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Abstract: Efficient traffic sign recognition is crucial to facilitating the intelligent driving of new energy
vehicles. However, current approaches like the Vision Transformer (ViT) model often impose high
storage and computational demands, escalating hardware costs. This paper presents a similarity
filter pruning method based on locally linear embedding. Using the alternating direction multiplier
method and the loss of the locally linear embedding method for the model training function, the
proposed pruning method prunes the operation model mainly by evaluating the similarity of each
layer in the network layer filters. According to the pre-set pruning threshold value, similar filters
to be pruned are obtained, and the filter with a large cross-entropy value is retained. The results
from the Belgium Traffic Sign (BelgiumTS) and German Traffic Sign Recognition Benchmark (GTSRB)
datasets indicate that the proposed similarity filter pruning based on local linear embedding (SJ-LLE)
pruning algorithm can reduce the number of parameters of the multi-head self-attention module and
Multi-layer Perceptron (MLP) module of the ViT model by more than 60%, and the loss of model
accuracy is acceptable. The scale of the ViT model is greatly reduced, which is conducive to applying
this model in embedded traffic sign recognition equipment. Also, this paper proves the hypothesis
through experiments that “using the LLE algorithm as the loss function for model training before
pruning plays a positive role in reducing the loss of model performance in the pruning process”.

Keywords: visual transformer; local linear embedding; alternating direction multiplier method;
Jensen–Shannon divergence; filter pruning

1. Introduction

Road traffic sign recognition is a research hotspot in the intelligent driving of new
energy vehicles. “Made in China 2025” requires intelligent driving vehicles to reduce
energy consumption by more than 10% compared with conventional vehicles. This is
achieved by optimizing the driving path of the car, reasonably planning the speed of the
vehicle, and rapidly recognizing traffic signs. Correct and rapid identification of traffic
signs can help smart cars drive safely in accordance with traffic rules, improve energy
utilization, and reduce polluting emissions, thereby preventing violations and accidents.

In 2011, Ciresan [1] applied convolutional neural networks to traffic sign recognition.
Deep neural networks perform well in traffic sign experiments, but most classification
networks for traffic sign identification are still limited by the performance of onboard hard-
ware devices in practical applications. Additionally, these networks with good classification
effects often require deeper network layers for training, which indicates that more parame-
ters and computing resources are needed. Thus, in the case of limited hardware capabilities,
using pruning algorithms to trim the network model of traffic sign recognition can reduce
the number of redundant parameters and the scale of the network model, making it more
widely applicable in real life. Therefore, research on pruning algorithms for traffic sign
recognition models is significant.
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Currently, methods proposed to reduce computing costs and scale down large-scale
network models mainly include parameter quantization [2], low-rank decomposition [3],
knowledge distillation [4], parameter sharing [5], and pruning [6–9]. Among these, the
compression work for traffic sign recognition models includes:

Method Specific Advantage Shortcoming

VGG [10] Based on the VGG network, the
channel pruning method based on
Lasso regression is used to reduce
the convolutional channel and
compress the width of the
network horizontally.

This method compresses the scale
of the traffic sign recognition
network, which is conducive to
the real-time application of traffic
sign systems in urban
road conditions.

If there is a set of highly
correlated features, Lasso
regression tends to choose one of
the features and ignore all the
others, which leads to instability
in the results.

Knowledge-based
distillation
framework [11]

Two lightweight convolutional
neural network structures are
designed; the first deep network
model is used as the teacher
model, and the second shallow
model is used as the student
model. Through knowledge
distillation, the student model can
learn the function mapping
similar to the teacher model and
then trim the redundant feature
channels according to the scale
factor that tends to zero in the
Batch Normalization layer.

According to the experimental
data in this paper, the compressed
network model has a more
compact structure and better
performance than the mainstream
traffic sign recognition methods.

The experimental data in this
paper indicate that compared
with the mainstream traffic sign
recognition methods, the
compressed network model has a
more compact structure and
better performance.

A lightweight
YOLOv3 traffic
sign detection
algorithm [12]

Use both shallow and deep
feature extraction in
convolutional neural networks.

This method prunes the model
while maintaining the accuracy of
the model, thus establishing a
lightweight traffic sign detection
model with stronger robustness.

Among the model compression methods for traffic sign recognition, model pruning is
also a primary focus of current research. According to the structural analysis of pruning
objects, there are mainly two types of model pruning methods: unstructured pruning and
structured pruning. The target of unstructured pruning is the connection or neuron within
the network layer of the model, characterized by the smallest pruning granularity. Although
this method can achieve a higher compression rate while maintaining the experimental
performance of the model, the model structure becomes a sparse matrix after pruning.
This requires special support from the underlying hardware and computing acceleration
libraries; otherwise, it is challenging to achieve substantial performance improvement in
the application of the pruned model.

Currently, more researchers are focusing on structured pruning, specifically the filter
pruning method, which does not require special support from software and hardware plat-
forms. Filter pruning effectively reduces the number of network parameters and memory
usage. This method directly prunes the filters in the network layer without introduc-
ing any special structure or additional operations, making filter pruning “orthogonal” to
other model compression and acceleration techniques, and it can be easily combined with
other technologies.

Filter pruning algorithms generally rank filters based on specific evaluation criteria
and remove those deemed less important. However, within each network layer, there are
often filters with similar functions, which limits the extent of model pruning. While filter
pruning significantly impacts model performance, similar-function filters may still remain
post-pruning. Additionally, neural network weight pruning algorithms require extra
hardware for data storage, whereas filter pruning methods do not face this issue. These
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pruning algorithms primarily focus on evaluating the importance of model filters but often
overlook the impact of pruning on the manifold structure of the model’s weight parameters.

To address these issues, this paper considers the influence of changes in the manifold
structure of weight parameters on model performance during filter pruning. Using the
Vision Transformer (ViT) model [13] to classify traffic sign images, we propose a similarity
filter pruning algorithm based on local linear embedding (SJ-LLE). During model training,
the Local Linear Embedding (LLE) method and the Alternating Direction Method of
Multipliers (ADMM) are used as loss functions during iterative update training before
model pruning. After obtaining the model with updated weights, the similarity of filters
is evaluated by calculating the Jensen–Shannon (JS) divergence value between filters in
each network layer. Finally, by calculating the cross-entropy of filters, those with small
cross-entropy among similar filters are pruned. This compresses the model size, reduces
the hardware requirements for model deployment, and ensures the ViT model remains
effective. The experimental performance loss during traffic sign recognition is within an
acceptable range.

This paper is organized as follows. The first part describes the overall framework and
related theoretical basis of the proposed SJ-LLE pruning method. The second part provides
the dataset used in the experiment and the preprocessing operations performed on the
images before model training. The third part presents the related experiments and their
results and analysis. The final part summarizes the research and provides an outlook for
future research work.

2. Method

This paper employs the Alternating Direction Method of Multipliers (ADMM) to
address the model pruning problem and accelerate model training. The primary feature
of the Local Linear Embedding (LLE) method in manifold learning is to convert high-
dimensional data into low-dimensional data without destroying the manifold structure. By
using this feature of the LLE method as the loss function during model training and taking
the weight parameters of the pre-trained model as the input of the loss function, the initial
model is trained to obtain the pre-trained model. After multiple iterations of training, the
similarity filter pruning method proposed in this paper is applied to prune the filters of
the trained model. This reduces the number of model parameters, allowing the traffic sign
recognition model to operate without relying on additional storage devices in practical
applications, making it widely applicable on resource-limited platforms. The pruning
operation of the Vision Transformer (ViT) model for traffic sign recognition proposed in
this paper is shown in Figure 1, and the process of pruning the model with the proposed
method is as follows:
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Step 1: Image preprocessing, such as normalization and image enhancement of dataset
images before model training.

Step 2: Pre-training: The model is trained on the dataset through a certain number of
iterations to obtain the pre-trained model.

Step 3: Model optimization: ADMM and LLE methods are combined to optimize
weights. Similarity filter pruning is performed on the pre-trained model in step 2, the weight
parameters before and after the model pruning are used as the input of the loss function
(the LLE method and ADMM), and the new model is obtained after iterative training.

Step 4: Pruning of similar filters: Prune the model after iterative training in Step 3
by using a similarity filter pruning method based on JS_ divergence. By calculating the
JS_ divergence value among the filters in each layer of the network, similar filter pairs to
be pruned are obtained by sorting the filters according to the JS_ divergence value. Then,
the cross-entropy value of the filter is calculated, and the one with a smaller cross-entropy
value in the middle of the similar filter to be pruned is cut out based on the preset pruning
threshold β.

Step 5: Fine-tune and train the pruned model in step 4 through iterations to recover
the performance loss of the model during pruning operations.

Step 6: Testing. Use the fine-tuned model in step 5 to test the experimental performance
of the model on the test dataset.

2.1. ViT Model

The Transformer model achieves good performance in many computer vision tasks.
If there is enough data for pre-training, the performance of ViT exceeds that of CNN,
overcoming the Transformer’s lack of inductive bias and obtaining a better migration effect
in downstream tasks. However, when the training dataset is not large enough, ViT usually
performs worse than ResNets under the same size, and this is because Transformer lacks an
inductive bias, i.e., a priori knowledge or assumption made in advance, compared to CNN.
CNN has two types of inductive bias: one is locality, i.e., adjacent regions on the image
have similar characteristics; the other is translation invariance, f (g(x)) = g(f (x)), where g
represents the convolution operation and f represents the translation operation. When
the CNN has the above two inductive biases, there is a lot of prior information, and only
relatively little data is needed to learn a better model. The flowchart of the ViT model is
shown in Figure 2.
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A ViT block can be divided into the following four steps:

1. Patch embedding: For example, if the input image size is 224 × 224, the image is
divided into fixed-size patches, and the patch size is 16 × 16. Then, each image will
generate 224 × 224/16 × 16 = 196 patches, that is, the length of the input sequence is
196, the dimension of each patch is 16 × 16 × 3 = 768, and the dimension of the linear
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projection layer is 768 × N (N = 768). Therefore, the dimension after the input passes
through the linear projection layer is still 196 × 768, i.e., there are 196 tokens in total,
and the dimension of each token is 768. A special character cls is also added here, so
the final dimension is 197 × 768. In this way, a vision problem is transformed into a
seq2seq problem with patch embedding.

2. Position coding: ViT also needs to add position coding, and the ViT position code has
a total of N lines. Each line represents a vector, and the dimension of the vector and
the embedded dimension of the input sequence is the same. So, after adding position
code information, the dimension is still 197 × 768.

3. Linear layer/multi-head attention mechanism/linear layer: The output dimension of
the linear layer is still 197 × 768. In the multi-head-attention mechanism, the input is
mapped to QKV first. If there is only one head, the dimension of QKV is 197 × 768;
if there are 12 heads (768/12 = 64), the dimension of QKV is 197 × 64, and there are
12 groups of QKV in total; finally, the output of 12 groups of QKV is spliced, the
output dimension is 197 × 768, and then through a linear layer, the dimension is still
197 × 768.

4. MLP: Enlarge and scale down the dimension (197 × 768 to 197 × 3072, and then
shrink to 197 × 768).

After a ViT block, the dimensions are still the same as the input, which is 197 × 768, so
multiple blocks can be stacked. Finally, the output corresponding to the special character
cls is used as the final output of the encoder, i.e., the final image presentation (another
approach is to take an average of all tokens without adding cls characters), and the image
is classified through the MLP module finally.

2.2. ADMM Principle

ADMM mainly solves the minimization problem of the objective function of two
variables with equality constraints, and it mixes the decomposability of the dual rise
algorithm with the superior convergence of the multiplier method, thus providing an
effective method to solve the non-convex problem with combinatorial constraints [14,15].
In the process of model pruning, ADMM decomposes the original pruning problem into
two subproblems. It first solves subproblem 1 by the traditional gradient descent method,
and then it introduces a quadratic term iteration to solve subproblem 2; finally, it performs
system weight pruning, and its weight-optimization problem is shown in Equation (1) [16]:

minimize f ({Wi}, {bi }) +
N

∑
i=1

gi(Wi)

subject to Wi∈Si , i=1,..., N

(1)

where Zi = Wi, i = 1,..., N. Si = {Wi|card(Wi) ≤ li}, i = 1,..., N. Si,..., SN are a nonconvex set.

gi(Wi) =

{
0 i f Wi ∈ Si

+∞ else

where Si is a set of weights for different pruning methods, and g(·) is an indicator function
containing weight sparsity constraints. Then, Equation (1) is rewritten from the augmented
Lagrange formula to Equation (2):

Lρ({Zi}, {Wi}, {γi}, {bi}) = f ({Wi}, {bi}) +
N

∑
i=1

gi(Zi) +
N

∑
i=1

tr
[
γT

i (Wi − Zi)
]
+

N

∑
i=1

ρi
2
∥Wi − Zi∥2

F (2)

where γi is the Lagrangian multiplier of the equal constraint of Zi = Wi in Equation (1), and
it is the same as the Wi dimension. The positive scalar {ρ1, ρ2,..., ρN} is the augmentation
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parameter, tr(·) represents the trace of the matrix, and ∥·∥2
2 represents the Frobenius norm.

Ui= (1/ ρ)γi, and Equation (2) can be rewritten as Equation (3):

Lρ({Zi}, {Wi}, {γi}, {bi}) = f ({Wi}, {bi}) +
N

∑
i=1

gi(Zi) +
N

∑
i=1

ρi
2
∥Wi − Zi + Ui∥2

F +
N

∑
i=1

ρi
2
∥Ui∥2

F (3)

The following steps (4), (5), and (6) are repeated.{
Zk+1

i

}
:= argmin

{Zi}
Lρ

({
bk+1

i

}
, {Zi},

{
Wk+1

i

}
,
{

Uk
i

})
(4)

{
Wk+1

i , bk+1
i

}
:= argmin

{Wi},{bi}
Lρ

({
Zk

i

}
, {Wi}, {bi},

{
Uk+1

i

})
(5)

Uk+1
i := Uk

i + ρ
(

Wk+1
i − Zk+1

i

)
(6)

until the following conditions are met:

∥Wk+1
i − Zk+1

i ∥ ≤ εi, ∥Zk+1
i − Uk+1

i ∥ ≤ εi,

where k is the iteration argument, and Equation (4) can be expressed as Equation (7).

min
Zi

E(x, y) ∼ D[maxL(Z, x, y)] +
ρ

2

N

∑
i=1

∥Zi − Wk
i + Uk

i ∥
2
2 (7)

Equation (5) can be expressed as Equation (8).

minimize f ({Wi}, {bi }) +
N

∑
i=1

ρi
2
∥Wi − Zk+1

i + Uk
i ∥

2
F (8)

The former term of Equation (8) is a loss function, and the latter term can be used as a
special L2 regularization. Since the two terms before and after Equation (8) is differentiable,
this paper uses the stochastic gradient descent method to solve the formula. From the
gradient formula of the augmented Lagrangian of Wi and bi, we have

∂Lρ

(
{Wi}, {bi},

{
Zk

i

}
,
{

Uk
i

})
∂Wi

=
∂ f ({Wi}, {bi})

∂Wi
+ ρi

(
Wi − Zk

i + Uk
i

)
(9)

∂Lρ

(
{Wi}, {bi},

{
Zk

i

}
,
{

Uk
i

})
∂bi

=
∂ f ({Wi}, {bi})

∂bi
(10)

Since gi(·) is an indicator function of the Si set, the global optimal solution to the
problem can be expressed as Formula (11).

Wk+1
i = ∏Si

(
Zk+1

i + Uk
i

)
(11)

where ∏Si
(·) denotes the Euclidean projection of Zk+1

i + Uk
i on the Si set, and Si is a

non-convex set, so calculating ∏Si
(·) is a difficult problem. However, considering the

special structure of Si = {W|card(W) ≤ li}, the solution of Equation (4) is to maintain the
maximum importance of the element li of Wk+1

i + Uk
i and set the remaining elements to 0.

Finally, the bivariate Ui is updated according to Equation (6). In this way, an iteration of
ADMM is completed. The pruning algorithm based on ADMM is as follows (Algorithm 1).
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Algorithm 1: ADMM-based pruning algorithm

Input: dataset D, ADMM iteration number K, N filters to be pruned layer by layer, pruning
threshold βi, augmented hyperparameter ρ, the weight set Si of different pruning methods.
Output: Weight parameter W.
1: for k = 1, 2,..., K do
2: Sample from D(x, y), solve for Z in Equation (7).
4: Applying the Adam optimizer to the outer minimum of Equation (9) yields {Zi

k}
5: Solve Equation (11) using Formula (10) to obtain {Wi

k}

6: Uk+1
i := Uk

i + ρ
(

Zk+1
i − Wk+1

i

)
7: end for

2.3. Local Linear Embedding Method

In manifold learning, LLE methods aim to maintain linear relationships between
samples within a neighborhood. High-dimensional data often represent complex real-
world objects, such as gene expressions or image pixels. After these data are reduced
by LLE, the distribution in the low-dimensional space reflects the relative positions and
similarity relationships of the original high-dimensional data, thereby preserving both the
local and global structure. Figure 3 illustrates the process of LLE mapping 3D data (B) to
2D data (C). The data points in the low-dimensional space maintain the structure of the
high-dimensional data, demonstrating the effectiveness of LLE.
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Figure 4 demonstrates that data points in the low-dimensional space should maintain
the reconstruction relationship of the original high-dimensional data [17]. The “reconstruc-
tion relationship” means that, through the process of dimensionality reduction, the data
points in the low-dimensional space can “reconstruct” or “reflect” the data structure of the
original high-dimensional space to some extent. This involves retaining enough information
in the low-dimensional space to recover important features of the high-dimensional data.
If the dimensionality reduction is successful, similar sample points in the high-dimensional
space should also remain similar in the low-dimensional space, effectively extracting and
representing the key information of the data.
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Based on the above theory, a hypothesis is made: “using the LLE algorithm as the loss
function trained before model pruning plays a positive role in reducing the loss of model
performance in the pruning process”. According to this assumption, the LLE method is
used as the loss function during model pruning training, and the specific calculation steps
are as follows:

1. The weight parameter of the filter in each layer of the network before the model is
pruned is taken as the sample point, and the k nearest neighbor points of each sample
point are calculated by the KNN strategy; meanwhile, the k sample points with the
closest Euclidean distance relative to the sample point are specified as the k nearest
neighbors of the sample point, and k is a pre-given value.

2. Calculate the local reconstruction weight matrix α of the sample points and use the
mean squared error as the loss function of the regression problem. The calculation
formula of mean squared error is shown in Equation (12).

J(ω) =
N

∑
i=1

∣∣∣∣∣∣wi − ∑
j∈Q(i)

αijwj

∣∣∣∣∣∣2
2

(12)

where the sample points wi and wj represent the weight parameters before the model is
pruned, wj is the jth neighbor of wi, aij is the weight coefficient of the linear relationship
between the sample point wi and its neighbor wj, and Q(i) represents the set of k neighbors
of wi. The weight coefficient aij is normalized, and the weight coefficient needs to satisfy
the condition in Formula (13).

∑
j∈Q(i)

αij = 1 (13)

For sample wi that is not in the neighborhood of sample wj, let the corresponding αij =
0. The weight coefficients of the linear relationship between wi and its neighbors can be
determined by Formulas (12) and (13). Then, the above optimization problems are solved
by the Lagrangian multiplier method, and Formula (12) is obtained by matrixization.

J(α) =
N

∑
i=1

∣∣∣∣∣∣xi − ∑
j∈Q(i)

αijwj

∣∣∣∣∣∣2
2

=
N

∑
i=1

∣∣∣∣∣∣ ∑
j∈Q(i)

αij(wi − wj)
∣∣∣∣∣∣2

2

=
N

∑
i=1

γT
i (wi − wj)(wi − wj)

Tγi (14)

where γi = (αi1, αi2, · · · αik)
T , Zi = (wi − wj)(wi − wj)

T , and j ∈ Q(i), Then, Equation (14)
can be converted to Equation (15).

J(γ) =
k

∑
i=1

γT
i Zi (15)

Through the Lagrangian multiplier method, Equations (14) and (15) are combined into
one optimization goal, i.e., Equation (16).

L(γ) =
k

∑
i=1

γT
i Ziγi + λ(γT

i 1k − 1) (16)

where vector 1k is k b-dimensional all-1 vectors. The derivative of L(γ) with respect to γ
and its value to 0 gives γi = λ′Z−1

i 1k, where λ′ = −1/2λ is a constant, and the weight
coefficient γi is obtained after normalization by using γT

i 1k = 1. Based on this, Formula (17)
is obtained.

γi =
Z−1

i 1k

1T
k Z−1

i 1k
(17)

where γi is the weight coefficient of the weight parameter and its neighboring points
before pruning.
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3. Assuming that the weight coefficient γi can still maintain the corresponding linear
relationship after model pruning, i.e., the corresponding mean squared error loss
function is the smallest. The calculation formula of the minimized loss function is
shown in Formula (18).

L(ψ) =
N

∑
i=1

∣∣∣∣∣∣ψi −
N

∑
j=1

αijψj

∣∣∣∣∣∣2
2

(18)

Equation (18) is similar to Equation (12), where Ψi and Ψj are the weight parameters
after pruning the model, and αij is the weight coefficient obtained in Equation (12).

2.4. JS_ Divergence Values

The similarity filter pruning method based on local linear embedding (SJ-LLE) first
measures the similarity of filters in each layer of the network according to a criterion,
identifying pairs of filters with similar functions to be pruned. Then, one filter in each
similar filter pair is removed. In traditional neural network pruning processes, the ADMM
framework is combined with filter pruning methods based on the L2 norm. However,
some filters with small L2 norm values still hold importance. The similarity filter pruning
method can remove filters with similar functions, directly reducing the computational
and parameter load of the network model while minimizing accuracy loss through model
compression. The SJ-LLE method uses the Jensen–Shannon (JS) divergence value among the
filters as the criterion for judging similarity, calculating the JS_ divergence value between
each filter and others in each layer of the network. Filters with divergence values less than
the pruning threshold are identified as similar filter pairs to be pruned. Subsequently, the
method calculates the information entropy value of the filters and removes the filter with
the smaller information entropy value in the similar filter pair.

The SJ-LLE method uses Equation (19) to calculate the JS_ divergence value between
each filter and other filters in each layer of the network [18].

JS(P||Q) =
1
2

KL(P||P + Q
2

) +
1
2

KL(Q||P + Q
2

) (19)

During the pruning process, the weights of the model are substituted into the JS_
divergence Formula (19) to obtain Formula (20). Meanwhile, the weights are arranged
according to their positions, the weight distributions of the two filters are compared for
similarity, and the filter with a JS_ divergence value less than the pruning threshold is used
as a similar filter pair to be pruned.

JS(P||Q) =
1
2

N

∑
i=1

p(xi) log
p(xi) + q(xi)

2
+

1
2

N

∑
i=1

q(xi) log
p(xi) + q(xi)

2
(20)

P and Q, respectively, represent the proportion of weights in the corresponding posi-
tions of the filter, and the weight distribution of the two filters is compared based on the
JS_ divergence value and information entropy value in the comparison process.

To retain the filter with a richer amount of information in a similar filter pair, the
information entropy value of the filter is taken as the evaluation criterion: the larger the
information entropy value, the greater the amount of information involved. Thus, the
information entropy of the filter is calculated, the filter with a larger information entropy
value in the similar filter pair is retained, and the filter with a smaller information entropy
value in the similar filter is removed. In this way, the weight element of the filter is zeroed,
and the calculation formula of the information entropy [18] is shown in Formula (21).

H(P) =
N

∑
i=1

p(xi) log
(

1
p(xi)

)
(21)
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The specific steps of the pruning algorithm are as follows (Algorithm 2):

Algorithm 2: Similar filter pruning algorithm based on JS_ divergence

Input:
N: filters to be pruned layer by layer.
βi: pruning threshold.
1: Obtain the absolute value of the weight parameter of N filters in layer i in the pre-trained model.
2: Calculate the JS_ divergence value between N filters in step 1 and between each filter and other
filters, and sort these filters according to the JS_ divergence value.
3: Select the pre-Nβi pair filter sorted in step 2 as the filter pair to be pruned.
4: Calculate the information entropy value of each filter, remove the filter with a small
information entropy value from the filters to be pruned in step 3, and retain the filter with a larger
information entropy value.

2.5. Similarity Filter Algorithm Based on Locally Linear Embedding

In the SJ-LLE algorithm proposed in this section, ADMM decomposition model prun-
ing optimization is first used to accelerate model training. Combined with the LLE method
from Section 2.3 as the loss function during the iterative training process before model prun-
ing, the filter weights before and after pruning are used as the input for the loss function.
The optimized model is trained over multiple iterations. Then, the SJ-LLE pruning method
is applied to prune the filters of the optimized model. The JS_ divergence value between
every two filters in each network layer is calculated, and the similarity of the filters in each
group is evaluated based on the JS_ divergence value, where a smaller divergence value
indicates higher similarity. The similar filter pair to be pruned is determined according to
the preset pruning threshold. Finally, the information entropy value of the filters is calcu-
lated, and the filter with the smaller information entropy value in the similar filter pair is
removed. In this way, the SJ-LLE algorithm reduces the number of model parameters while
ensuring the accuracy of the model, without relying on additional storage devices when
compressing the model. Consequently, the model can be more widely used in practical
scenarios. The flow of the SJ-LLE algorithm is shown in Figure 5.
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The pseudocode of the SJ-LLE method is as follows (Algorithm 3):
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Algorithm 3: Similar filter pruning algorithm based on local linear embedding

Input: dataset D, the number of pre-training iterations K′, the number of model weight
optimization iterations K′′, the number of pruning iterations K, N filters to be pruned layer by
layer, pruning threshold βi, augmented hyperparameter ρ, the weight set Si of different
pruning methods.
//Output: Weight parameter W
1: for k = 1, 2, ..., K′ do
2: Sample from D (x, y)
3: Data normalization and data enhancement preprocessing of (x, y) yields (x′, y′)
4: Take (x′, y′) as input to initial training for iterative training
5: end for
//Get pre-trained model
6: for k = 1, 2, ..., K′′ do
7: Take samples from D (x, y)
8: Data normalization and data enhancement preprocessing of (x, y) yields (x′, y′)
9: Take (x′, y′) as input for model weight optimization training.
10: Apply Algorithm 2 to obtain the pruned weight parameter Z by using the weight parameter W
of the pre-trained model
11: Take the weight parameters W and Z as inputs to Algorithm 1 and solve for Z in Equation (7).
12: Applying the Adam optimizer to the outer minimum of Equation (11) yields {Zi

k }

13: Uk+1
i := Uk

i + ρ
(

Zk+1
i − Wk+1

i

)
14: end for
15: //Get the weight optimization model
16: for k = 1, 2, ..., K do
17: Take samples from D (x, y)
18: Data normalization and data enhancement preprocessing of (x, y) yields (x′, y′)
19: Take (x′, y′) as input for model weight optimization training.
20: Optimize the weight parameter of the model W′ using Algorithm 2 to obtain the pruned
weight parameter Z’
21: end for
22: //Get weight model after pruning

3. Dataset and Preprocessing
3.1. Dataset

This paper uses the BelgiumTS dataset [19] and GTSRB dataset [20] for model training
and testing.

The BelgiumTS dataset includes 62 categories, where the training set contains 4575 im-
ages, the test set contains 2520 images, and some images in the BelgiumTS dataset are
shown in Figure 6.
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There are 43 categories of traffic signs in the GTSRB dataset, where the training set
contains 34,799 images, the validation set contains 4410 images, and the test contains
12,630 images. The image size is 32 × 32, with three color channels. The number of images
in each category of the test set varies greatly, so the number of samples in each category is
equalized to 50,690, and some images of the GTSRB dataset are shown in Figure 7.
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The CIFAR100 dataset has 100 classes. Each class has 600 color images of size 32 × 32,
where 500 images are used as the training set and 100 images as the test set. Each image
has two labels, namely fine_labels and coarse_labels, representing the fine-grained and
coarse-grained labels of the image, respectively.

3.2. Image Preprocessing Methods

Before the model is trained, the size of the input image is reduced to 32 × 32 × 3.
Since traffic signs do not have different meanings due to different sign colors, this paper
ignores the color differences of images in the data when the model is trained for traffic
sign recognition, and only the brightness differences of different parts of the image are
considered. In this paper, the HSV and YUV color spaces are used: the V channel in the
HSV space and the Y channel in the YUV space are taken. To enhance the brightness of
the image, the Y channel and the V channel are respectively equalized in the histogram as
follows: for an image with n pixels and pixel values ranging from [0, L−1], let rk represent
the k-th pixel level and nk represent the number of pixels in the image, and then the
histogram probability density p(rk) of rk is p(rk) = nk

n , k= 0, 1, 2 . . . , L − 1. The cumulative
distribution function is shown in Formula (22).

Sk = (∑k
j=0 p(rj))

2
× (1 + 2 × (1 − ∑k

j=0 p(rj))) (22)

where, rj represents the j-th pixel level, p(rj) represents the probability density of the j-th
pixel level, and the final image is M = 255 × Sk.

As shown in Figure 8, Figure 8a shows the original image of the traffic sign, Figure 8b
shows the image of the V channel in HSV through histogram equalization, and Figure 8c
shows the image of the Y channel in YUV through histogram equalization. It can be seen
from Figure 8b,c that after histogram equalization of the image, the image data is converted
into a range of [−1, 1], and the poorly lit image has a better graphic outline. Through this
preprocessing method, the contrast of parts of the image is enhanced without affecting the
overall contrast.
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Figure 8. The pre-processed traffic sign image. (a) shows the original traffic sign image; (b) shows the
image with histogram equalization for the V channel in HSV; (c) shows the image with histogram
equalization for the Y channel in YUV.

Due to the complex environment of traffic signs outdoors, the image of traffic signs
will produce different changes. To eliminate the influence of external factors on the image,
during model training, the maximum range of image rotation angle is set to 10 degrees, the
maximum random magnification is set to 1.2, the maximum random horizontal offset is set
to 0.08, and the range of up and down offset is set to 0.08. According to the characteristics
of the deep learning model, images with a small size can be enhanced by geometric
transformations (such as translation, rotation, scale stretching, contrast adjustment, and
color transformation). For images with a large size, mean reduction is used to reduce the
image size.

4. Experiments
4.1. Experimental Details

In this section, a variety of pruning methods are applied to the ViT model for traffic
sign recognition, and multiple sets of comparative experiments are designed on different
datasets. Meanwhile, a series of operations, such as the SJ-LLE pruning method and other
pruning methods proposed in this paper, are clipped-fine-tuned under the same model
pruning rate. Then, the fine-tuned model is tested on the BelgiumTS dataset and the
GTSRB dataset, and the test results of different pruning methods on the ViT model are
analyzed and compared. The effectiveness of the proposed ViT model pruning algorithm
for traffic sign recognition is investigated. Also, for the CIFAR100 dataset, multiple sets of
experiments are designed between the pruning method and its comparison method, and
the experimental results are analyzed and compared to prove the hypothesis, “using the
LLE algorithm as the loss function trained before model pruning plays a positive role in
reducing the loss of model performance in the pruning process”.

The pruning algorithm is applied to the existing ViT model for clipping, and the
benchmark model is pre-trained based on the initial model of the ViT model with the initial
learning rate set to 7 × 10−4 and the batch size of 256,100 epochs. The network structure
used for the experiment is shown in Figure 2. In the pruning process, the network is cut
with different pruning rates based on the pre-trained model. The learning rate is 7 × 10−4,
the number of iterations is 30, and other training parameter settings are the same as those
of the pre-training. After the model is pruned, fine-tuning training is conducted, and the
model is fine-tuned using the same parameter settings as the pre-training to restore the
accuracy lost in some experiments. For the same data set and the same model with different
cropping methods, the experimental parameters of pre-training and fine-tuning training
are the same. In the experiment using the same pruning method, whether to combine the
LLE method as the loss function for model training before pruning is the only difference,
and the rest of the experimental parameter settings are the same.

4.2. Experimental Evaluation Index

Top-1 accuracy, Top-5 accuracy, pruning model parameters (Params), and floating-
point operations (FLOPs) are usually adopted to measure the effectiveness of the model
pruning algorithm.

(1) Top-1 accuracy
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Top-1 accuracy refers to the accuracy of the first category consistent with the actual
result, i.e., the predicted label takes the largest one in the last probability vector as the
prediction result. If the classification with the greatest probability in the prediction result is
correct, the prediction is correct; otherwise, the prediction is wrong.

(2) Top-5 accuracy

Top-5 accuracy refers to the accuracy of the top five categories containing the actual
results, i.e., among the top five categories with the largest probability vector, the probability
of correct occurrence indicates a correct prediction; otherwise, the prediction is wrong.

(3) Params

Params refers to the total number of parameters that need to be trained in model
training, and the number of parameters in an ordinary convolutional layer is calculated as
(Kh ×Kw ×Ci + 1) × Co, where Kh is the height of the convolution kernel, Kw is the width
of the convolution kernel, Ci is the number of channels of the input, Co is the number
of channels of the output, and +1 is the bias. The formula for calculating the parameter
quantity of the fully connected layer of the model is (Ci + 1) × Co, where Ci is the number
of nodes in the input, Co is the number of nodes in the output, and +1 is the bias.

(4) FLOPs

FLOPs represent the number of floating-point operations per second (FLOPs), which
can be used to measure the complexity of an algorithm or model. The calculation formula
of FLOPs is [Ci × Kw × Kh + 1] × W × H × Co, where Ci is the number of channels in the
input; Co is the number of channels in the output; Ci × Kw × Kh is the calculation amount
of a convolution multiplication operation; Ci × Kw × Kh − 1 is the calculation amount
of a convolution addition operation; W and H are the length and width of the feature
map, respectively; Kh is the height of the convolution kernel; and Kw is the width of the
convolution kernel.

When other pruning methods are taken for comparing experiments, the difference
between the accuracy of the pruned model and the accuracy of the initial model (the
unpruned model) is used as the main basis for evaluating the effect of the pruning algorithm.
Additionally, the compression and acceleration effects of the network model are evaluated
by the two indicators of Params and FLOPs. When the pruning network contains fewer
parameters, it is indicated that the compression ratio of the network is greater, and the
reduction of parameter size leads to a decrease in FLOPs. In this case, the network running
speed is improved because fewer FLOPs are required. The decline of the two standards of
Params and FLOPs in the post-pruning model is controlled by the pruning rate βi, and a
better compression effect can be obtained with a larger pruning rate. When a convolutional
layer is pruned at the pruning rate βi, the parameter size of the layer will be reduced to
(1 − βi) × (Kh × Kw × Ci + 1) × Co, and the amount of floating-point calculation needed
will be reduced to (1 − βi) × [Ci × Kw × Kh + 1] × W × H × Co.

4.3. Experimental Results and Analysis
4.3.1. Experimental Results and Analysis of Hypothesis Proofs

This paper puts forward a hypothesis in Section 2.3: “using the LLE algorithm as a
loss function for model training before pruning plays a positive role in reducing the loss of
model performance during pruning”. To prove this hypothesis, corresponding experiments
are conducted on the CIFAR-100, BelgiumTS, and GTSRB datasets. Then, the influence of
combining the LLE method in model pruning on the loss of model accuracy is analyzed,
and the experimental results are shown in Tables 1 and 2.
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Table 1. The ablation experiments of the ViT model with different pruning methods on the CIFAR-
100 dataset.

Pruning Method\Pruning Rate Baseline 60% 70% 80% 90% 95%

ASFP_LLE 67.27 64.82 63.54 60.98 45.64 37.93
ASFP 67.27 64.06 62.32 59.67 43.15 35.45

PFEC_LLE 67.27 66.26 65.43 61.56 48.46 36.98
PFEC 67.27 65.37 63.83 60.43 46.27 34.27

LWCE_LLE 67.27 64.38 63.16 60.44 48.73 33.10
LWCE 67.27 63.84 61.78 59.32 46.35 30.46

FPGM_LLE 67.27 65.32 63.41 60.85 43.96 33.52
FPGM 67.27 64.63 62.25 59.41 42.25 31.24

Table 2. The ablation experiments of the VGG-16 model with different pruning methods on the
CIFAR-100 dataset.

Pruning Method\Pruning Rate Baseline 60% 70% 80% 90% 95%

ASFP_LLE 94.47 90.77 90.24 83.98 63.54 50.93
ASFP 94.47 90.23 89.82 82.19 61.57 48.66

PFEC_LLE 94.47 91.74 91.03 85.91 65.34 49.76
PFEC 94.47 91.74 91.05 90.14 84.85 48.12

LWCE_LLE 94.47 90.72 89.97 83.06 66.45 49.75
LWCE 94.47 90.16 89.05 81.85 64.66 47.14

FPGM_LLE 94.47 91.37 89.64 86.13 86.13 47.32
FPGM 94.47 90.7 88.73 85.07 59.74 45.44

Table 1 compares ASFP [21] with ASFP_LLE methods, PFEC [22] with PFEC_LLE
methods, LWCE [23] with LWCE_LLE methods, and FPGM with FPGM_LLE methods as
the four groups of methods in the demonstration experiments in this section. In each group
of comparison methods, whether to combine the LLE method as the loss function in the
training process before pruning is used as the only variable in the experiment, and the
other experimental parameters are the same, such as the clipped model, pruning method,
data set, pruning ratio, etc.

ASFP pruning takes the L2 norm size of the filter as the evaluation standard, and the
filter with a small norm value is removed;

The PFEC pruning method calculates the L1 norm value of the channel and then crops
out the smaller channel. The amount of clipping depends on the acceleration ratio;

The LWCE pruning method reduces the parameters required by the network by
pruning unimportant connections (L1/L2 norms) in the trained network.

In the experiment, the ASFP_LLE, PFEC_LLE, LWCE_LLE, and FPGM_LLE methods
are compared with the baseline method, which is realized by combining the LLE method
with the corresponding pruning method, i.e., the LLE method is used as the loss function
before the model pruning. In this section, the ViT model is cut by using the above pruning
method on the CIFAR-100 dataset, and the pruning ratios are 60%, 70%, 80%, 90%, and
95%, respectively. The experimental results are shown in Table 1.

In Table 1, the 1st row shows the clipping ratio of the model; the 1st column shows the
pruning method of the clipping model; the 3rd, 5th, 7th, and 9th rows show the accuracy
of the model tested on the dataset after the model is cut with the four baseline pruning
methods ASFP, PFEC, LWCE, and FPGM; the 2nd, 4th, 6th, and 8th rows show the accuracy
of the pruning model tested on the dataset after the model is cut by the corresponding
comparative pruning method.

By analyzing the experimental results in Table 1, it can be found that when cutting
the ViT model at 60% to 95% by using the ASFP_LLE pruning method, the accuracy of the
model is 0.76%, 1.22%, 1.31%, 2.49%, and 2.48% higher than that of the cutting the model by
using the ASFP pruning method, respectively. When cutting the model at 60% to 95% by the
PFEC_LLE pruning method, the accuracy of the model test is 0.89%, 1.59%, 1.13%, 2.19%,
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and 2.71% higher than that of the post-cutting model by using the PFEC pruning method,
respectively. When cutting the model at 60% to 95% by using the LWCE_LLE pruning
method, the accuracy of the model was 0.54%, 1.38%, 1.12%, 2.38%, and 2.64% higher than
that of the cropped model by using the LWCE pruning method, respectively. When cutting
the model at 60% to 95% by using the FPGM_LLE pruning method, the accuracy of the
model is 0.69%, 1.16%, 1.44%, 1.71%, and 2.28% higher than that of the cropped model
by using the FPGM pruning method, respectively. Under the same pruning ratio, the
ViT model is pruned using the baseline method and the comparison method, respectively,
and the experimental results indicate that the test results of the four comparison methods
combined with the LLE method are better than those of the baseline method without the
LLE method, which proves that the LLE algorithm plays a positive role in reducing the loss
of model performance in the pruning process.

The experimental results presented in Table 2 demonstrate that the conclusions align
with those in Table 1. When using the ASFP_LLE, PFEC_LLE, LWCE_LLE, and FPGM_LLE
pruning methods on the ViT model, these methods achieved higher model accuracy on
the dataset compared to their respective benchmark pruning methods. For instance, at a
pruning rate of 95%, the accuracies were 2.27%, 1.64%, 2.61%, and 1.88% higher than those
of the benchmark methods, respectively. These results indicate that combining the LLE
algorithm with the loss function during model pre-pruning training achieves the desired
model compression rate while effectively minimizing the loss of model accuracy.

Assuming that in the experiment, the experimental parameters of each set of baseline
methods and their respective comparison methods are the same, the experimental results
of 60% to 95% of the large-scale pruning of the model indicate that when the pruning ratio
is the same, the comparison method combined with the LLE method can complete the
pruning work of the model and improve the accuracy of the model after pruning compared
with the original pruning method without the LLE method. Therefore, the experimental
results can prove the validity of the hypothesis proposed in Section 2.3 that “using the
LLE algorithm as a loss function for model training before pruning plays a positive role in
reducing the loss of model performance during the pruning process”.

4.3.2. Experimental Results and Analysis of SJ_LLE Method Pruning

In this experiment, the ASFP pruning, HYDRA pruning, FPGM pruning, and SJ-LLE
pruning methods proposed in this paper are used to prune the model at different pruning
ratios. Since excessive clipping of the model will cause the accuracy of the model to decrease
significantly, and the model with excessive performance loss is not conducive to practical
applications, the maximum pruning ratio is set to 70% in the experiment. The experiment
is conducted on the BelgiumTS and GTSRB datasets, and the accuracy of the model after
pruning is analyzed under the same parameters as those in other experimental conditions.

The SJ-LLE method is a similarity filter pruning algorithm based on JS_ divergence
proposed in Section 2.5.

The ASFP [21] and Filter method uses the L2 norm size of the filter as the evaluation
criterion and cuts the filter with a small norm value.

The HYDRA and Filter pruning method [6] regards the pruning target as an empirical
risk-minimization problem and then uses SGD to solve the minimization problem. By
letting the training target guide the search for connections to be pruned, it proposes a scaled
initialization of importance score, which is a key driver behind the high robustness and
accuracy of the compression network.

The FPGM pruning method [24] selects the filter with the largest replaceable contri-
bution. Specifically, the median geometry of the filters within the same layer is calculated.
Depending on the characteristics of the median geometric, the filter near it can be repre-
sented by the remaining filters.

The ViT model is pruned by using four pruning methods, namely SJ-LLE, ASFP,
HYDRA, Filter, and FPGM, and the accuracy of the post-pruning model is tested on the
BelgiumTS and GTSRB datasets, respectively. The results are shown in Tables 3 and 4. In
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these two tables, different pruning ratios are set for the model pruned in the first experiment,
and rows 2–5 show the accuracy of the model tested on the dataset after pruning at different
ratios by using the four pruning methods, respectively.

Table 3. Comparison of accuracy (%) of the ViT model on the BelgiumTS dataset.

Pruning Method\Pruning Rate Baseline 10% 20% 40% 50% 70%

SJ-LLE 98.78 98.72 98.13 97.95 96.88 96.09
ASFP 98.78 98.06 96.67 95.85 94.75 93.19

HYDRA 98.78 98.13 97.10 95.42 94.84 94.15
Filter 98.78 97.96 95.64 93.82 92.96 92.12

FPGM 98.78 98.03 97.15 95.39 95.04 94.51

Table 4. Comparison of accuracy (%) of the ViT model on the GTSRB dataset.

Pruning Method\Pruning Rate Baseline 10% 20% 40% 50% 70%

SJ-LLE 99.03 99.09 98.72 98.05 97.58 96.04
ASFP 99.03 98.26 96.82 95.94 94.48 93.84

HYDRA 99.03 98.28 97.72 96.12 95.51 94.66
Filter 99.03 97.22 95.81 95.95 93.47 92.95

FPGM 99.03 98.53 98.01 96.95 96.03 95.18

On the BelgiumTS dataset, the ViT model is clipped by using four different pruning
methods, and the results are shown in Table 2. It can be seen from this table that the model
after pruning with the SJ-LLE method has obvious advantages in experimental accuracy.
For example, when the model pruning ratio is 50%, the model accuracy is only lost by
1.90%. Under the same pruning ratio, the test accuracy loss of the model pruned with the
ASFP pruning method, the HYDRA method, the Filter method, and the FPGM method is
2.12, 2.07, and 1.96 times that of the SJ-LLE method, respectively. When the model pruning
ratio is 70%, the model accuracy loss is only 2.69%, which is 2.08, 1.72, 3.06, and 1.59 times
higher than that of the model pruned with the ASFP pruning method, HYDRA method,
and FPGM method, respectively.

Then, the model is pruned by using the SJ-LLE, ASFP, HYDRA, Filter, and FPGM
pruning methods on the GTSRB dataset, and the results are shown in Table 3. From the
experimental results in Table 3, it can be found that the model performance after pruning
with the SJ-LLE method is better than that of other pruning methods under the same cutting
ratio. For example, when the pruning ratio is 70%, the experimental accuracy loss of the
model after pruning by the SJ-LLE method is 1.99%. Under the same pruning ratio, the test
accuracy after pruning the SJ-LLE method is 2.20%, 1.38%, 3.09%, and 0.86% higher than
that of the ASFP pruning method, HYDRA method, and FPGM method, respectively.

5. Conclusions and Future Works

In the field of intelligent driving for new energy vehicles, a traffic sign recognition
model optimization method based on SJ-LLE pruning is proposed. This paper primarily
introduces the general framework of the method, detailing its process and providing an
in-depth exposition of the formula derivation and theoretical research. The experimental
results fully verify the hypothesis. Experiments show that the SJ-LLE method achieves
excellent pruning effects across multiple datasets, significantly improving the model’s
precision loss and compression ratio. The results indicate that this method achieves better
model compression and enhances the recognition speed of traffic signs with minimal
accuracy loss.

However, the correlation between the improved accuracy of the model and energy
consumption was not considered. Compared to other pruning methods, the proposed
method demonstrates superior accuracy in testing the pruned model under equal propor-
tion pruning conditions. Nevertheless, experimental results reveal that, without signifi-
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cantly sacrificing model accuracy, the pruning ratio achieved by this method is only 70%.
Therefore, further improvements to the pruning method are necessary to achieve a higher
model compression ratio. Future research will focus on the relationship between model
performance and energy consumption in the context of new energy intelligent driving
vehicles, combined with the traffic environment.
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