Frailty Insights Detection System (FIDS)—A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Frailty Detection Methodologies
- Fried Frailty Phenotype;
- Rockwood Frailty Index;
- Groningen Frailty Indicator;
- Tilburg Frailty Indicator;
- Edmonton Frail Scale;
- FRAIL Scale.
2.2. System Architecture
- Physical activity;
- Energy expenditure;
- Unintentional weight loss;
- Exhaustion or fatigue;
- Daily sedentary time and steps history;
- Heart rate values daily variation;
- High body mass index.
2.2.1. Smartwatch Application (SA)
Fitbit Device Application
Fitbit Companion Application
2.2.2. Frailty Insight Detection System (FIDS)
NodeJS CoreHub with Prediction Engine (NCHPE)
User Interface Dashboard for Frailty Insights (UIDFI)
- Displaying data received in real time by calling the /getData function, as well as extracting relevant insights.
- Displaying self-report forms, which aim to query the user about their physical condition, mood, and body weight.
- Establish a secure connection to the Fitbit cloud and obtain stored data related to heart rate values.
- Composing charts to display the history of various parameters (weight, daily variation of heart rate, and determining sedentary times).
2.2.3. Non-Relational Database
- FIDSData—stores raw data received from the smartwatch.
- ActivityPrediction—stores activity-type predictions (5 s granularity).
- EnergyExpenditure—stores energy expenditure for each activity (minute granularity).
- HourExpenditure—stores energy expenditure for each activity (hour granularity)—this collection is created by the MinuteToHour pipeline and has as the main source the EnergyExpenditure collection.
- SedentaryPrediction—stores how many minutes each activity is performed (hour granularity)—this collection is created by the SedentaryPrediction pipeline and has as its main source the EnergyExpenditure collection.
- UserInformation—stores information provided by the user through self-report forms (weight and mood).
2.3. Feature Selection for Physical Activity Detection
- Accelerometer_x, Accelerometer_y, and Accelerometer_z—accelerations (m/s2), obtained from the accelerometer sensor; and AccMagnitude—vector magnitude derived from accelerations (m/s2);
- Gyroscope_x, Gyroscope_y, and Gyroscope_z—angular velocities (rad/s), obtained from the gyroscope sensor;
- Roll, pitch, and yaw—rotation angles in three angles, derived from quaternions (rad), obtained from the orientation sensor;
- Activity: annotated type of activity for models to distinguish between (resting, walking, running, and stair climbing).
- Recursive Feature Elimination (RFE), a feature selection technique that recursively removes the least important feature and evaluates the performance for the new set of features;
- SelectKBest, a method that helps to select the K best features, with a predefined K, with chi-squared test that is specific for classification.
- RFC: Accuracy: 0.972, F1 Score: 0.972, Precision: 0.972, Recall: 0.972.
- GBS: Accuracy: 0.97, F1 Score: 0.969, Precision: 0.969, Recall: 0.97.
- DTC: Accuracy: 0.939, F1 Score: 0.938, Precision: 0.938, Recall: 0.939.
3. Results
3.1. Physical Activity-Type Detection
3.2. Energy Expenditure
3.3. Unintentional Weight Loss and Exhaustion
3.4. Daily Sedentary Time and Steps History
3.5. Heart Rate Values
3.6. High Body Mass Index
- “Underweight: <18.5 kg/m2”;
- “Normal weight: 18.5–24.9 kg/m2”;
- “Overweight: 25–29.9 kg/m2”;
- “Obesity class I: 30–34.9 kg/m2”;
- “Obesity class II: 35–39.9 kg/m2”;
- “Obesity class III: ≥40 kg/m2”.
4. Discussion
- Physical activity;
- Energy expenditure;
- Unintentional weight loss;
- Exhaustion or fatigue;
- Daily sedentary time and steps history;
- Heart rate daily values variation;
- High body mass index.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rehman, A.; Naz, S.; Razzak, I. Leveraging Big Data Analytics in Healthcare Enhancement: Trends, Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2022; Volume 28. [Google Scholar] [CrossRef]
- Dattani, S.; Rodés-Guirao, L.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M. Life Expectancy. Available online: https://ourworldindata.org/life-expectancy (accessed on 7 July 2024).
- Strandberg, T.E.; Nieminen, T. Future Perspectives on the Role of Frailty in Cardiovascular Diseases; Springer: Cham, Switzerland, 2020; Volume 1216. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Mandel, R.; Fain, M.J. Frailty: An Emerging Geriatric Syndrome. Am. J. Med. 2007, 120, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.T.; Hemati, K.; Donovan, A.L. Geriatric Physiology and the Frailty Syndrome. Anesth. Anesthesiol. Clin. 2019, 37, 453–474. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. J. Gerontol. Ser. A 2004, 59, M255–M263. [Google Scholar] [CrossRef] [PubMed]
- Kouroubali, A.; Kondylakis, H.; Logothetidis, F.; Katehakis, D.G. Developing an AI-Enabled Integrated Care Platform for Frailty. Healthcare 2022, 10, 443. [Google Scholar] [CrossRef]
- Sauzéon, H.; Edjolo, A.; Amieva, H.; Consel, C.; Pérès, K. Effectiveness of an Ambient Assisted Living (HomeAssist) Platform for Supporting Aging in Place of Older Adults With Frailty: Protocol for a Quasi-Experimental Study. JMIR Res. Protoc. 2022, 11, e33351. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Ye, B.; Mihailidis, A. The Development and Concurrent Validity of a Multi-Sensor-Based Frailty Toolkit for In-Home Frailty Assessment. Sensors 2022, 22, 3532. [Google Scholar] [CrossRef]
- De Vries, N.M.; Staal, J.B.; Van Ravensberg, C.D.; Hobbelen, J.S.M.; Rikkert, M.O.; Nijhuis-van der Sanden, M. Outcome instruments to measure frailty: A systematic review. Ageing Res. Rev. 2011, 10, 104–114. [Google Scholar] [CrossRef]
- Dent, E.; Kowal, P.; Hoogendijk, E.O. Frailty measurement in research and clinical practice: A review. Eur. J. Intern. Med. 2016, 31, 3–10. [Google Scholar] [CrossRef]
- Ciubotaru, B.I.; Sasu, G.V.; Goga, N.; Vasilateanu, A.; Popovici, A.F. Architecture of a Non-Intrusive IoT System for Frailty Detection in Older People. Electronics 2023, 12, 2043. [Google Scholar] [CrossRef]
- Ciubotaru, B.-I.; Sasu, G.-V.; Goga, N.; Vasilățeanu, A.; Marin, I.; Goga, M.; Popovici, R.; Datta, G. Prototype Results of an Internet of Things System Using Wearables and Artificial Intelligence for the Detection of Frailty in Elderly People. Appl. Sci. 2023, 13, 8702. [Google Scholar] [CrossRef]
- Gagge, L.G.; Fobelets, A.P.; Berglund, A.P. A Standard Predictive Index of Human Reponse to Thermal Environment; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 1986; Volume 92, pp. 709–731. Available online: https://www.aivc.org/sites/default/files/airbase_2522.pdf (accessed on 7 July 2024).
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Woessner, M.N.; Tacey, A.; Levinger-Limor, A.; Parker, A.G.; Levinger, P.; Levinger, I. The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Front. Public. Health 2021, 9, 655491. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Stessman, J.; Hammerman-Rozenberg, R.; Cohen, A.; Ein-Mor, E.; Jacobs, J.M. Physical activity, function, and longevity among the very old. Arch. Intern. Med. 2009, 169, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Razjouyan, J.; Naik, A.D.; Horstman, M.J.; Kunik, M.E.; Amirmazaheri, M.; Zhou, H.; Sharafkhaneh, A.; Najafi, B. Wearable sensors and the assessment of frailty among vulnerable older adults: An observational cohort study. Sensors 2018, 18, 1336. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Vega, D.; Casado-Robles, C.; Guijarro-Romero, S.; Viciana, J. Validity of activity wristbands for estimating daily physical activity in primary schoolchildren under free-living conditions: School-Fit study. Front. Public Health 2023, 11, 1211237. [Google Scholar] [CrossRef]
- Nagata, J.M.; Alsamman, S.; Smith, N.; Yu, J.; Ganson, K.T.; Dooley, E.E.; Wing, D.; Baker, F.C.; Gabriel, K.P. Social epide-miology of Fitbit daily steps in early adolescence. Pediatr. Res. 2023, 94, 1838–1844. [Google Scholar] [CrossRef]
- Diaz, K.M.; Krupka, D.J.; Chang, M.J.; Peacock, J.; Ma, Y.; Goldsmith, J.; Schwartz, J.E.; Davidson, K.W. Fitbit®: An accurate and reliable device for wireless physical activity tracking. Int. J. Cardiol. 2015, 185, 138–140. [Google Scholar] [CrossRef]
- Chaves, P.H.M.; Varadhan, R.; Lipsitz, L.A.; Stein, P.K.; Windham, B.G.; Tian, J.; Fleisher, L.A.; Guralnik, J.M.; Fried, L.P. Physiological complexity underlying heart rate dynamics and frailty status in community-dwelling older women. J. Am. Geriatr. Soc. 2008, 56, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000.
- Bogdan-Iulian, C. Dataset with data from a Fitbit Versa, recorded by a healthy individual, 29 years old, performing different activities: Walking, running, climbing stairs and resting. Figshare J. Contrib. 2024, 11, 51. [Google Scholar] [CrossRef]
Parameter | Fried Frailty | Rockwood Index | Groningen Indicator | Tilburg Indicator | Edmonton Scale | FRAIL Scale |
---|---|---|---|---|---|---|
Unintentional Weight Loss | ✓ | ✓ | ✓ | ✓ | ✓ | |
Physical Activity | ✓ | ✓ | ✓ | ✓ | ✓ | |
Exhaustion or Fatigue | ✓ | ✓ | ✓ | |||
Cognitive Function | ✓ | ✓ | ✓ | |||
Psychological Health | ✓ | ✓ | ✓ | |||
Social Aspects | ✓ | ✓ | ✓ | |||
Multiple Health Issues/Chronic Diseases | ✓ | ✓ | ✓ | |||
Functional Independence | ✓ | ✓ | ✓ |
Methodology | Number of Items | Scoring Mechanism |
---|---|---|
Fried Frailty | 5 | 0: Not frail 1–2: Pre-frail 3 or higher: Frail |
Rockwood Index | N/A | <0.1: Not frail 0.1–0.2: Mildly frail 0.2–0.3: Moderate frail >0.3: Severely frail |
Groningen Indicator | 15 | 0–4: Not frail 5–6: Mildly frail 7–8: Moderately frail 9 or higher: Severely frail |
Tilburg Indicator | 15 | 0–5: Not frail 6–11: Mildly frail 12–17: Moderately frail 18 or higher: Severely frail |
Edmonton Scale | 17 | 0–5: Not frail 6–7: Vulnerable 8–9: Mildly frail 10–11: Moderately frail 12 or higher: Severely frail |
FRAIL Scale | 5 | 0: Not frail 1–2: Pre-frail 3–5: Frail |
Features | Random Forest | Gradient Boosting | Decision Tree | Average |
---|---|---|---|---|
Accelerometer_x, Accelerometer_y, Gyroscope_x, Gyroscope_y, Gyroscope_z, AccMagnitude, Roll, Pitch, Yaw | 0.9728 | 0.9701 | 0.9393 | 0.9607 |
Accelerometer_x, Accelerometer_y, Accelerometer_z, Gyroscope_y, Gyroscope_z, Roll, Yaw | 0.9692 | 0.9646 | 0.9474 | 0.9604 |
Accelerometer_x, Accelerometer_y, Accelerometer_z, Gyroscope_y, Gyroscope_z, Roll, Pitch, Yaw | 0.9710 | 0.9655 | 0.9447 | 0.9604 |
Accelerometer_x, Accelerometer_y, Gyroscope_y, Gyroscope_z, AccMagnitude, Roll, Pitch, Yaw | 0.9683 | 0.9674 | 0.9456 | 0.9604 |
Accelerometer_x, Accelerometer_y, Accelerometer_z, Gyroscope_y, Gyroscope_z, AccMagnitude, Roll, Pitch, Yaw | 0.9710 | 0.9655 | 0.9438 | 0.9601 |
Number of Features | Classifier | acc_X | acc_Y | acc_Z | acc_Mg | gyro_X | gyro_Y | gyro_Z | Pitch | Roll | Yaw | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | RFC | 0.9702 | ||||||||||
GBC | 0.9695 | |||||||||||
DTC | 0.9369 | |||||||||||
8 | RFC | 0.9673 | ||||||||||
GBC | 0.9695 | |||||||||||
DTC | 0.9325 | |||||||||||
7 | RFC | 0.9506 | ||||||||||
GBC | 0.9666 | |||||||||||
DTC | 0.9158 | |||||||||||
6 | RFC | 0.9434 | ||||||||||
GBC | 0.9485 | |||||||||||
DTC | 0.9209 | |||||||||||
5 | RFC | 0.9347 | ||||||||||
GBC | 0.9369 | |||||||||||
DTC | 0.9166 |
Number of Features | acc_X | acc_Y | acc_Z | acc_Mg | gyro_X | gyro_Y | gyro_Z | Pitch | Roll | Yaw | RFC Accuracy | GBC Accuracy | DTC Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.9680 | 0.9695 | 0.9289 | ||||||||||
9 | 0.9630 | 0.9644 | 0.9340 | ||||||||||
8 | 0.9630 | 0.9608 | 0.9419 | ||||||||||
7 | 0.9615 | 0.9601 | 0.9274 | ||||||||||
6 | 0.9572 | 0.9586 | 0.9282 | ||||||||||
5 | 0.9441 | 0.9427 | 0.9245 |
acc_X | acc_Y | acc_Mg | gyro_X | gyro_Y | gyro_Z | roll | yaw | activity |
Gradient Boosting Classifier | Decision Tree Classifier | Random Forest Classifier | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 | |
R1 | 119 | 2 | 2 | 3 | 113 | 3 | 4 | 6 | 123 | 1 | 2 | 0 |
R2 | 1 | 312 | 1 | 0 | 2 | 295 | 1 | 16 | 0 | 309 | 1 | 4 |
R3 | 1 | 2 | 578 | 1 | 3 | 2 | 575 | 2 | 2 | 2 | 578 | 0 |
R4 | 4 | 12 | 4 | 61 | 4 | 15 | 9 | 53 | 6 | 9 | 3 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciubotaru, B.-I.; Sasu, G.-V.; Goga, N.; Vasilățeanu, A.; Marin, I.; Păvăloiu, I.-B.; Gligore, C.T.I. Frailty Insights Detection System (FIDS)—A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies. Appl. Sci. 2024, 14, 7180. https://doi.org/10.3390/app14167180
Ciubotaru B-I, Sasu G-V, Goga N, Vasilățeanu A, Marin I, Păvăloiu I-B, Gligore CTI. Frailty Insights Detection System (FIDS)—A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies. Applied Sciences. 2024; 14(16):7180. https://doi.org/10.3390/app14167180
Chicago/Turabian StyleCiubotaru, Bogdan-Iulian, Gabriel-Vasilică Sasu, Nicolae Goga, Andrei Vasilățeanu, Iuliana Marin, Ionel-Bujorel Păvăloiu, and Claudiu Teodor Ion Gligore. 2024. "Frailty Insights Detection System (FIDS)—A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies" Applied Sciences 14, no. 16: 7180. https://doi.org/10.3390/app14167180
APA StyleCiubotaru, B. -I., Sasu, G. -V., Goga, N., Vasilățeanu, A., Marin, I., Păvăloiu, I. -B., & Gligore, C. T. I. (2024). Frailty Insights Detection System (FIDS)—A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies. Applied Sciences, 14(16), 7180. https://doi.org/10.3390/app14167180