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Abstract: In this study, the impact of principal stress states on the stress characteristics and initial
failure of the rock mass surrounding a three-center arch opening was investigated using complex
variable function methods and Discrete Element Method (DEM) numerical modeling. First, the
mapping function of the opening was determined using the trigonometric interpolation method, and
the influence of the number of terms in the mapping function on its accuracy was revealed. Based
on this, the far-field stress state of the underground rock mass was characterized by the ratio of
the minimum to maximum principal stress (A) and the angle (3) between the principal stress and
the vertical direction. This stress state was then converted into normal and shear stresses. Using
complex variable function theory, the stress characteristics at the boundary of the opening under
different stress states were analyzed. Finally, DEM numerical modeling was employed to study
the initial failure characteristics at the boundary of the opening and its relationship with the stress
distribution. The results indicate that the lateral pressure coefficient significantly affects the stability
of the opening by influencing stress concentration around the surrounding rock. Low lateral pressure
coefficients lead to tensile stress concentration at the boundary perpendicular to the maximum
principal stress. As the coefficient increases, tensile stress decreases, and compressive stress areas
expand. While the principal stress direction has a minor effect on stress concentration, it notably
impacts stress distribution at the boundary. When A < 1.0 and 3 = 45°, stress distribution asymmetry
is most pronounced, with the highest compressive stress. The early failure distribution aligns with
stress concentration areas, validating the use of stress analysis in predicting opening stability and
failure characteristics.

Keywords: geo-stress state; stress solution; underground opening; complex variable function;
numerical modeling

1. Introduction

Underground rock engineering frequently involves the construction and maintenance
of structures such as tunnels, mines, and storage caverns, where the mechanical behavior
of rock masses around openings is a critical factor for stability and safety. The presence
of openings in rock masses significantly alters the stress distribution, leading to potential
failure and instability of the surrounding rock mass [1-3]. Understanding the stress dis-
tribution of surrounding rock under different stress conditions and its impact on tunnel
stability is crucial for ensuring the stability of engineering projects.

Traditional experimental studies have extensively investigated the mechanical behav-
ior, failure characteristics, and energy evolution processes of rock masses with openings.
Comprehensive research has been carried out to analyze the effects of different parameters,
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such as loading conditions, the properties of rock-like materials, and the geometry of
openings [4-7]. These studies provide valuable insights into the macroscopic mechan-
ical properties of the rock and the associated failure patterns. However, experimental
conditions impose limitations; the sample size may significantly affect the results, and
laboratory tests cannot accurately replicate the actual boundary conditions of underground
rock engineering. Additionally, experiments primarily investigate the impact of openings
on the mechanical properties and failure characteristics of rock masses, but they struggle to
comprehensively explain the mechanical behavior characteristics of the surrounding rock
based on stress mechanisms. The inability to precisely simulate in situ stress conditions and
the scale effects further complicate the extrapolation of laboratory findings to real-world
scenarios. Therefore, while traditional experiments are invaluable for understanding basic
mechanical responses, they need to be complemented with analytical or numerical methods
to provide a more holistic understanding of the mechanical behavior of rock masses.

Analytical solutions offer a theoretical approach for systematically analyzing stress dis-
tributions. They can precisely describe the changes in the stress field of rock masses under
different stress conditions and, when combined with numerical simulations, provide better
predictions of failure modes and stability of the surrounding rock. The stress state of the
rock mass surrounding circular openings has been extensively investigated due to its simple
geometry. For rock masses with openings of intricate shapes, the complex variable function
method has been extensively employed for stress analysis because of its distinct advantages
in managing complex geometrical problems [8]. This theoretical framework enables more
precise analytical solutions for rock stress, particularly around tunnels in homogeneous,
isotropic elastic rock masses [9-11]. Zhao et al. [12] investigated the analytical solution for
the rock stress surrounding a square tunnel under various confining stress conditions. For
stress analysis of rock masses with such openings, the mapping function can be determined
using formulas, significantly reducing the computational complexity. For stress analysis
of rock masses with complex-shaped openings in underground engineering, optimization
algorithms are also a powerful method for solving the corresponding mapping functions.
Wu et al. [13] used the Box complex algorithm to solve the mapping function for rock
masses with commonly encountered underground openings such as horseshoe-shaped
tunnels. They analyzed the stress concentration factor of the surrounding rock through
analytical stress solutions. In this study, the fracture behavior of the samples, demonstrated
by mechanical tests, was accurately predicted using analytical solutions, highlighting the
reliability of the complex variable function method. Tan et al. [14] utilized complex variable
theory to derive the stress distribution around rock masses with complex-shaped openings.
The study introduced an improved method for calculating the mapping function, which
defines the relationship between the physical and mapped planes. Based on this method,
Tan et al. [15] further investigated the stress distribution and mechanical behavior of rock
masses with openings of various shapes under different lateral pressure coefficients. These
studies involve various research factors such as different opening shapes and lateral pres-
sure coefficients. In addition to the theory of complex functions, they also include research
methods like numerical simulation and mechanical testing. Overall, these studies mainly
solve the mapping functions through polygonal methods or optimization algorithms. Their
findings indicate that the stress distribution characteristics around the opening primarily
depend on the shape of the opening and the lateral pressure coefficient. When the opening
boundary has sharp corners or there is a significant difference between the maximum and
minimum principal stresses, the stress distribution around the opening rock mass shows
noticeable non-uniformity with localized stress concentration. Comparisons between stress
analytical solutions and mechanical test results further reveal that the characteristics of
the stress distribution are consistent with the initial instability modes of the surround-
ing rock mass, based on which the stability and initial failure modes of the opening can
be determined.

These studies provide a comprehensive analytical framework for understanding the
stress distribution and mechanical behavior of rock masses containing openings, offering
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valuable insights into the design and stability assessment of underground structures. These
studies contribute to the optimization of engineering designs and the mitigation of potential
failure risks in underground rock engineering. However, almost all these studies assume
that the maximum and minimum principal stresses are aligned with the vertical and
horizontal directions, respectively. Due to the constraints of experimental conditions, many
laboratory tests are conducted under uniaxial compression conditions. Although this
assumption significantly simplifies the calculation process and reduces the complexity of
the solution, it can lead to substantial errors when the principal stress directions do not
align with the vertical or horizontal directions. Some studies have found that the stability
of openings, such as tunnels and roadways, is optimal when the local stress direction
is orthogonal to the opening, while the stability decreases and the failure characteristics
are influenced when the local stress direction is inclined [16-19]. This indicates that the
orientation of the in situ stress significantly impacts the stability and failure modes of
the openings (e.g., deformation patterns, crack initiation, and propagation). However,
these studies are primarily based on numerical simulations or laboratory mechanical tests,
focusing on the mechanical properties and failure characteristics of the specimens without
explaining the influence mechanism from the perspective of the stress field. To address
these limitations, this study integrates analytical solutions with numerical simulations
to systematically investigate the stress distribution around three-center arch openings
under different geo-stress states characterized by lateral pressure coefficient and principal
geo-stress direction, and its impact on the failure characteristics of the surrounding rock.
The aim is to bridge the gap between mechanical properties and stress-field influence
mechanisms, offering a more comprehensive understanding of how stress orientations
affect opening stability.

2. Methods
2.1. Complex Function Method for Analytical Stress Solutions

The underground environment typically consists of various types of rock formations,
which may lead to heterogeneity in the rock mass and uneven distribution of geo- stress [20].
However, for deep underground engineering tunnels, when the integrity and homogeneity
of the surrounding rock are good, in a stable state of elastic deformation, the plane of the
tunnel section far from both ends of the tunnel can be simplified to the plane strain model
with a single opening, as shown in Figure 1a. Taking the centroid of the opening as the
coordinate origin, the three stress components oy, 0y, and Ty, at any point on this plane in
the Cartesian coordinate system can be expressed as [21]:

{ ox +0y = 4Re [(Pll (Z)] (1)
0x — 0y + 2iTyy = 2[Z9] (z) + ¢1(2)]

where ¢1(z) and 11(z) are complex stress functions dependent on the complex variable
z. As per the Riemann mapping theorem, any simply connected domain with multiple
boundary points on the z-plane can be transformed into a unit circle on the complex ¢-plane
using a mapping function z = w((). By converting the stress components in Equation (1)
to expressions in polar coordinates and substituting them into the mapping function, the
relationships for the stress components in polar coordinates can be obtained as follows [22]:

op + Ty = 4Re[®(0)] 2
0o — 0p + 200 = S [@(D Q) + w ()Y (0]
where ®({) and ¥({) are the complex potential functions, given by:
— 99)
@) = w!(g) 3)

—

¥(g) = L

i
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The boundary condition on the hole boundary is specified by [22]:

¢/(0) +9(0) 4)

In this equation, o represents any point on the boundary of the unit circle. By combin-
ing Equations (2) and (4), the complex stress functions ¢(¢) and () can be solved [23].

To facilitate the stress solution, the three far-field stress components under the stress
state shown in Figure 1a were transformed into the principal stress state shown in Figure 1b
by rotating the coordinate system. In this state, the far-field stress can be represented
by 0max, B, and A, where 04x is the maximum principal stress, A is the lateral pressure
coefficient (the ratio of the minimum principal stress to the maximum principal stress), and
B is the angle between the direction of the maximum principal stress and the x-axis. The
transformation formulas are as follows:

or = AFB 4+ A25 cos(2p)
oy = D55 — A2 cos(2) (5)
Ty = 252 sin(2B)

To comprehensively study the impact of stress state on the stress distribution around
the surrounding rock of the three-center arch opening, the study considered 42 different
combinations of A and . These combinations were converted into a general stress state
for the stress solution, as detailed in Figure 1. The subsequent analytical solutions and
numerical simulations were conducted based on these scenarios. Assuming the far-field
maximum principal stress 0max = p, A increments by 0.2 from 0 to 1. For each A, 8 increments
were 15° from 0° to 90°. When A = 1, then 7y, = 0 and both o and ¢y, are equal to p.
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(a) (b)
Figure 1. Far-field stress state in a plane: (a) non-principal stress state; (b) principal stress state.

2.2. Determination of Mapping Function

The mapping function that transforms the region outside the opening in the z-plane to
the region outside the unit circle in the (-plane is expressed as:

Z=w(() =Y Gg** (6)
k=1

where Cj is a complex number, but when the opening is symmetric about the x-axis, C
is real. The more complex the shape of the opening, the more terms of C are needed to
improve the accuracy of the mapping shape. Generally, only the first few terms of Cj are
sufficient to achieve adequate accuracy. The mapping function, taking only the first m
terms, can be expressed as:
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z=w()= ), " @)
k=1

In this study, the three-center arch-shaped opening is an axially symmetric figure;
therefore, Cy is real.
For any point o at the boundary of the unit circle in the (-plane with polar coordinates
(1, 8), it can be expressed as:
0 =cosf+isinf (8)

In a similar manner, for the corresponding point t of o on the boundary of the opening
in the z-plane, represented in polar coordinates as (r, ), it can be expressed as:

t =rcosa+irsina 9)

Substituting Equations (8) and (9) into Equation (7) yields:

rcoswa +irsina = i{Ck cos[(k —2)0] — iCysin[(k —2)6]} (10)
k=1

By extracting the real and imaginary parts, the following equation is obtained:

rcosa = f {Cy cos[(k —2)0]}
! (11)

rsina = Y { — Cysin[(k —2)0]}
k=1

Based on Equation (11), the trigonometric interpolation method can be used to solve
for Cy, thereby determining the mapping function. Tan et al. [18] have conducted a detailed
study on this method, which is not elaborated here.

Assuming the mapping point of 0j is (rs, &), its corresponding point on the opening

(0)

boundary is (75 ', &r). By uniformly sampling n points o; (1, 8;) from the unit circle, the
average absolute relative error of the n points can be defined as [15]:

(0)

n |\rg —¥s

1
frr r = (12)
e 7’1]; 7"((7—0)

Generally, the greater the number of sampling points 7, the higher the accuracy of
the mapping function. However, too many sampling points can lead to a decrease in
computational efficiency. In this study, it was found that the accuracy of the mapping
function stabilizes when 1 exceeds 50. Ultimately, n was set to 200 in all cases to balance
computational efficiency and accuracy. Figure 2 shows the variation in the mapping
function error f,or as the number of mapping function coefficients m increases. It can be
seen that the error is as high as 0.065 at m = 4. As the number of terms increases from 4
to 8, the error significantly decreases to below 0.015. This phase shows the most notable
reduction in error, indicating that increasing the number of terms has a significant effect
on reducing the error. When m increases from 8 to 15, the error continues to decrease
slowly. During this phase, the error gradually approaches zero, but the rate of decrease
diminishes considerably. Although increasing the number of terms still reduces the error,
the effect is markedly less significant compared to the initial phase. When m exceeds 15, the
error stabilizes and nearly stops changing, approaching zero. In this phase, increasing the
number of terms has almost no effect on improving the error, and the error curve becomes
flat. As shown in Figure 3a, when m = 6, the mapped shape already closely matches the
original shape. When m is greater than or equal to 10, the mapped shape is almost identical
to the original shape. In this study, to balance computational accuracy and efficiency, m = 16
was chosen. At this point, the mapped shape is almost identical to the original shape, and
the mapping function error is nearly zero. The expression is as follows:
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0.5797x — 0.0151 — 0.0372x 1 4 0.0346x~2 — 0.0629x 3 + 0.0178x*
w=1{ +0.0093x7° — 0.005x° + 0.0034x 7 — 0.002x ¥ — 0.001x? (13)
+0.0021x 719 — 0.0012x 1 — 0.0003x 12 4 0.0004x 13 — 0.0004x 14
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Figure 2. Evolution curve of the mapping function error with increasing m.
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Figure 3. Comparison of mapped shape and original shape of the opening: (a) m = 4; (b) m = §;
(c) m=16; (d) m =24.
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3. Results
3.1. Stress Distribution Characteristics

Based on Table 1, the mathematical calculation model of the plane containing a single
opening shown in Figure 1b can be transformed into the general stress state shown in
Figure 1a. By solving the equations, the stress functions of the plane containing a single
opening can be determined, and through these formulas, the stress state at any point within
the plane can be obtained. According to the mathematical model shown in Figure 1a, the
study solved the stress functions for the plane containing the opening under different A and
3 conditions. In practical engineering, the failure of the surrounding rock of an opening
often begins at a certain area of the opening boundary. Therefore, the stress characteristics
of the opening boundary were selected as the focus of this study. The distribution curves
of the boundary hoop stress are shown in Figure 4, where the dashed lines represent the
initial mapped shape. The portions of the stress curves inside the opening are negative,
indicating tensile stress, while those outside are positive, indicating compressive stress.
The stress solution data are provided in the Supplementary Materials.

Table 1. Calculation cases with various geo-stress states.

Principal Stress State Non-Principal Stress State
A B Oy oy Tay
0 1.000 0.000 0.000
15 0.933 0.067 0.250
30 0.750 0.250 0.433
0 45 0.500 0.500 0.500
60 0.250 0.750 0.433
75 0.067 0.933 0.250
90 0.000 1.000 0.000
0 1.000 0.200 0.000
15 0.946 0.254 0.200
30 0.800 0.400 0.346
0.2 45 0.600 0.600 0.400
60 0.400 0.800 0.346
75 0.254 0.946 0.200
90 0.200 1.000 0.000
0 1.000 0.400 0.000
15 0.960 0.440 0.150
30 0.850 0.550 0.260
0.4 45 0.700 0.700 0.300
60 0.550 0.850 0.260
75 0.440 0.960 0.150
90 0.400 1.000 0.000
0 1.000 0.600 0.000
15 0.973 0.627 0.100
30 0.900 0.700 0.173
0.6 45 0.800 0.800 0.200
60 0.700 0.900 0.173
75 0.627 0.973 0.100
90 0.600 1.000 0.000
0 1.000 0.800 0.000
15 0.987 0.813 0.050
30 0.950 0.850 0.087
0.8 45 0.900 0.900 0.100
60 0.850 0.950 0.087
75 0.813 0.987 0.050

90 0.800 1.000 0.000
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Table 1. Cont.

Principal Stress State Non-Principal Stress State

A B Oy oy Ty
0 1.000 1.000 0.000
15 1.000 1.000 0.000
30 1.000 1.000 0.000

1.0 45 1.000 1.000 0.000
60 1.000 1.000 0.000
75 1.000 1.000 0.000
90 1.000 1.000 0.000

It can be observed from Figure 4a that when 3 = 0° (maximum principal stress g ;x
is vertical), the stress distribution is symmetrical. The stress curves show sharp changes
around 135° and 225°, corresponding to the corners of the opening’s straight walls where
the compressive stress reaches its maximum. As A increases, the compressive stress concen-
tration in these two regions also increases. Specifically, when A reaches 1.0 (red curve), the
compressive stress concentration in these regions is the most pronounced. On the other
hand, when A is below 0.4, tensile stress appears in the roof and floor regions of the opening,
and the maximum tensile stress occurs in the middle regions at 90° and 270°, indicating
that without or with low lateral pressure, the middle regions of the roof and floor of the
opening are prone to tensile failure. As A increases, the tensile stress in these regions around
the opening gradually decreases, transforming completely into compressive stress when A
reaches 0.4.

As {3 increases to 15° (Figure 4b), it can be observed that due to the inclination of the
principal stress, the stress distribution along the opening boundary begins to exhibit slight
distortion, with the positions of maximum and minimum stress shifting slightly. The stress
distribution curve shows a certain degree of asymmetry. As 3 continues to increase to 45°
(Figure 4d), this asymmetry in stress becomes more pronounced under low lateral pressure
coefficients (A). However, as A increases, this asymmetry gradually decreases. In all cases,
when A = 1, the stress distribution along the opening boundary is symmetrical along the
geometric symmetry axis of the opening.

As {3 increases from 45° to 90° (Figure 4d—g), the stress distribution exhibits new
characteristics, gradually returning to a symmetrical state. When (3 reaches 90° (Figure 4g),
meaning the horizontal stress is the maximum principal stress, the stress distribution
becomes symmetrical again but differs significantly from when 3 = 0°. Although the two
straight wall corners of the opening remain the areas of maximum compressive stress, the
roof and floor have transitioned from regions of tensile stress concentration to regions of
compressive stress concentration under low lateral pressure coefficients. Conversely, the
original sides of the opening have shifted from compressive stress to tensile stress states.

Figure 5 summarizes the variation in the maximum and minimum hoop stresses at the
opening boundary with different A as 3 changes. Overall, the maximum hoop stress exhibits
a trend in first increasing and then decreasing with (3. For all A values, the maximum hoop
stress curve reaches a peak at 3 = 45°, indicating that at this angle, the hoop stress on the
tunnel boundary is the highest. This trend is most pronounced when A = 0. As A increases,
while the overall trend remains consistent for A < 1, the variation curve becomes flatter.
This flattening indicates a reduced sensitivity in the maximum hoop stress to changes in
(3 at higher lateral pressure coefficients, which may imply greater stability under varying
stress orientations. When A = 1, the principal stress orientation no longer has any impact
on the stress at the opening boundary.

The variation trend in the minimum hoop stress with {3 is relatively smooth. Near
= 45°, the minimum hoop stress fluctuates slightly, but the changes are minor. When
A < 0.4, the minimum hoop stress is generally less than 0, indicating that tensile stress is
likely to form at the opening boundary under low lateral pressure coefficients. However,
as A increases, the minimum hoop stress gradually rises, and the tensile stress regions
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transition to compressive stress regions. When A = 1.0, the minimum hoop stress at the
opening boundary stabilizes at around 0.61p.

This analysis shows that the distribution of hoop stress around the three-center arch
opening exhibits significant complexity with changes in the principal stress direction
and lateral pressure coefficient. When the maximum principal stress is either vertical or
horizontal, the stress distribution is relatively symmetrical. However, as the principal
stress angle changes and A < 1, the stress distribution gradually becomes asymmetrical.
This phenomenon is most pronounced when A = 0 and 3 = 45°. In practical engineering
applications, it is essential to pay special attention to situations where the principal stress
direction is not aligned with the vertical stress direction. Furthermore, the influence of the
lateral pressure coefficient (A) cannot be underestimated. The results suggest that designs
should incorporate measures to reinforce structures under low lateral pressure conditions.
Overall, the tunnel structures should be designed appropriately based on the principal
stress direction and lateral pressure coefficient to ensure the safety and stability of the
tunnel. Understanding the specific stress distribution patterns associated with different
combinations of 3 and A allows for more targeted and efficient design modifications,
reducing the likelihood of overdesignand optimizing resource allocation.

------ Mapping shape ------ Mapping shape
— A=00 — A=0.0
0 — A=02 0 — A=02
A=04 A=04
A=06 A=06
45° 315° A=08 45° 315° A=08
— A=10 — A=10

90° 270° 90° 270°
135° 225° 135°
180° 180°
(a) (b)
------ Mapping shape ----— Mapping shape
— A=0.0 — A=0.0
0 — A=02 0° — A=02
A=04 A=04
A=06 A=06
45 315 A=08 45 315 A=08
— A=10 — A=10

90° 90°

135° 135°

180°

(©)

Figure 4. Cont.
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Figure 4. Hoop stress distribution curves at the opening boundary under different 6 and A: (a) p = 0°;
(b) =15 (c) p=30°(d) p = 45°; (e) p = 60°; (f) p =75 (g) B =90°.
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Figure 5. Variation curves of maximum and minimum hoop stress at the opening boundary with
under different A: (a) maximum hoop stress; (b) minimum hoop stress.

3.2. Initial Failure Mode

According to the stress analysis, the direction of the geo-stress and the lateral pressure
coefficient can significantly affect the stress distribution around the opening within the
rock mass, which in turn may impact the stability and failure characteristics of the opening.
This study introduces the Discrete Element Method (DEM) numerical simulation to reveal
the influence of stress conditions on the failure characteristics of the opening. In this study,
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the PFC2D 6.0 software was used for numerical simulation of the mechanical behavior of
samples containing openings. PFC2D software is a DEM simulation tool used to model
the behavior of rock and soil materials. It is widely applied in the field of rock mechanics
engineering to analyze the mechanical behavior, stability, and failure patterns of rock
mass [24]. The linear parallel bond contact model was employed as the constitutive
model for rock mass in the numerical modeling. This model effectively describes the
mechanical behavior of rock or rock-like materials and has been widely applied in numerical
simulations of rock mechanical failure [25].

Sandstone is a common rock found in deep underground mines, which is used as the
reference material in the numerical simulation, and its mesoscale parameters are calibrated
through uniaxial compression tests and are presented in Table 2.

Table 2. Rock parameters for the PFC2D numerical model.

£3 —

i u E. k* E. k c Tt
2.70 g/cm3 0.577 3.2 GPa 1.0 3.2 GPa 1.0 21.1 MPa 13.2 MPa

p: density; u: friction coefficient; E,: effective modulus; k*: normal-to-shear stiffness ratio; E.: bond effective

modulus; k": bond normal-to-shear stiffness ratio; ¢: cohesion; 7y: bond tensile strength.

The geometry of the numerical model is shown in Figure 6, with the opening shape
consistent with that used in the analytical calculation. To facilitate comparison between
the analytical and numerical results, the opening area is set to 1 m?, and the numerical
simulation scheme is identical to the theoretical calculation. To minimize boundary effects,
the overall model size is set to 7 m x 7 m. When the lateral pressure coefficient A = 0, the
two side walls are set to non-active. When A > 0, the side walls are set to servo control
mode, with their stress equal to the product of axial stress and A, which changes with the
axial stress.

— -—
—> -—
— 1 -—
I
I
x ]
A |
. . B —
\
<
{75
0 1 )
N
—> ~ -—
N "aa.\faf
— -—
— -—
— -—
— -—

tttt

Figure 6. Geometry of rock mass containing an opening in the DEM numerical model.

Due to the fact that the dimensions within the sample are much smaller than the
overall sample size, the overall mechanical properties of the sample are minimally affected
by the opening and cannot reflect the impact of stress direction on the stability of the
opening. Alternatively, the study provides the distribution of initial failures at the opening
boundary in some typical cases, which is presented in Figure 7. To better illustrate the
damage of the surrounding rock, Figure 7 only presents the failure distribution within the
central square region of the models. In the figure, the red areas represent fractures formed
by contact failures between two contacting balls.
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Figure 7. Initial failure distribution in the surrounding rock around the opening in typical cases.
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As shown in Figure 7, the initial failure distribution characteristics of the surrounding
rock well validate the results of the stress analysis. In all cases, initial failures occur
in areas of compressive or tensile stress concentration. For example, when A = 0, the
regions of the opening boundary perpendicular to the maximum principal stress direction
exhibit significant tensile stress concentration, leading to initial tensile cracks in these
areas (Figure 7a—d). It is obvious that without lateral pressure, tensile stresses dominate
the failure process, resulting in tensile crack initiation. When A = 0.2, the tensile stress
concentration around the opening is no longer evident, and the formation and development
of tensile cracks are inhibited. Accordingly, tensile failures no longer occur in the tensile
stress regions around the opening. This transition highlights the impact of increasing
lateral pressure in mitigating tensile stress and preventing tensile failures. As A continues
to increase, the tensile stress around the opening significantly decreases and gradually
transforms into compressive stress, with initial failures around the opening primarily
resulting from compressive stress concentration.

When the maximum principal stress is vertical or horizontal (3 = 0° or 3 = 90°), the
hoop stress exhibits a symmetrical distribution about the opening’s axis of symmetry.
In these cases, the initial cracks around the opening also display a roughly symmetrical
distribution. As A increases, the regions of compressive stress concentration around the
opening expand, correspondingly increasing the extent of initial failures along the opening
boundary. Changes in 3 cause asymmetry in the stress distribution around the opening,
leading to a shift in the failure locations to one side. This asymmetry, induced by the
principal stress orientation, complicates the prediction of failure zones and necessitates
adaptive design measures to address the varying stress conditions.

The comprehensive analysis combining analytical stress solutions and numerical
simulations robustly validates the initial failure modes around the opening. Significant
stress concentration areas revealed by the analytical stress solutions align well with the
numerical simulation results, identifying these zones as potential sites for initial failures.
For instance, as the lateral pressure coefficient (A) increases, the analytical solutions in-
dicate a reduction in tensile stress around the opening, transitioning these regions into
compressive stress zones. The numerical simulations corroborate this transition, showing
a corresponding inhibition of tensile crack formation and a shift towards compressive
stress-induced failures. When the lateral pressure coefficient is low (A < 0.4), due to the
lack of or insufficient lateral constraints, the rock mass is more likely to fail under lower
external loads (Figure 7a—d). This phenomenon particularly agrees with the analytical
stress distribution in the corresponding models shown in Figure 4, where the low lateral
pressure (A < 0.4) results in significant tensile stress concentrations. Additionally, as the
principal stress angle () changes, the numerical simulations reveal corresponding shifts in
the failure locations, consistent with the analytical predictions. This correlation confirms
that the analytical approach accurately captures the critical stress zones prone to failure,
demonstrating the effectiveness of these methods in predicting opening failure patterns.

Overall, the integration of analytical and numerical methods provides a compre-
hensive understanding of the stress-induced failure mechanisms around openings. This
combined approach not only validates the predictive accuracy of the analytical models
but also offers detailed insights into the stress evolution and failure progression, which
is essential for designing effective reinforcement strategies and ensuring the stability of
underground structures.

4. Conclusions

This study systematically investigated the stress distribution and mechanical behavior
of rock masses with a three-center arch opening under various complex deep underground
stress conditions with varying lateral pressure coefficients (A) and principal stress directions
(B). Combined with DEM numerical modeling, the study investigated their impact on the
initial failure characteristics at the opening boundary. The main conclusions of the study
are as follows:
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1. The lateral pressure coefficient mainly affects the stability of the opening by influenc-
ing the stress concentration around the surrounding rock. When the lateral pressure
coefficient is at a low level, tensile stress concentration is likely to occur in the bound-
ary area of the opening perpendicular to the maximum principal stress. Within the
scope of this study, as the lateral pressure coefficient increases, the tensile stress
disappears, and the compressive stress region expands, enhancing the stability of
the opening.

2. The direction of the principal stress has a minor effect on the degree of tensile stress
concentration around the surrounding rock of the opening, but it significantly impacts
the stress distribution at the boundary of the opening. When the angle between the
maximum principal stress in the plane and the vertical direction is 45°, the com-
pressive stress at the corners of the opening’s straight walls reaches its maximum.
This region is prone to failure due to the high compressive stress. In cases where
the lateral pressure coefficient is not equal to 1, the stress distribution asymmetry is
most pronounced.

3. DEM numerical simulations confirmed that initial failures occur in areas of com-
pressive or tensile stress concentration, validating the analytical stress solutions. As
the lateral pressure coefficient increases, the tensile stress decreases and eventually
disappears, while the compressive stress-induced failure range significantly expands.
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