images based on the
generative adversarial network (GAN) image enhancement. In this method, the perceptual loss
function is used to optimize the network, so that it can output high-definition satellite images for
3D reconstruction, so as to improve the completeness and accuracy of the reconstructed 3D model.
We use the public benchmark dataset of satellite images to test the feasibility and effectiveness of
the proposed method. The experiments show that compared with the satellite stereo pipeline (S2P)
method and the bundle adjustment (BA) method, the proposed method can automatically reconstruct
high-quality 3D point clouds.

Keywords: optical satellite imagery; 3D reconstruction; deep learning; generative adversarial network
(GAN); RPC model

1. Introduction

In recent years, optical satellite remote sensing technology has developed rapidly,
which has further reduced the cost of obtaining satellite imagery. Compared with other
photogrammetry techniques, 3D reconstruction from satellite imagery has the advantages
of wide coverage and no geographical limitations [1–3]. As we all know, the input of 3D
reconstruction from satellite imagery can be roughly divided into the method for stereo
pair and the method for multi-view, among which the stereo pair 3D reconstruction method
needs only two satellite images as input; still, the multi-view 3D reconstruction method
requires more than two satellite images with different view angles as input. Moreover,
multi-view 3D reconstruction consists of two methods: true multi-view and multi-view
stereo [4]. The true multi-view method processes all the satellite images simultaneously,
while the multi-view stereo method selects stereo pairs from all the satellite images and
then processes them by the 3D reconstruction method for stereo pairs. It has been shown
that the reconstruction accuracy of the true multi-view method is not as good as that of the
multi-view stereo method [1,4]. Therefore, most of the commonly used 3D reconstruction
methods of satellite imagery are based on the reconstruction method for stereo pairs.

The satellite stereo pair-based 3D reconstruction mainly includes three steps: stereo
rectification, stereo matching, and altitude estimation. One of the purposes of stereo
rectification is to make sure that there is only horizontal disparity in the satellite stereo pair.
The stereo rectification process can reduce the matching complexity and save the matching
time. The other purpose of stereo rectification is to eliminate the epipolar constraint
error of satellite stereo pair as much as possible. Different from the traditional image
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pinhole model, satellite imagery is imaged by a pushbroom camera, and the general
Rational Polynomial Camera (RPC) model is often used to describe the imaging process [5].
However, pushbroom camera imaging will lead the epipolar line of the satellite stereo pair
to the epipolar curve, resulting in an epipolar constraint error [6]. At present, a popular
method of stereo rectification of satellite image pairs is affine model approximation [7], that
is, the affine matrix is generated according to the matching point pairs of the stereo pairs,
and then, the affine transformation is performed on the satellite image stereo pair. The
affine model approximation method is simple and possesses high rectification accuracy.

Stereo matching is an important step in the 3D reconstruction of satellite images.
The most commonly used stereo-matching method is using the semi-global matching
(SGM) algorithm [8–11]. The SGM algorithm approximates the two-dimensional matching
cost computation by means of one-dimensional path cost aggregation. However, the
SGM algorithm is prone to generating error streaks. Therefore, some researchers propose
the more global matching (MGM) algorithm [12], which extends the one-dimensional
path cost aggregation to the two-dimensional quadrant aggregation. Even though this
method improves the matching accuracy, it is time consuming. Besides the SGM and MGM
algorithm, some researchers use the patch match method in the field of computer vision
to implement stereo matching [13,14]. The patch match method has the problem of fixed
disparity in the window, which will lead to the distortion of the edges in images during
matching. With the popularity of deep learning, some researchers propose an intelligent
stereo-matching method, such as using a convolutional neural network (CNN) to calculate
the matching cost [15] and using smart aggregation strategy in the SGM algorithm [16].
Although these methods can obtain good matching results, they require a large number of
satellite images for training.

The final step of the satellite images 3D reconstruction is altitude estimation, which
uses triangulation to calculate 3D coordinates according to the disparity map generated
by stereo matching. The triangulation of satellite imagery requires the RPC model [17].
Therefore, the accuracy of the RPC model is particularly important. Mari et al. proposed an
RPC model refinement method based on bundle adjustment [18], which can improve the
accuracy of satellite image 3D reconstruction.

From previous studies, it can be seen that the quality of satellite images has a great
impact on 3D reconstruction [4,19]. Therefore, a GAN image enhancement-based 3D
reconstruction method is proposed in this paper. The GAN is an unsupervised deep
learning model [20], which has good applications in the fields of image generation, image
completion, and image quality improvement [21–23]. The GAN consists of a generator and
a discriminator. Some researchers add a local discriminator to improve the brightness of
the images [24], but this will make the images lose some colors. Jiang et al. extracted and
fused multi-scale features under the framework of the GAN [25]. This method has good
results on image enhancement, but it lacks image details. There are also some researchers
who integrate attention mechanisms and global features into the GAN structure to enhance
image quality [26].

In view of the facts that the accuracy of the satellite images 3D reconstruction results
depends heavily on the quality of the input images, we use the GAN model to enhance the
input images to obtain high-quality satellite images for 3D reconstruction. In this paper, we
propose an improved 3D reconstruction method of satellite images based on GAN image
enhancement. The contributions of this paper are as follows:

1. A new improvement method for automatic 3D reconstruction of satellite images is
proposed, which can generate high-quality reconstruction results without any ground
control points.

2. The perceptual loss function is applied to GAN image enhancement to improve the
clarity of satellite images, further improving the quality of 3D reconstruction results
of satellite images.

This article is organized as follows: The key imaging model and the network used
in the proposed method are introduced in Section 2. The framework and details of the
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proposed method are described in Section 3. We compare our method with other satellite
images 3D reconstruction methods and analyze the reconstruction results in Section 4.
There are some useful conclusions in Section 5.

2. RPC Model and Generative Adversarial Network

As an approximation of the satellite imaging model, the RPC model is an important
input for the 3D reconstruction of satellite images. In addition, the method proposed in this
paper is based on GAN image enhancement. Therefore, this section will briefly introduce
the principles of the RPC model and the GAN model.

2.1. RPC Model

For reasons of technical secrecy and extended utility, commercial satellite companies
replaced physical sensor models with generic RPC models. The generic RPC model is a
mathematical model that represents the mapping relationship between image coordinates
and spatial 3D coordinates. Equation (1) shows the projection of the generic RPC model.

(x, y) = P(X, Y, Z) =
(

NumL(X, Y, Z)
DenL(X, Y, Z)

,
NumS(X, Y, Z)
DenS(X, Y, Z)

)
, (1)

where (x, y) and (X, Y, Z) represent the normalized coordinates of the image point and the
3D point, respectively, P(·) denotes satellite camera projection. As shown in Equation (2),
the coordinates (x, y) and (X, Y, Z) are all normalized to the range of [−1, 1]. The original
coordinates of the satellite image point and the 3D point are presented as

(∼
x,

∼
y
)

and(∼
X,

∼
Y,

∼
Z
)

, respectively. There are usually 10 normalization parameters in the RPC model,

which contains 5 offset parameters and 5 scale parameters, as shown in Equation (2).

X =
∼
X−LAT_OFF
LAT_SCALE

Y =
∼
Y−LONG_OFF
LONG_SCALE

Z =
∼
Z−HEIGHT_OFF
HEIGHT_SCALE

x =
∼
x−LINE_OFF
LINE_SCALE

y =
∼
y−SAMP_OFF
SAMP_SCALE

. (2)

In Equation (1), NumL(·), DenL(·), NumS(·), and DenS(·) stand for the rational
polynomials in RPC models, which have the following form:

NumL(X, Y, Z) = a0 + a1Y + a2X + a3Z + a4YX + a5YZ + a6XZ + a7Y2 + a8X2

+a9Z2 + a10XYZ + a11 Y3 + a12YX2 + a13YZ2 + a14Y2X

+a15X3 + a16XZ2 + a17 Y2Z + a18X2Z + a19Z3.

(3)

The forms of DenL(·), NumS(·), and DenS(·) are the same as NumL(·), so that the
RPC model has 80 rational polynomial coefficients. The RPC model, which has the advan-
tages of no oscillation on the coefficients and independence from sensors, approximates the
satellite imaging model in the form of rational functions.

2.2. Generative Adversarial Network

In this paper, the GAN model is used to improve the quality of the input satellite
images, where IHQ is used to represent high-quality satellite images and ILQ is used to
represent low-quality satellite images. The GAN model consists of a generator Gθ(·) and a
discriminator Dρ(·), whose goal is to train a generator network that the generated satellite
images are judged to be true by the discriminator. Here θ and ρ are the tuning parameters



Appl. Sci. 2024, 14, 7177 4 of 14

to be calculated for the GAN model. These two sets of parameters contain the weights and
biases of the generator network and the discriminator network. The θ and ρ are obtained
by optimizing the loss function in Equation (4). Assuming that there are N low-quality
satellite images and N high-quality satellite images to be trained, Equation (4) needs to be
solved for the GAN image enhancement.

min
θ

1
N

N

∑
n=1

l IE
(

Gθ

(
ILQ
n

)
, IHQ

n

)
, (4)

where l IE indicates the loss function to be optimized. In addition to optimizing the gener-
ator network, the GAN model also needs a discriminator network, which is obtained by
optimizing and solving Equation (5).

min
θ

max
ρ

{
E
[
log Dρ

(
IHQ

)]
+E

[
log

(
1 − Dρ

(
Gθ

(
ILQ

)))]}
, (5)

here we input the low-quality satellite images ILQ into the generator and hope that the
generator will output the high-quality satellite images IHQ that can fool the discriminator.
The discriminator is trained to distinguish between the real high-quality satellite images
and the generated high-quality satellite images. When we solve Equation (5), we need to
alternatively optimize the generating function and the discriminating function.

3. The Improved 3D Reconstruction Method of Satellite Images

In this paper, we propose an improved satellite image reconstruction method based
on the GAN image enhancement model. The processing flow chart of the proposed
reconstruction method is shown in Figure 1.
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Figure 1. The processing flow chart of the proposed reconstruction method.

There are two types of input data, which are satellite image pair and the correspond-
ing RPC files. Firstly, the proposed method implements enhancement processing on the
input satellite images, which is based on the GAN model. Secondly, the enhanced satel-
lite image pair and its corresponding RPC files are processed by stereo rectification and
stereo matching. After these two processes, a dense disparity map will be generated.
Triangulation-based altitude estimation is then performed on the disparity map, and finally,
a high-quality 3D point cloud and its digital surface model (DSM) are generated.

3.1. GAN-Based Image Enhancement

According to the above introduction, the proposed method implements image en-
hancement on the satellite images by the GAN model. Here, we propose a modified
generator network as shown in Figure 2, which is learned from the network designed in
Ref. [21]. The generator network is mainly composed of the convolution layers, the batch-
normalization layers, the residual blocks, the up-sampling block, and the down-sampling
block. This generator network is trained to solve the minimization problem in Equation (5).
We adopt Parametric-ReLU as the activation function and add a down-sampling block to
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the generator network of the super-resolution GAN model to improve the quality of the
output satellite images.
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Figure 2. The architecture of the generator network in the proposed method.

Figure 3 shows the structure of the discriminator network, which is used to discrim-
inate whether the samples generated by the generator network are high-quality satellite
images. There are eight convolutional layers, seven batch-normalization layers, and two
dense layers in the discriminator network. Here, we adopt Leaky-ReLU as the activation
function, which is used to avoid maximum pooling [21]. The final activation function
takes the form of the sigmoid function. We train this discriminator network to solve the
maximization problem in Equation (5).
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The definition of the loss function directly affects the performance of the generator
network. MSE is usually used to construct the loss function in image quality improvement
research, but this method often lacks high-frequency details, which is inconsistent with our
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desire to make the image sharper. Therefore, the proposed method adopts a combination
of MSE loss, VGG loss, adversarial loss, and regularization loss, as shown in Equation (6).

l IE = l IE
MSE + 6 × 10−3l

IE
VGG + 10−3l IE

Adv + 2 × 10−8l IE
Reg, (6)

where l IE
MSE represents the MSE loss, whose structure is as below:

l IE
MSE =

1
WH

W

∑
w=1

H

∑
h=1

(
IHQ
w,h − Gθ

(
ILQ

)
w,h

)2
, (7)

In Equation (7), W and H denote the width and the height of the high-quality satellite
image. We define the MSE loss based on the Euclidean distance between the pixels of the
reconstructed high-quality satellite image and the reference high-quality satellite image.
The meaning of IHQ, ILQ, and Gθ(·) are the same as in Equation (4). In Equation (6), l IE

VGG
represents the VGG loss in Equation (6), whose structure is shown in Equation (8).

l IE
VGG =

1
W ′H′

W ′

∑
w′=1

H′

∑
h′=1

(
ϕ
(

IHQ
)

w,h
− ϕ

(
Gθ

(
ILQ

))
w,h

)2
, (8)

where W ′ and H′ describe the dimensions of the feature maps in the VGG network, and
ϕ(·) stands for the obtained feature map. In fact, the VGG loss is defined based on the
Euclidean distance between the reconstructed satellite image features and the reference
satellite image features. As mentioned in Section 2.2, the generator network is important
for the entire training process. In order to generate high-quality satellite images, we add
adversarial loss to the loss function, as shown in Equation (9).

l IE
Adv = −

N

∑
n=1

log Dρ

(
Gθ

(
ILQ

))
, (9)

Here, we define the adversarial loss based on the sum of the probabilities that the
high-quality satellite image generated by the generator network Gθ(·) will be judged true
by the discriminator network Dρ(·). We adopt the logarithmic form in Equation (9) to
facilitate the solution later. In order to prevent the model from overfitting, the proposed
method adds regularization loss to l IE,

l IE
Reg =

1
WH

W

∑
w=1

H

∑
h=1

∥∥∥∥∇Gθ

(
ILQ

)
w,h

∥∥∥∥2

2
. (10)

We use the two-norm of the generator network gradient to construct the regularization
loss.

3.2. Stereo Rectification

After the satellite images are enhanced by the GAN model, the proposed method
performs stereo rectification on the enhanced satellite image pair. The purpose of this
process is to reduce the epipolar constraint error of the image pair and make it suitable for
the subsequent stereo matching. The principle of the epipolar constraint error is shown in
Figure 4. As the matching point of xm, ideally, the x′m should coincide with the projection
point of the Xm on the epipolar curve epixm

uv (·). However, the existence of the epipolar
constraint error leads to the distance between the x′m and the epixm

uv (Xm), and the Euclidean
distance between the two points is defined as the epipolar constraint error.
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Suppose that there is a satellite stereo pair consisting of an image u and an image
v, and there are M pairs of matching points (x, x′)m=1,2,...,M on the images. The epipolar
constraint error can be expressed as Equation (11).

Euv =
1
M

M

∑
m=1

(
x′m, epixm

uv (Xm)
)2, (11)

where x′m = (x′m, y′m) on satellite image v is the m-th matching point of xm = (xm, ym) on
satellite image u, and the corresponding 3D point is expressed as Xm = (Xm, Ym, Zm). The
meaning of epixm

uv (·) is the epipolar curve of xm, whose form is as below.

epixm
uv (Xm) = Pv

(
P−1

u (Xm)
)

, (12)

the Pv(·) represents the satellite camera projection of the image v and P−1
u (·) denotes the

localization model of the image u. The purpose of the stereo rectification is to minimize the
epipolar constraint error by image transformation (R, t). Therefore, Equation (11) can be
reorganized as

Euv =
1
M

M

∑
m=1

(
Rx′m + t, epixm

uv (Xm)
)2, (13)

where R and t denote the rotation and the translation of the point x′m, respectively. Actually,
the proposed method adopts a rigid 2D transformation on the satellite image, which is
calculated according to the matching point pairs.

3.3. Stereo Matching

The satellite stereo pair will be matched after rectification for obtaining dense disparity
map. The traditional SGM algorithm adopts mutual information to calculate the matching
cost, but the mutual information needs to obtain the information entropy of the satellite
image, which leads to the low computational efficiency of the algorithm. The information
entropy of image I can be calculated by Equation (14).

HI = −
∫ 1

0
pI(i)log pI(i)di, (14)

where pI(i) denotes the probability distribution of the luminance of pixel i on image I. The
proposed method uses Census cost [27] to calculate the matching cost, and Census cost
utilizes the luminance difference in the local pixel neighborhood to convert the luminance
into bits, which can significantly improve the efficiency of the matching algorithm.
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After matching cost calculation, the SGM algorithm optimizes the initial cost through
the matching cost aggregation, so that the optimized matching cost will be robust to the
local noise. This process is essentially a dynamic programming problem. Different from the
traditional SGM algorithm, when aggregating the matching costs, we replace the disparity
information in one direction with the mean of it in two vertical directions. Actually, we add
a direction that rotates the original direction by 90◦ counterclockwise for aggregation. The
final step in stereo matching is the disparity map generation. The proposed method selects
the disparity value corresponding to the minimum aggregating matching costs for each
pixel as the final disparity; then, we use a left–right check [28] to refine the final disparity.

3.4. Altitude Estimation

Altitude estimation is the final step of the proposed method, which requires trian-
gulation in combination with the dense disparity map generated in Section 3.3 and the
corresponding RPC file of the satellite image. We bring the matching point pairs into the
epipolar curve equation and iterate over it to obtain the final altitude value.

4. Experimental Results and Discussion

The proposed method is tested on a benchmark dataset about satellite images, the
corresponding experimental results are analyzed thoroughly, and the proposed method is
verified to be feasible and effective.

4.1. Dataset and Metrics

The public benchmark dataset we used in this section is IARPA Multi-View Stereo
3D Mapping Challenge [29], which contains 50 panchromatic satellite images captured by
WorldView-3 satellite. The acquisition time of these satellite images is from November 2014
to January 2016. The nadir resolution of the satellite images is 30 cm, and these images
cover an area of 100 km2 near San Fernando, Argentina. The IARPA MVS3DM dataset
also provides airborne lidar data with 20 cm nadir resolution that can be used as ground
truth DSM.

The metrics of the experimental results evaluation in this paper is followed the previ-
ous quantitative evaluation [1,2,7,18], which contains completeness (CP), root-mean-square
error (RMSE) and median error (ME). All these three metrics require aligning the recon-
structed DSM with the ground truth DSM and comparing them with pixel-wise. Among the
three metrics, CP stands for the percentage of altitude errors less than 1m in a reconstructed
3D point cloud, RMSE represents the root-mean-square error of the altitude, and ME is
defined as the median altitude error.

4.2. Performance Analysis of the Proposed Method

We select eight sites from IARPA MVS3DM dataset. There are 400 images from
the eight sites, and when training the generator network, we selected 289 images as the
training set, 29 images as the validation set, and 82 images as the test set. Since the
dataset contains multi-date satellite images, we use an experience-based satellite stereo pair
selection strategy [4]. The input satellite images are shown in Figure 5. Site 1 is a mixed area
of low-height buildings, medium-height buildings and roads, whose altitude range is from
18 m to 35 m. Site 2, Site 5, and Site 6 are low-height building areas with an altitude range
of 18 m–35 m. Site 3 is a mixed area of medium-height buildings and low-height buildings
with an altitude range of 18 m–42 m, whose altitude of medium-height buildings is a little
bit higher than that of Site 1. Site 4 and Site 7 are areas that have high buildings with an
altitude more than 80 m. Site 8 is a park area with an altitude range of 15 m–55 m, and there
are some water surfaces in this area. These 8 sites contain a variety of heights and different
types of buildings, which can fully verify the performance of the proposed method.
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Figure 5. The input satellite images of the 8 selected sites from the IARPA MVS3DM dataset.

We compare our method with the S2P method [7] and the BA method [18]. The
S2P method is one of the most accurate 3D reconstruction methods at present, which
achieves high-precision and rapid reconstruction through ingenious geometric rectification
of satellite images. The BA method is a 3D reconstruction method of satellite images
that optimizes the RPC parameters by the bundle adjustment algorithm, and this method
can generate good reconstruction results when there are multi-view satellite images. The
ground truth DSMs and the reconstructed DSMs are shown in Figure 6. For comparison
and visualization, we represent DSMs as RGB images, using red for high-altitude areas and
blue for low-altitude areas. The elevation range for each site is indicated on the rightmost
part of Figure 6. The details of the reconstructed results of Site 1 are shown in Figure 7.

For Site 1, it can be seen from Figures 6 and 7 that the S2P method generates poor
reconstruction results in the building area of the upper-left corner, and the BA method
has a low reconstruction elevation in the 35 m building area (this area is orange instead
of red), and the method proposed in this paper has a better reconstruction result in this
area. As for Site 2 and Site 3, the reconstructed results of the S2P method in the lower-left
and middle areas are still obviously distorted, while the reconstruction results of the BA
method and the proposed method are blurred at the edge of the high-rise buildings and
the left edge of the DSM. As can be seen from the fourth row of Figure 6, the reconstructed
DSMs of Site 4 are poor for all three methods, due to the fact that Site 4 contains too many
vegetated areas. For Site 5 and Site 6, the visual quality of the reconstruction results of the
S2P method and the proposed method is slightly better than that of the BA method, which
may be due to the fact that the BA method does not obtain the optimal value when bundle
adjustment optimizes the RPC parameters. The results of Site 7 and Site 8 reconstructed
by the three methods has poor visual quality due to the fact that these two sites contain
multiple forms of buildings and the height difference between buildings is pretty large.
Due to the large architectural difference, the 3D reconstruction methods will reduce the
number of matching points for stereo matching, resulting in inaccurate altitude estimation.
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Figure 7. The details of the reconstructed results of Site 1.

We performed quality evaluation experiments on the reconstructed DSMs shown in
Figure 6, the experimental results of which are listed in Table 1. The metrics marked in bold
and green are those with better quality evaluation.

According to the introduction of Section 4.1, for the reconstruction results, a higher
CP means more good points in the reconstructed 3D point cloud. Here we define the
reconstructed 3D points with an altitude error of less than 1m as good points (since the
nadir resolution of the satellite image is 0.3 m, it is reasonable to set the error threshold
at the 1m). The RMSE and ME metrics both represent the reconstruction accuracy of the
3D point cloud, and the RMSE finds the root-mean-square error of the altitude of all the
reconstruction 3D points, including some 3D points with very large errors, but this kind of
3D points may be the reconstruction points that we are not concerned about, such as the
altitude of trees. Besides RMSE, this paper also uses ME to represent the median error of
the reconstructed 3D point cloud altitude, and ME can be understood as the altitude error
of the first 50% of the 3D points with the best reconstruction altitude accuracy. Obviously,
we hope the RMSE and ME of the reconstructed 3D point cloud are as low as possible.
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Table 1. The quality evaluation results of the reconstructed results.

Site Method CP (%) RMSE (m) ME (m)

1
S2P method [7] 73.98 2.60 0.39
BA method [18] 72.60 2.68 0.65

Proposed method 74.69 2.47 0.42

2
S2P method [7] 60.77 2.74 0.57
BA method [18] 60.66 2.64 0.55

Proposed method 65.08 2.22 0.50

3
S2P method [7] 67.21 8.87 0.35
BA method [18] 66.91 3.99 0.47

Proposed method 68.88 5.58 0.34

4
S2P method [7] 50.21 11.14 0.98
BA method [18] 42.04 9.34 1.45

Proposed method 51.50 10.74 0.89

5
S2P method [7] 71.19 1.92 0.52
BA method [18] 68.61 2.31 0.46

Proposed method 71.45 1.88 0.51

6
S2P method [7] 68.57 2.17 0.53
BA method [18] 53.02 3.74 0.90

Proposed method 68.74 2.17 0.54

7
S2P method [7] 59.20 7.56 0.74
BA method [18] 54.71 6.37 0.82

Proposed method 58.67 4.97 0.74

8
S2P method [7] 63.12 5.03 0.47
BA method [18] 62.66 3.80 0.66

Proposed method 63.34 4.85 0.48

As shown in Table 1, the proposed method has the highest CP in the reconstruction
results of most sites, and the CP of the proposed method is also close to the best CP for
Site 7. In addition, except for Site 4, Site 7, and Site 8, the CP of the proposed method is
more than 65%, indicating that the 3D point cloud reconstructed by our method has good
completeness. The slightly worse CP of the reconstructed results for Site 4, Site 7, and Site
8 indicates bad 3D reconstruction from satellite images, which is also verified in Figure 6.
In terms of accuracy, the proposed method can achieve an RMSE of less than 5.0 m and
an ME of less than 0.6 m for the reconstruction results of most sites (more than five sites),
which means that the proposed method can generate 3D reconstructed point clouds with
high accuracy.

5. Conclusions

In this paper, we propose an improved 3D reconstruction method for satellite images
based on GAN image enhancement, which uses the perceptual loss function training
network to enhance the satellite image. The loss function of the proposed method is a
good combination of MSE loss, VGG loss, adversarial loss, and regularization loss. This
method improves the quality of satellite images and then improves the accuracy of the
reconstruction results of the satellite images. The proposed method in this paper not only
obtains 3D point clouds with good visual quality but also has a good objective quality
evaluation of the reconstruction results. Comparative experiments with other methods
prove the effectiveness and feasibility of the proposed method.
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