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Abstract: In most filtering algorithms involving measurement data association, handling the complex
computations due to multiple hypotheses is necessary. This paper introduces a novel Trajectory
Poisson Multi-Bernoulli (TPMB) filter for tracking extended targets, facilitated by a synergy between
the model and the data. This filter can track extended targets under unknown process and measure-
ment noise. Initially, on the model-driven side, we compute multi-model transition probabilities
using the posterior probabilities from models at two consecutive time points with the targets in
high maneuverability state. The accuracy of the tracking algorithm is improved by calculating
the improved Interacting Multiple Model (IMM) transition probability at each time step. For the
data-driven aspect, the Gate-control Belief Propagation (GBP) is set in the message- passing algorithm
to reduce the running time of false hypothesis associations. Thus, it is unnecessary to consider all
message information when computing the likelihood matrix for target-measurement associations.
Subsequently, the posterior density function of the Adaptive Square Root Cubature Kalman Filter
(ASCKF) is constructed to adaptively estimate unknown process and measurement noises, while
importance sampling in the current particle filter further mitigates particle degradation. Exper-
iments demonstrate that our algorithm reduces the running time of data associations, alleviates
particle degradation, and more accurately tracks maneuvering targets under nonlinear conditions
and estimates their states.

Keywords: extended target tracking; TPMB filter; IMM; ASCKF; data association

1. Introduction

In the evolution of Multi-Target Tracking (MTT) technology, foundational methods
centered with data association, including Probabilistic Data Association (PDA), Joint Prob-
abilistic Data Association (JPDA), and Multiple Hypothesis Tracking (MHT), have been
crucial [1]. These methods decompose the multi-target tracking problem into simpler
single-target tracking problems through data association. The Bayesian multi-target filter,
which propagates the multi-target posterior density over time, offers an optimal Bayesian
solution for multi-target tracking challenges. The theory of Random Finite Set (RFS) has
been widely applied in fields such as radar tracking [2], air traffic management [3], and
autonomous driving [4], constructing optimal Bayesian filters. Representative algorithms
include the Probability Hypothesis Density (PHD) filter, the Cardinalized PHD (CPHD)
filter, and the Cardinalized Balanced Multi-Target Multi-Bernoulli (CBMeMBer) filter. These
foundational theoretical filters, such as the PHD and CPHD filters, directly propagate the
posterior first moment [5]. However, they encounter challenges in tracking trajectories.

For modern high-resolution millimeter-wave radars and lidars, the traditional point
target assumption is no longer applicable, as multiple measurements can be generated
at each time step. Therefore, Extended Object Tracking (EOT) has become a mainstream
challenge in applications [6]. For elliptical extended targets, commonly used measure-
ment models include the random matrix model [7], set cluster process [8], physics-based
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model [9], and Poisson space models [10]. Among these, the Poisson space model is the
most widely used. In this model, target detection is modeled by a non-homogeneous Pois-
son Point Process (PPP). The PPP measurement likelihood has a simple factorization that
avoids the explicit representation of assumptions about the association between measure-
ments and targets [11]. At each time step, a Poisson distribution of random measurements
is generated, spatially distributed around the measurements of the target. To address
the issue of tracking multiple targets, the RFS framework is used for modeling. The RFS
framework offers a systematic approach to Multi-Target Tracking (MTT) by accommodating
changes in the number and state of targets over time. Both targets and measurements
are modeled as random finite sets, and the PPP extended target model has been utilized
in several computable complex models. The ensemble approach within this framework
allows for an optimal Bayesian representation of the birth and death of targets. According
to the literature, the state-of-the-art algorithm for tracking an unknown number of elliptical
targets is the Poisson Multi-Bernoulli Mixture (PMBM) filter. This method acknowledges
that the number, size, shape, and kinematic states of targets are interrelated and influence
each other. However, due to the numerous prior conditions and associations that need to
be considered, such associations present computational challenges.

According to [12,13], the most advanced algorithm for tracking an unknown number
of extended targets is the PMBM filter. For estimating target trajectories, MTT methods
based on random vectors link the current state estimates of an object with its past states,
or represent the emergence of new targets. In the RFS-based MTT methods, one effective
approach is to assign a unique label to each trajectory, allowing each object to be identified
as it changes over time [14]. Another effective method is to calculate the multi-target
posterior probability over the set of trajectories, which contains all information about
multiple trajectories and does not require the use of labels [15]. In multi-target tracking
scenarios, the Trajectory Probability Poisson Multi-Bernoulli Mixture (TPMBM) filter and
its approximate filter [16], the Trajectory Probability Poisson Multi-Bernoulli (TPMB) filter,
have emerged [17].

For methods based on gating and sampling, the assumption that negligible weights
can be truncated avoids the exhaustive data association often required for large datasets [18].
Therefore, in scenarios with high uncertainty in data association, performance degradation
can occur due to information loss. To prevent the loss of information associated with explicit
enumeration and local association assumptions, the method of computing the multi-target
marginal posterior for data association is used, which marginalizes the unknown data
association uncertainties [10]. Currently, the best-performing multi-EOT algorithm, as
proposed in [19], is the Sum-Product Algorithm (SPA) based on particle Belief Propagation
(BP), which is implemented through a factor graph of the joint posterior of multi-target
states and measurement association variables. Simulation results in [20] demonstrate that
the TPMB filter based on factor graphs outperforms the TPMBM filter that uses gating
clustering and truncated sampling in terms of estimation errors and runtime. The BP
algorithm recursively iterates to obtain global hypothesis data association information,
transmitting this association information between factor nodes and variable nodes via
a directed graph. In the process of approximating PMB with PMBM, Kullback–Leibler
Divergence (KLD) minimization is used to marginalize the uncertainty of data hypotheses,
thereby reducing the amount of data processing. This process has led to the development of
a closed-form filter that initiates the recursive process from the joint posterior factor graph
model of object sets and association variables, along with the message-passing equations.

This paper presents a model-data-driven message-passing algorithm that adaptively
adjusts the motion models of targets in different dynamics through an Interactive Multiple
Model (IMM) to adapt to the switching motion state at different time steps [21]. In the
message-passing process using factor graphs, considering the measurement association
factor’s message as an approximation of the posterior probability requires computation
for each message-passing variable, which is complex. The proposed algorithm reduces
the complexity of data association and minimizes message passing by gating hypothetical
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surviving targets, thereby enhancing algorithm efficiency. In the filter, a new particle
filtering method is introduced that constructs the importance density function for each
particle’s state via the Adaptive Square Root Cubature Kalman Filter (ASCKF), optimizing
the covariance matrices of process noise and measurement noise to improve the tracking
performance of high-maneuver targets under noise and clutter influences [22,23]. This
paper is an important extension of [19,22], including the following contributions:

1. In addressing the complexity of model transition probability calculations in the IMM
algorithm, we utilize changes in the posterior probability between two consecutive
moments to reflect the transition probabilities between models. On the other hand,
the standard IMM algorithm considers process noise as a constant during model
switching, affecting the accuracy of the filtering algorithm. The improved IMM
algorithm adaptively adjusts the magnitude of process noise, reducing errors in
model switching.

2. In addressing the complex message passing between variable nodes and factor nodes
in factor graphs, we have improved the posterior association step of the factor graph.
The message-passing process is streamlined through adaptive gating, eliminating
the need to consider all inter-node relationships when computing association nodes,
thereby reducing running time.

3. To address the issue of particle degradation observed in the methods using particles,
we employ the SCKF to perform particle importance sampling and use the Gate-
control Belief Propagation (GBP) for the improved IMM-TPMB-GBP filter, updating
the particle filter based on these sampling results. Due to the decrease in tracking
accuracy of adaptively modeled maneuvering targets under noise and clutter, we
have developed the ASCKF. This involves adaptively estimating the covariance of
process and measurement noise, ensuring that the algorithm’s performance does not
depend on noise statistics and is more robust when these statistics are unknown.

The rest of the paper is organized as follows. Section 2 introduces the background
on state and trajectory parameters, the trajectory set, and TPMB. Section 3 provides the
BP cycle for TPMB marginal posterior probabilities and the principles of factor graphs,
further detailing the adaptive gating improvement for factor graphs and the ASCKF mixed
particle filtering method. The implementation of ASCKF for unknown noise is presented
in Section 4. Simulation results are provided in Section 5, and the conclusion is given in
Section 6.

2. Background

In this section, we first introduce the state and trajectory parameters of targets, then
model the multi-target extended model state parameters and measurements, and finally
present the TPMB approximation of the PMBM posterior density.

A finite spatial set is D, which is denoted as ℱ (D), and the cardinality of its subset
A ∈ ℱ (D) is |A|. We use

⊎
to denote the union of disjoint sets, ⟨ f , g⟩ to denote the

inner product
∫

f (x)g(x)dx, and the multi-target index is represented as f A. For certain
real-valued functions, the product ∏

x∈A
f (x) with f∅ = 1 is conventionally represented.

Additionally, δx[·] and δx(·), respectively, denote the Kronecker delta centered at x, and the
Kronecker delta function. Here, x in δx[·] represents a subspace 𝒱 within the Cartesian
product space, x ∈ 𝒳𝒱 .

2.1. State and Trajectory Variables

At time step k, the single-target state xk ∈ 𝒳 dx includes its kinematic state and any
potentially identified target extension states. At time step k, the set of target states xk is a
random finite set, and xk =

{
x1

k , . . . , xnk
k
}
∈ ℱ (𝒳 dx ). The measurements zk =

{
z1

k , . . . , zmk
k
}

collected by sensors at time step k consist of the jth single-target measurement zj
k ∈ 𝒳 dz

produced at time step k and j ∈ {1, . . . , mk}. The sequence from the initial moment to the
current time k is denoted as zk.
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A target’s motion trajectory is its finite sequence of states over continuous time
steps, represented as X = (t, x1:ν). Here, t is the initial time step of the trajectory, v
is the duration of the trajectory steps, and x1:ν = (x1, . . . , xν) is the finite sequence rep-
resenting the target state trajectory. The parameter variable (t, v) belongs to the set
I(k) = {(t, ν) : 0 ≤ t ≤ k, 1 ≤ v ≤ k − t + 1}. Thus, the single-target trajectory reaching
a finite time step at moment k belongs to space T(k) = ⊎(t,ν)∈I(k){t} ×𝒳 vdx , with

⊎
rep-

resenting the union of disjoint sets. The trajectory set up to the current moment k can
be represented as Xk ∈ ℱ (T(k)). The single trajectory function can be decomposed into
p(X) = p(x1:ν

∣∣t, ν)p(t, ν) , where p(t, ν) is defined on I(k) and X ∈ T(k).

2.2. Multi-Target Models for Sets of Trajectories

1. Multi-target dynamic models: At time step k, existing targets xk−1 survive to the
next time step with probability pS(xk−1), or perish with probability 1 − pS(xk−1). If a
target survives, its Markov state transition function is gk(·|xk−1) . At each time step,
newly detected targets xk are independent of other surviving targets and follow a PPP
with a birth intensity of λB

k (xk).
2. Multi-target measurement models: The measurement set zk for targets is divided

into two parts: one consists of actual measurement sequences generated by extended
single-target detection by sensors, modeled as PPPs with measurement likelihoods
of 𝓁k(zk|xk) produced by each xk ∈ 𝒳 dx and with a Poisson intensity of γk(xk). The
other consists of clutter measurements induced by measurement noise, modeled as a
PPP with a Poisson intensity of λC

k (zk) = γC
k µC

k (zk), a Poisson rate of γC
k and clutter

intensity of µC
k (zk).

3. Dynamic model for sets of all trajectories: For the set of surviving trajectories Xk−1
at time step k − 1, each trajectory X = (t, x1:ν) ∈ Xk−1 has a survival probability
pS(X) = pS(xv). If the trajectory continues to survive in the next time step, its
transition probability density is

gk(t, y1:ν
∣∣∣X) = δt[t]δν+1[ν]δx1:ν(y1:ν−1)gk(yν

∣∣∣xν) (1)

Newly initiated trajectory sets Xk independently follow a PPP with an intensity of

λB
k

(
t, x1:ν

)
= δk[t]δ1[ν]λ

B
k (xν) (2)

Given the complete set Xk of trajectories, both surviving and newly initiated, at time
step k for each X =

(
t, x1:v) ∈ Xk, t + v − 1 ≤ k, the survival probability is 100%, i.e.,

pS(X) = 1, and the trajectory’s transition density is

gk

(
t, y1:ν

∣∣∣X) = δt[t]×


δν[ν]δx1:ν

(
y1:ν) ω < k − 1

δν[ν]δx1:ν
(
y1:ν)(1 − pS(xν)

)
ω = k − 1

δν+1[ν]δx1:ν
(
y1:ν−1)pS(xν)gk

(
yν
∣∣xν
)

ω = k

(3)

Thus, the current moment’s survival probability of a trajectory depends solely on
the final state of the trajectory in the previous moment and is independent of other
moments. The probability density of the measurement sequence wk produced by a
single trajectory (t, x1:ν) ∈ Xk is 𝓁k(wk

∣∣t, x1:ν) = 𝓁k(wk
∣∣xν) .

2.3. Standard Bayesian Model for Sets of Trajectories

By extending an auxiliary variable u ∈ Uk|k′ =
{

0, 1, . . . , nk|k′
}

over the single-target
trajectory space, (u, X) ∈ Uk|k′ × T(k) is used. When u = 0 represents that the target
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trajectory was not detected, it corresponds to a PPP; when u =
{

1, . . . , nk|k′
}

, it indicates

that the target trajectory corresponds to the ith Bernoulli component. After adding the
auxiliary variable, we use X̃ ∈ ℱ (Uk|k′ × T(k)) to represent the set of target trajectories with
the auxiliary variable. wa

k|k′ denotes the weight,
⊎

denotes the union of disjoint sets; f p
k|k′(Y)

is the Poisson part probability density function, representing the trajectories of objects
assumed to exist but undetected; λk|k′(·) is the Poisson intensity for trajectories; f mb

k|k′(V) is
the multi-Bernoulli part probability density function, representing the probability of latent
trajectories being detected at least once by some time k′; in the multi-Bernoulli probability
density Equation (5), nk|k′ indicates the number of Bernoulli components that exist up
to some time k′, with each Bernoulli component having hi

k|k′ independent hypotheses; a

represents the global hypothesis index. For the ith Bernoulli component density, there are
ai local hypotheses and ai ∈

{
1, . . . , hi

k|k′
}

. For a global hypothesis a = (a1, . . . , ank|k′ ), a

local hypothesis ai is assigned to each Bernoulli component, and 𝒜k|k′ is the set of global
hypothesis indices; that is, a ∈ 𝒜k|k′ .

wa
k|k′ =

nk′ |k
∏
i=1

wi,ai

k|k′

∑
b∈𝒜k|k′

nk′ |k
∏
i=1

wi,bi

k|k′

(4)

where wi,ai

k|k′ represents the weight of the local hypothesis Bernoulli component, and wa
k|k′

represents the weight of the global hypothesis Bernoulli component. Normalization ensures
that the sum of the probabilities of the global Bernoulli components equals 1; that is,

∑
a∈𝒜k|k′

wa
k|k′ = 1.

2.4. PMBM Conjugate Prior

TPMB is a special filter that approximates the TPMBM posterior probability density. In
this approximation, trajectory-oriented MBMs are merged into a single MB by introducing
the parameter variable, thus handling the mixture of densities. The preferred method for
approximating PMBM is minimizing the Kullback–Leibler divergence (KLD).

Given the multi-target probability density defined in Equation (5), after the inclusion
of parameter variables, the multi-target probability density f̃k|k′(·) can be represented as
follows:

f̃k′ |k

(
X̃k′
)

= ∑
⊎

nk|k′
l=1 X̃

l⊎Ỹ=X̃k

f̃ p
k|k′
(

Ỹ
)

∑
a∈𝒜k|k′

wa
k|k′

nk|k′

∏
i=1

[
f̃ i,ai

k|k′
(

X̃
i)]

= f̃ p
k|k′
(

Ỹk

)
∑

a∈𝒜k|k′
wa

k|k′

nk|k′

∏
i=1

[
f̃ i,ai

k|k′
(

X̃
i)] (5)

For the given surviving targets X̃
i
k = {(u, X) ∈ X̃k : u = i}, the undetected targets

Ỹk =
{
(u, X) ∈ X̃k : u = 0

}
are included, and their predicted multi-target probability

density after incorporating the parameter variables is the following:

f̃ p
k|k′
(

X̃
)
= e−

∫
λk|k′ (x)dx

[
λ̃k|k′(·)

]
X̃ (6)

λ̃k|k′(u, X) = δ0[u]λk|k′(X) (7)

f i,ai

k|k′
(

X̃
)
=


1 − ri,ai

k|k′ X = ∅

ri,ai

k|k′ p
i,ai

k|k′(X)δi[u] X = {(u, X)}
0 otherwise

(8)
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where the auxiliary variable u = 0 may represent multiple undetected trajectories, and it
does not necessarily imply that fk|k′(·) equals zero.

2.5. Trajectory PMB Approximation

According to reference [16], the TPMBM approximates the TPMB method, and this
paper also utilizes special multi-trajectory states and measurement models. According to
Equation (10), we derive the TPMB prediction equation.

Given the multi-trajectory set prediction density f̃k′ |k

(
X̃k′
)

and measurement set

zk =
{

z1
k , . . . , zmk

k
}

at time step k, from Equation (5) to Equation (8), it is known that the
number of updated Bernoulli components nk|k = nk|k−1 + mk, and the updated Poisson
intensity is as follows:

λk|k(X) = 𝓁k(∅|X )λk|k−1(X) (9)

For each Bernoulli component predicted at the previous measurements i ∈ {1, . . . , nk|k′},
the current moment’s new measurements generate mk Bernoulli components. At the same
time, each Bernoulli component predicted from the previous moment generates mk new
local hypotheses at the current moment. These newly generated local hypotheses may be
false detection or updates for non-empty subsets of measurements zk. After augmenting
the model using auxiliary variables, it is necessary to define the global hypothesis set of
generalized measurement model parameter variables. We give the augmented representa-
tion method of measurement ℳ(k, j) = j for zj

k. For the Bernoulli hypothesis component i,

a set of measurement collections represented by a local hypothesis ai is ℳi,ai

k ⊆ ℳk:

ℳk = ℳk−1 ∪ {(k, j)|j ∈ {1, . . . , mk}} (10)

𝒜k =


(

a1, . . . , ank|k

)
: ai ∈ Nhi

,
nk|k
∪

i=1
ℳ(i, ai) = Nmk ,

ℳ(i, ai) ∩ℳ
(

j, aj
)
= ∅, ∀i ̸= j

 (11)

where Nmk = {1, . . . , mk}.
For each Bernoulli component i ∈ {1, . . . , nk|k−1} in the predicted probability den-

sity fk|k−1(·) and the new measurements detected at the current moment generating mk

Bernoulli components, there are hi = mk + 1 local hypotheses corresponding to either a
false detection or an update at the current moment. For the false detection hypothesis of
the Bernoulli component i ∈ {1, . . . , nk|k−1}, it can be represented as ℳ(i, 1) = ∅.

𝓁i,0
k|k =

〈
f i
k|k−1,𝓁k(w

j
k |· )

〉
(12)

wi,1
k|k = wi,1

k|k−1

(
1 − ri,1

k|k−1 + ri,1
k|k−1𝓁

i,1
k|k

)
(13)

ri,1
k|k =

ri
k|k−1⟨ f i

k|k−1,𝓁k(w
j
k |· )⟩

wi,1
k|k

(14)

f i,1
k|k(X) =

𝓁k(w
j
k|X ) f i

k|k−1(X)

⟨ f i
k|k−1,𝓁k(w

j
k |· )⟩

(15)

Consider that the measurement set is empty in Equations (12)–(15). We use
w1

k , . . . , w2mk−1

k to represent the non-null measurement set zk in Equations (16)–(18). For

the predicted Bernoulli component i ∈
{

1, . . . , nk|k−1

}
at time step k − 1, it survives to the
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next moment and is associated with measurement zj
k, which yields, j ∈ {1, . . . , 2mk − 1},

ℳ(i, j) = 1, ri,j+1
k|k = 1.

𝓁i,j+1
k|k =

〈
f i
k|k−1,𝓁k

(
wj

k |·
)〉

(16)

wi,j+1
k|k = wi

k|k−1ri
k|k−1𝓁

i,j+1
k|k (17)

f i,j+1
k|k (X) =

𝓁k

(
vj

k|X
)

f i
k|k−1(X)

𝓁i,j+1
k|k

(18)

Then, we construct the set Si to associate with the new Bernoulli component

i ∈ {1, . . . , mk}, with Si =
{{

zi
k
}}

∪
(
∪w∈∪i−1

j=1Si

{{
zi

k
}
∪ w

})
, and use wi,ι

k to represent

the Bernoulli component of the measurement set ι, where i = nk|k−1 + j, j ∈ {1, . . . , mk},
ι ∈

{
1, . . . , 2j−1}. For the new Bernoulli components i = nk|k−1 + j generated by new

measurements zj
k at time step k, there are two single-target hypotheses for each Bernoulli

component: one corresponds to a previously undetected and non-existent Bernoulli com-
ponent, represented as ℳ(i, 1) = ∅, ri,1

k|k = 0, wi,1
k|k = 1; the other corresponds to a Bernoulli

component that existed in the previous moment.

𝓁i,2
k|k =

〈
λk|k−1,𝓁k

(
wi,ι

k |·
)〉

(19)

wi,2
k|k = λC

(
wj

k

)
+
〈

λk|k−1, l
(

wi,ι
k |·
)〉

(20)

ri,2
k|k =

〈
λk|k−1, l

(
wi,ι

k |·
)〉

λC
(

wi,ι
k

)
+
〈

λk|k−1, l
(

wi,ι
k |·
)〉 (21)

f i,ai

k|k (X) =
𝓁k

(
wi,ι

k |X
)

λk|k−1(X)

𝓁i
k|k

(22)

The set ℳi,j
k represents the local hypotheses ai related to the Bernoulli component

i measurement indicators. After the Bayesian update, the updated density of PMBM is
obtained through the aforementioned process. The established generalized measurement
of the model’s trajectory posterior set, utilizing the posterior conjugacy of PMBM, provides
convenience for using general nonlinear target measurement models.

3. Model-Driven IMM-TPMB Filter

The TPMBM obtains a computationally less intensive TPMB posterior density through
KLD approximation. However, during the approximation process, the uncertainty in the
marginal density of the PMB trajectory set increases, and the uncertainty of the global
hypotheses has been marginalized. For methods based on gating and sampling, negligible
hypotheses can be ignored by truncating weights to avoid exhaustive data association.
Nevertheless, in scenarios with high data association uncertainty, performance can degrade
due to information loss. Therefore, to prevent the loss of information from local association
hypotheses caused by explicit enumeration, a data association method that computes
the multi-target marginal posterior is used to marginalize the unknown data association
uncertainty. The model established in this paper is based on the factor graph probability
model in [17,18], which enables SPA to have good computational complexity and utilizes
the accuracy and flexibility of an SCKF-based implementation.

We define the measurement-vector association factor for multi-target trajectories. Due
to the uncertainty in the posterior marginal association probability for each measurement
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j ∈ {1, . . . , mk}, the indicator factor for the Bernoulli component generated by each mea-
surement is defined as follows:

βk =

{
β

j
k β

j
k ∈

{
1, . . . , nk|k−1

}
0 otherswise

(23)

where β
j
k = i > 0 only when the measurement zj

k is associated with the ith potential target;

when β
j
k = 0, it indicates that the jth measurement is a false alarm.

The joint posterior probability of the trajectory set and the measurement vector asso-
ciation factor can be factored into a factor graph. According to [10], the joint posterior of
the trajectory set at time step k and the measurement vector association model during the
TPMB model update process is

f̃k|k

(
X̃k , βk

)
∝ f̃ p

k|k(Yk)︸ ︷︷ ︸
I

nk|k−1

∏
i=1

[
f i

k|k−1

(
X̃

i
k

)mk

∏
j=1

p
s,k

(
X̃

i
k , β

j
k ; zj

k

)]
︸ ︷︷ ︸

II

nk|k

∏
i=nk|k−1+1

[
f

i
k|k−1

(
X̃

i
k

)
pb,k

(
X̃

i
k , β

i−nk|k−1
k ; z

i−nk|k−1
k

) i−nk|k−1−1

∏
j=1

p
s,k

(
X̃

i
k , β

j
k ; zj

k

)
]

︸ ︷︷ ︸
III

(24)

The joint posterior expression consists of three parts: the first part represents the
updated posterior probability density of the undetected trajectory set; the second part
represents the joint posterior of the survival probability density of the Bernoulli component
i ∈

{
1, . . . , nk|k−1

}
from the previous moment and the measurement association vector at

this moment; the third part represents the joint posterior of the probability density function
of the newly detected trajectories and the measurement association vector after receiving
mk measurements.

According to Equation (24), the factor graph is depicted with circles representing
factor nodes and squares representing variable nodes. For undetected trajectories, only an
additional factor node and a variable node are used to represent them, independent of the
factor graph’s message-passing process. For the surviving trajectories at time step k − 1,
it is predicted that the next moment will have nk|k−1 Bernoulli components, represented
here by N factor nodes. Among these N factor nodes, an equal number of mk variable
nodes are generated, which connect to the measurement vector association nodes as the
posterior marginal probability density of this Bernoulli component. For the mk Bernoulli
components generated by the measurements at time step k, it is indicated that M factor
nodes are generated. In these M factor nodes, each factor node produces a different number
of posterior marginal probability density nodes.

In the factor graph message-passing model, as the starting variable nodes in the

message-passing process, f
i
k|k−1(x) and f i

k|k−1
(x) correspond to the prior probability densi-

ties of undetected and surviving targets, respectively, while f̃ p
k|k(xu

k ) represents the posterior
probability density of undetected targets and newly detected targets.

f i
k|k−1

(
X̃
)
=


ri

k|k−1 f i
k|k−1(X)e−γk(X)δi[u] X̃ = {(u, X)}

1 − ri
k|k−1 X̃ = ∅

0 otherwise

(25)

f
i
k|k−1

(
X̃
)
=


λk|k−1(X)e−γk(X)δi[u] X̃ = {(u, X)}
1 X̃ = ∅
0 otherwise

(26)

In Figure 1, the factor nodes p
S,k

(
X̃

i
k, β

j
k; zj

k

)
and pS,k

(
X̃

i
k, β

j
k; zj

k

)
in the information

propagation are represented as follows:
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p
s,k

(
X̃

i
k, β

j
k; zj

k

)
=


𝓁k(z

j
k|x )γk(X)/λc

k(z
j
k) X̃

i
k = {(u, X)}, β

j
k = i

1 β
j
k ̸= i

0 otherwise

(27)

ps,k

(
X̃

i
k, β

j
k; zj

k

)
=


𝓁k(z

j
k|x )γk(X)/λc

k(z
j
k) X̃

i
k = {(u, X)}, β

j
k = i

1 Xi
k = ∅, β

j
k ̸= i

0 otherwise

(28)
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Figure 1. Factor graph of the factorization of Equation (24), with circles and squares representing
factor nodes and variable nodes.

3.1. Implementation of an IMM-TPMB Filter Based on Two Consecutive Time Points

In multi-maneuvering target tracking scenarios, the motion states at different times
may be described by multiple motion models, and the filtering results must consider the
state outputs from various models. The IMM method is an effective solution for such
problems. The IMM method uses multiple different models to model the target’s state, and
each model could be the optimal one at the current moment.

Assuming the number of tracking models is ψ, the motion matching model at time
step k − 1 is Mξ

k−1, and at time step k it is Mξ′
k , with a model mixing probability of µ

ξ|ξ′
k−1, it

can be represented as follows:

µ
ξ|ξ′
k−1 = P

(
Mξ ′

k−1

∣∣∣Mξ
k , Zk−1

)
= 1/cξ′P

(
Mξ ′

k−1

∣∣∣Mξ
k , Zk−1

)
P
(

Mξ‘
k−1|Zk−1

)
= 1/cξ′πξ|ξ′

k−1µ
ξ′
k−1

(29)

where the Markov transition probability from ξ to ξ′ at time step k − 1 for model π
ξ|ξ′
k−1,

µ
ξ
k−1 represents the probability of model ξ being the matching model at time step k − 1,

and cξ′ represents the normalization constant, which can be expressed as follows:

cξ′ =
ψ

∑
ξ=1

π
ξ|ξ′
k−1µ

ξ
k−1, ξ′ = 1, · · · , ψ (30)
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Using the initial state mean x̂i
k−1 of model i, the initial conditions for model ξ are

calculated.

x̂0ξ′
k−1 = E

(
Xk−1

∣∣∣Mξ
k , Zk−1

)
=

N

∑
ξ′=1

x̂ξ′
k−1µ

ξ|ξ′
k−1 (31)

P0ξ′
k−1 =

N

∑
ξ=1

µ
ξ|ξ′
k−1

[
Pξ′

k−1 +
(

x̂ξ′
k−1 − x̂0|ξ

k−1

)(
x̂ξ′

k−1 − x̂0|ξ
k−1

)T
]

(32)

where x̂0ξ′
k−1 and P0ξ′

k−1 represent the mixed state matrix and mixed covariance input to the
filter, respectively. The filtering algorithm is used for prediction and updating. After each
time update, it is necessary to recompute the Markov matrix. However, the computation
of the transition matrix is complex and susceptible to noise. To address this issue, this
section adopts the posterior probability density of each model to calculate the transition
probabilities π

ξ|ξ′
k−1. As the transition probabilities are closely related to state changes, and

the state changes are mainly determined by the posterior probability pξ
k of model Mξ

k at
time step k, the transition probabilities between models can be reflected using changes in
the posterior probabilities between two consecutive moments.

Given the posterior probability density µ
ξ′
k−1 of model Mξ′

k−1 at time step k − 1, the

relative rate of change of probability between two adjacent moments ∆ξ|ξ′
k can be given by

the following proportional form:

∆ξ|ξ′
k =

µ
ξ
k

µ
ξ′
k−1

(33)

As indicated by Equation (33), when the probability density µ
ξ
k of model Mξ

k at time step k

increases, ∆ξ|ξ′
k > 1. This means that the posterior probability density from other models at

k − 1 moments transitioning to the current model gradually increases; the converse is also
true. Since the posterior probability density µ

ξ
k changes over time, π

ξ|ξ′
k can be represented

by the model transition probability from the previous moment π
ξ|ξ′
k−1 and the relative rate

of change of probability ∆ξ|ξ′
k . Assuming a normalization constant ρ

ξ|ξ′
k =

∆ξ|ξ′
k

M
∑

ξ′=1
∆ξ|ξ′

k π
ξ|ξ′
k−1

, the

update of the transition probability π
ξ|ξ′
k can be represented as follows:

π
ξ|ξ′
k =

∆ξ|ξ′
k π

ξ|ξ′
k−1

M
∑

ξ′=1
∆ξ|ξ′

k π
ξ|ξ′
k−1

= ρ
ξ|ξ′
k π

ξ|ξ′
k−1 (34)

According to Equation (34), π
ξ|ξ′
k is represented as the product of ρ

ξ|ξ′
k and π

ξ|ξ′
k−1, and there

exists
M
∑

ξ′=1
∆ξ|ξ′

k = 1, thus satisfying the Markov transition matrix conditions. Obviously,

the above parameters can inherently match the maneuvering dynamics, including the CT
motion and the motion switching. As a result, the maneuvering targets with different
dynamics can be detected effectively.

On the other hand, the intensity of target maneuvers directly determines the magni-
tude of process noise. The standard IMM algorithm considers process noise as a constant,
which affects the accuracy of the filtering algorithm. Moreover, the process noise changes
with unknown noise influences. Therefore, it is necessary to adapt the IMM algorithm to
adjust the process noise to accommodate scenarios where the target is maneuvering or
non-maneuvering and the noise is unknown. When the target is maneuvering, increase the
process noise Vk to compensate for modeling errors, resulting in smaller filtering estimation
errors; when the target is non-maneuvering, reduce Vk to maintain tracking accuracy. As-
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suming µ
ξ′
max,k−1 is the maximum value of the posterior probability density of each model

at time step k − 1, then the covariance matrix Qξ
k of the process noise Vk at time step k can

be represented as follows:

Qξ
k =


(

1 − µ
ξ′
max,k−1

)2
Qξ′

0 , ξ = ξ′(
1 + µ

ξ′
max,k−1

)2
Qξ′

0 , ξ ̸= ξ′
(35)

where Qξ′
0 is the initial value of the process noise covariance matrix for model Mξ′

k−1.

According to Equation (35), when the models described by Mξ′
k−1 and Mξ

k are the same,

Mξ′
k−1 matches the current target motion model, and Qξ

k takes the minimum value; when

Mξ′
k−1 and Mξ

k describe different models, Mξ′
k−1 does not match the current target motion

model, and Qξ
k takes the maximum value. Considering the impact from the process noise,

the adaptive adjustment of Qξ
k ensures consistency with the varying intensity of target

maneuvers.

3.2. Implementation of an IMM-TPMB Filter Based on Gate-Control
3.2.1. Predict

1. Undetected and newly detected targets: at time step k, the PPP prediction intensity
for all undetected and newly detected targets within the sensor-monitored area is as
follows:

λk|k−1(t, x1:v) =
Lu

k|k−1

∑
l=1

w0,(l)
k|k−1δt0,l

k|k−1
[t]δ

k−t0,(l)
k|k−1+1

[v]δ
x0,(l)

k|k−1
[x1:v]

+
Lb

k|k−1

∑
l=1

wb,(l)
k δk[t]δ1[v]δXb,(l)

k [xk ]

(36)

X̃0,ξ′,(l)
k|k−1 = F(·

∣∣∣X̃0,ξ′,(l)
k−1|k−1 ) (37)

Lu
k|k−1 = Lu

k|k−1 + Lb (38)

w0,ξ′,(l)
k|k−1 = PS(X̃0,ξ′,(l)

k−1|k−1)w
0,ξ′,(l)
k|k−1 (39)

wb,(l)
k|k−1 =

〈
λB

k , 1
〉

Lb (40)

where the probability density of the single-target particle belief during propagation

is f (x) =
L
∑

l=1
w(l)δx(l) [x], the particle weight indexed by l is w(l) ≥ 0, and δi[u] = 1

only when u = i; otherwise, it is 0. Lb
k indicates the number of newly detected target

particles, and the target component is in the form of particles
{(

w0,ξ′,(l), x0,ξ′,(l)
)}L

l=1
.

2. Surviving targets: for the detected surviving targets, the target state of the ith MBM
component at time step k is represented as follows:

f i
k|k−1(t, x1:v) =

Ld
k|k−1

∑
l=1

wi,(l)
k|k−1δ

t0,ξ′,(l)
k|k−1

[t]δ
v0,ξ′,(l)

k|k−1
[v]δ

x0,ξ′,(l)
k|k−1

[x1:v]

+
Ld

k|k−1

∑
l=1

[
1 − P𝒮 (Xi,(l)

k−1|k−1)w
i,(l)
k−1|k−1δ

t0,ξ′,(l)
k−1|k−1

[t]
]

× δ
k−t0,ξ′,(l)

k−1|k−1
[vi,(l)

k−1|k−1]δX0,ξ′,(l)
k−1|k−1

[x1:v]

(41)
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Xξ,(l)
k|k−1 =

M

∑
m=1

µ
ξ|ξ′
k Fξ|ξ′

k X0,ξ′,(l)
k−1|k−1 (42)

ri
k|k−1 = ri

k−1|k−1

Ld
k|k−1

∑
l=1

P𝒮
(

Xi,ξ′,(l)
k−1|k−1

)
wi,ξ′,(l)

k−1|k−1 (43)

Ld
k|k−1 = Ld

k−1|k−1 (44)

wi,ξ′,(l)
k|k−1 =

P𝒮 (Xi,ξ′,(l)
k−1|k−1)w

i,ξ′,(l)
k−1|k−1

Ld
k|k−1

∑
l=1

P𝒮 (Xi,ξ′,(l)
k−1|k−1)w

i,ξ′,(l)
k−1|k−1

(45)

In the case of undetected and newly detected targets, there is no need to consider
the target model transition probability. F(·) represents the motion model transition
function, which performs maneuvering target particle sampling through multi-model
mixing prediction.

3.2.2. Update

In the BP iterative propagation algorithm, the optimization of the propagated infor-
mation is achieved through P iterations, leading to the convergence of belief for all nodes.
At this point, the label of each node aligns with the label of the node with the highest
posterior probability density among the related nodes, representing the optimal label. In
the update step, we improve the way of information transmission and reduce the amount
of data association calculation by using the GBP. The specific improvement method is in
step 3. The update step in model-driven scenarios includes six stages: particle initialization,
importance sampling of particles, iterative information transfer, belief calculation, pruning
and resampling, and target state estimation.

1. Particle initialization: The Poisson intensity is represented as a set of particles de-

noted by
{(

t0,ξ′,(l)
k|k−1 , X0,ξ′,(l)

k|k−1 w0,ξ′,(l)
k|k−1 e−γk(X0,ξ′,(l)

k|k−1 )
)}Lu

k|k−1

l=1
. Updating for new, missed,

and surviving targets requires considering whether targets are alive at the current
moment.

2. Particle importance sampling: Utilize the ASCKF for importance sampling of particles.
After iterating the prediction and updating process of prior and posterior information
at time step k − 1, the particles at time step k follow the distribution function

xi,ξ′,(l)
k ∼ q(Xi,ξ′,(l)

k , Zk) = N(x̂i,ξ′,(l)
k , Pi,ξ′,(l)

k ) (46)

Here, N(x̂i,ξ′,(l)
k , Pi,ξ′,(l)

k ) denotes a Gaussian distribution with mean x̂i,ξ′,(l)
k and vari-

ance Pi,ξ′,(l)
k , as determined by the ASCKF.

3. Iterative information transfer: Measurement assessment requires calculating the

information mj
k transferred from each factor node p

k
to variable node β

j
k in the vector

measurement. Factor node p
k

represents the process of information transfer between
surviving trajectories and both sides.

m(p,l)
i,j (i) =

1

λC
k (w

j
k)u

(p)
i,j

Li

∑
l=1

w(p,l)
i,j δ

k−ti,ξ,(l)
k|k

[vi,ξ,(l)
k|k ]× γk(Xi,ξ,(l)

k|k )lk(w
ξ
k

∣∣∣Xi,ξ,(l)
k|k ) (47)
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γ
(p,l)
j,i (Xi

k) = ∑
m̃j

k

p
k

(
Xi,ξ,(l)

k , β
(p)
i,j (·); wj

k

)
v(p)

j,i

(
β
(p)
i,j (·)

)

=


lk
(

wj
k

∣∣∣Xξ,(l)
k|k

)
γk

(
Xξ,(l)

k|k

)
λc

k(z
j
k)

+
nk|k
∑

i=1
m(p)

i,j + 1 Xξ,(l)
k = {x}

nk|k
∑

i′=1
m(p)

i′ ,j (i
′) + 1 Xξ,(l)

k = ∅

(48)

In p ∈ {1, . . . , P} iterations, based on the factor graph formula, the running time of
calculating particle weights during the information propagation between each variable
node and factor node increases. As the number of targets increases, we also consider the
propagation time between factor nodes and variable nodes. The proposed GBP is set to
reduce the running time of false hypothesis associations. Therefore, the main computational
cost is effectively saved by only achieving the related weights. As a result, the tracking
accuracy is well ensured.

There is no need to consider the information propagated across all nodes; instead,
only the information within the gating needs to be calculated, thus reducing the weight
calculation. The likelihood function for target generation is represented as follows:

lk
(

Zk

∣∣∣xi,ξ,(l)
k|k

)
=


e−γk(xi,ξ,(l)

k|k )
∏

zI
k∈wk

γk

(
xi,ξ,(l)

k|k

)
lk
(

wj
k

∣∣∣xi,ξ,(l)
k|k

)
d(x, z) ≤ δ

0 otherwise
(49)

where d(x, z) represents the Euclidean distance between the surviving target particles
and the current measurement location, with δ being the gating threshold for particle-
measurement association. After one iteration, particle weights converge towards values
close to the true state of the target. In subsequent iterations, the information u(p+1,l)

i,j

propagated from the variable node x̃l
k to the factor node p

k
represents the unnormalized

Bernoulli component density.
When i ∈

{
1, . . . , nk|k−1

}
, j ∈ {1, . . . , mk}, predict the next moment’s surviving target

generation of particles and update with current measurements:

u(p+1)
i,j = ri

k|k−1

M

∑
n=1

Li

∑
l=1

w(p+1,n,l)
i,j + 1 − ri

k|k−1 (50)

w(p+1,l)
i,j =

M

∑
n=1

w(1,n,l)
i,j

mk

∏
j′=1


lk(z

j
k

∣∣∣xi,ξ,(l)
k|k )γk(xi,ξ,(l)

k|k )

λC
k (z

j
k)

(
nk|k
∑

i′=1
m(p)

i′ ,j′(i
′) + 1

) + 1

 (51)

When i ∈
{

nk|k−1 + 1, . . . , nk|k

}
, j ∈

{
1, . . . , i − nk|k−1

}
, predict the next moment’s

missed and new target generation of particles and update with current measurements. The
information u(p+1)

i,j and particle weights are expressed as follows:

u(p+1)
i,j =

Li

∑
l=1

w(p+1,l)
i,j + 1 (52)

w(p+1,l)
i,j = w(1,l)

i,j

i−nk|k−1

∏
j′=1
j′ ̸=j


lk(z

j
k

∣∣∣xi,ξ,(l)
k|k )γk(xi,ξ,(l)

k|k )

λ𝒞
k (z

j
k)

(
nk|k
∑

i′=1
m(p)

i′ ,j′(i
′) + 1

) + 1

 (53)
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4. Belief calculation: After multiple iterations of the above steps, the information and
example weights converge to the true posterior probability density of the target.
The belief f̃ p

k|k(·) for the target state in each MBM component is represented as a set(
ri

k|k,
{(

wi,ξ,(l)
k|k , ti,ξ,(l)

k|k , Xi,ξ,(l)
k|k

)}Li

l=1

)
of particles, and its calculation method is similar

to information u(p+1)
i,j . Additionally, subsequent iterations still require calculating

particle weights and the existence probability of Bernoulli to ensure the validity of
trajectory belief, followed by weight normalization.

For new targets i in the detection area at time step k, when i ∈ {1, . . . , nk|k−1}, then
the updated existence probability of the target is as follows:

r(i,l)k|k =

ri
k|k

LI
∑

l=1
w(P+1,l)

i

ri
k|k−1

LI
∑

l=1
w(P,l)

i + 1 − ri
k|k−1

(54)

For undetected potential targets i, when i ∈ {nk|k−1 + 1, . . . , nk|k}, then the updated
existence probability of the target is the following:

r(i,l)k|k =

L
∑

l=1
w(P+1,l)

i

ri
k|k−1

L
∑

l=1
w(P,l)

i + 1
(55)

The updated particle weight is normalized as follows:

w(i,ξ,l)
k|k =

w(P+1,l)
i

LI
∑

l=1
w(P+1,l)

i

(56)

5. Pruning and resampling: To reduce the number of global hypotheses, pruning and
resampling of the MBM components are necessary. By approximating MBMs with low
existence probabilities as PPPs, the algorithm increases computational speed without
significantly impacting accuracy. The calculation of distortion caused by minimizing
the KLD under the PPP approximation is as follows:

DKL

(
f s, f
k|k−1

∣∣∣∣∣∣ f u,b
k|k−1

)
= rk|k−1 +

(
1 − rk|k−1

)
log
(

1 − rk|k−1

)
(57)

6. Target state estimation: Select the MB components with existence probabilities above a
set threshold to estimate the current target state at time step k, from a set of weighted
particle collections, represented as the outputted target trajectory
Xi,ξ,(l)

k = 1

∑
l∈Li

k

wi,ξ,(l)
k|k ∑

l∈Li
k

wi,ξ,(l)
k|k Xi,ξ,(l)

k|k
. New target estimates are achieved using a Pois-

son point process, outputting a set of new target trajectories, denoted as trajectory
Xb =

(
tb, x1:v

)
, where tb = k is the birth time, and v = 1 is the trajectory length.

4. IMM-TPMB Filter Driven by Model and Data Collaboration

Addressing the particle degeneration issue identified in [20], this paper proposes a
SCKF-based particle importance sampling method for IMM-TPMB-GBP. The improved
IMM-TPMB-GBP particle filter employs the ASCKF to obtain state estimates and their
covariance matrices at each moment, using these as the mean and variance in the origi-
nal filter to establish a proposal distribution function. Innovatively, in scenarios where
noise statistics are unknown, the ASCKF provides an adaptive noise ASCKF, enhancing
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the accuracy of particle weights. While particle filters typically face degeneration, the
ASCKF performs moderately in systems with non-Gaussian noise estimation. Utilizing the
advantages of ASCKF in estimating unknown noise and nonlinear estimation, this paper
combines the improved ASCKF with IMM-TPMB-GBP, proposing a new state estimation
method. Further, the ASCKF in this paper adaptively estimates the covariance of process
noise and measurement noise in interacting multiple models, not relying on noise system
metrics, thus offering robust performance.

We omit the auxiliary variables l of the target state and use the node i to represent the
highest posterior probability density. In a nonlinear model, the target state equation and
the measurement equation for a motion model ξ are formulated as follows:

Xk = F
(

Xξ′
k−1

)
Xξ′

k−1 + Gωk−1

Zk =

[ √
x2

k + y2
k

arctan(yk/xk)

]
+ vk

(58)

where G =

[
T2/2 T 0 0

0 0 T2/2 T

]
denotes the input matrix, assuming the position and

velocity components are (xk, yk) and
( .
xk,

.
yk
)
, respectively, T represents the sampling

interval, Xk can be expressed as Xk =
[
xk,

.
xk, yk,

.
yk
]T, ωk is process noise with zero mean

and the covariance matrix Qk. Zk represents the measurement set at time step k, Vk is the
measurement noise with zero mean and the covariance matrix Rk.

4.1. Predict

Initialize the state mean x̂0 and the error covariance P̂0 and decompose the Gaussian
terms’ covariance in the target trajectory composed by Equation (44) through Cholesky
decomposition chol(·).

S0 = chol(P0)
T (59)

Use the third-order spherical-radial volume criteria to generate volume points χi,k−1,
where χi,k−1 = Sk−1ξi + x̂k−1, i = 1, 2, · · · , 2n. The volume points after propagation are
yielded through the nonlinear state equation:

χ∗
i,k|k−1 = f

(
χ

ξ′
k−1|k−1

)
(60)

Calculate the predicted state mean and square root covariance from the volume points
after propagation:

x̂k|k−1 =
1

2n

2n
∑

i=1
χi,k|k−1

Sk|k−1 = Tria
{

Xk|k−1,
√

Qk

}
Xk|k−1 =

1√
2n

[
χ∗

1,k|k−1 − x̂k|k−1, χ∗
2,k|k−1 − x̂k|k−1, · · · , χ∗

2n,k|k−1 − x̂k|k−1

] (61)

where Tria(·) represents the triangulation operation. The volume points after propagation
are yielded through the measurement equation:

χ∗∗
i,k|k−1 = h

(
χi,k|k−1

)
(62)

Calculate the measurement mean and the square root covariance matrix:
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

ẑk|k−1 =
1

2n

2n
∑

i=1
χ∗∗

i,k|k−1

Szz,k|k−1 = Tria
{

Zk|k−1, SR

}
Zk|k−1 =

1√
2n

[
χ∗∗

1,k|k−1 − ẑk|k−1, χ∗∗
2,k|k−1 − ẑk|k−1, · · · , χ∗∗

2n,k|k−1 − ẑk|k−1

] (63)

Calculate the cross-covariance between the state and measurement:

Sxz,k|k−1 = Xk|k−1ZT
k|k−1 (64)

Calculate the Kalman gain:

Kk =
(

Sxz,k|k−1

∣∣∣ST
zz,k|k−1

)
Szz,k|k−1 (65)

4.2. Update

Calculate the updated state mean and the square root of the state covariance: x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
Sk|k = Tria

([
Xk|k−1 − KkZk|k−1, Kk

√
Rk

]) (66)

During the model update, calculate the probability of the ξth model:

Λξ
k = P

(
Zk

∣∣∣Mξ
k , Zk−1

)
= N

[
γ

j
k : 0, Szz,k|k−1

]
= 1√

|2πSzz,k|k−1|
exp

[
− 1

2

(
γ

ξ
k

)T(
Szz,k|k−1

)−1(
γ

ξ
k

)] (67)

Calculate the conditional probability:

µ
ξ
k = P

(
Mξ

k

∣∣∣Zk
)
=

1
c

Λξ
k cξ (68)

As known from Equations (61) and (66), Qk and Rk significantly influence the values of
Sk|k−1 and Sk|k. However, in the target tracking process, the noise data change over time.
Any mismatch between the actual noise affecting the system and the noise assumed in the
SCKF can degrade the performance of the SCKF, as it may also diverge. Therefore, it is
necessary to precisely estimate the matrices Qk and Rk. The posterior density function can
be calculated as follows:

Π∗ = p(Xk, Qk, Rk|Zk ) =
P(Zk|Xk, Qk, Rk )P(Xk|Qk, Rk )p(Qk, Rk)

P(Zk)
(69)

where p(Qk, Rk) is considered a constant dependent on prior information, and P(Zk) does
not involve an optimization problem; hence, Equation (69) is equivalent to the following:

Π = P(Zk|Xk, Qk, Rk )P(Xk|Qk, Rk )p(Qk, Rk) (70)

where P(Xk|Qk, Rk) can be calculated using the conditional probability multiplication
theorem as follows:
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P(Xk |Qk , Rk ) = P(x0)
k

∏
m=1

P(xm |xm−1, Qk )

=
1

(2π)n/2
∣∣∣P0|0

∣∣∣1/2 exp
(
− 1

2
∥x0 − x̂0∥2

P−1
0|0

)
×

k
∏
j=1

1

(2π)n/2|Qk |1/2 exp
(
− 1

2
∥xm − f (xm−1)∥2

Q−1
k

)

= M1|Qk |−k/2 exp

{
− 1

2

[
∥x0 − x̂0∥2

P−1
0|0

+
k
∑

j=1
∥xm − f (xm−1)∥2

Q−1
k

]} (71)

where M1 = 1
(2π)n/2|P0|0|1/2 is a constant, n represents the dimension of process noise, and

P(Zk|Xk, Qk, Rk) can be expressed as follows:

P(Zk|Xk, Qk, Rk ) =
k

∏
j=1

P(zm|xm, Rk )

=
k

∏
j=1

1

(2π)q/2|Rk|1/2 exp
(
−1

2
∥zm − h(zm)∥2

R−1
k

)
= M2|Rk|−k/2 exp

(
−1

2

k
∑

j=1
∥zm − h(zm)∥2

R−1
k

) (72)

where q represents the dimension of measurement noise and M2 = 1
(2π)qk/2 is a constant.

By substituting Equations (71) and (72) into Equation (70), Π can be calculated:

Π = M1 M2|P0|−1/2|Qk |−k/2 p(Qk , Rk)× exp

− 1
2

 ∥x0 − x̂0∥2
P−1

0|0
+

k
∑

m=1
∥xm − f (xm−1)∥2

Q−1
k

+
k
∑

m=1
∥zm − h(zm)∥2

R−1
k




= C|Qk |−k/2|Rk |−k/2 exp

− 1
2


k
∑

m=1
∥xm − f (xm−1)∥2

Q−1
k

+
k
∑

m=1
∥zm − h(zm)∥2

R−1
k




(73)

where C = M1M2

∣∣∣P0|0

∣∣∣−1/2
p(Qk, Rk) exp

{
− 1

2∥x0 − x̂0∥2
P−1

0|0

}
. According to Equation (73),

calculate the partial derivatives of the function Π with respect to Qk and Rk, where the
extremum points are as follows:

Q′
k =

1
k

k
∑

m=1

{
(x̂m − f (x̂m−1))(x̂m − f (x̂m−1))

T
}

R′
k =

1
k

k
∑

m=1

{
(zm − h(x̂m))(zm − h(x̂m))

T
} (74)

According to the calculation process of the ASCKF, f (x̂m−1) and h(x̂m) can be repre-
sented as follows:

Q′
k =

1
k

k
∑

m=1

{(
x̂m − 1

2n

2n
∑

i=1
f
(

χi,m−1|m−1

))(
x̂m − 1

2n

2n
∑

i=1
f
(

χi,m−1|m−1

))T
}

R′
k =

1
k

k
∑

m=1

{(
zm − 1

2n

2n
∑

i=1
h
(

χi,m|m−1

))(
zm − 1

2n

2n
∑

i=1
h
(

χi,m|m−1

))T
} (75)

By solving the first-order partial derivatives of the function Π with respect to Q′
k and

R′
k, a suboptimal estimate of the unknown covariance matrices of process and measurement

noise can be obtained, which is then incorporated into the nonlinear filter ASCKF for
recursive computation. Table 1 gives the algorithm process. Combined with the algorithm
proposed in Section 3, this method does not depend on noise statistics and exhibits good
robustness. Usually, the detection probability and clutter rate are two important factors that
affect tracking performance during the process of target estimation. Therefore, we analyze
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measurement noise and process noise individually, and then obtain the modification of
Q′

k and R′
k in the ASCKF. Both the over-estimation and the under-estimation derived from

the factors can be corrected. On the other hand, the IMM filtering framework ensures
the motion switching between two continuing dynamics, which can distinguish the close
targets. Especially, these targets can be further distinguished by using the proposed filter
based on the novel filtering mechanism.

Table 1. Algorithm process.

Pseudocode of IMM-TPMB-GBP-ASCKF Filter
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This algorithm replaces the covariance matrix recursion of the CKF with the square
root form of the covariance matrix, ensuring the efficiency of the filtering process while
avoiding numerical instabilities caused by rounding errors, thus enhancing the precision
and stability of the filtering algorithm. Moreover, ensuring the positive definiteness of
the covariance matrix enhances its numerical stability. The performance of the proposed
method, compared to CKF and UKF, features smaller estimation errors and faster conver-
gence rates, and it effectively tracks the motion state of maneuvering targets, enhancing
the system’s accuracy.
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5. Simulation Results and Discussions

In the numerical study, a typical 2-dimensional scenario is performed to evaluate
both the reliability and efficiency of the proposed filter, which is driven by model and
data collaboration for extended target tracking. The experimental environment was the
following: IntelTM CoreTM i5, RAM 16 GB, WindowsTM 10, and MATLABTM R2022b.

5.1. Simulation Scenario

This algorithm primarily addresses the tracking of extended targets under the condi-
tions of multi-model switching and unknown noise influences. In this section, we present
the results of 100 Monte Carlo simulations conducted in the first scenarios. We tested the
proposed IMM-TPMB-GBP-ASCKF filter in two target motion scenarios and compared it
with the GGIW-TPMB filter from [24], which used clustering and assignment, as well as
with the TPMB-BP [20], TPMB-GBP, and IMM-TPMB-GBP-CKF filters.

The linear programming (LP) metric was used to compare the performance of these
filters [25,26]. Thus, we set different numbers of maneuvering targets in two scenarios,
each under different motion models. The target motion models include Constant Velocity
(CV) and Constant Turning (CT), with their corresponding motion equations as follows:

FCV =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, FCT =


1 0 sin(θT)/θ −[1 − cos(θT)]/θ

0 1 [1 − cos(θT)]/θ sin(θT)/θ

0 0 cos(θT)/θ −sin(θT)/θ

0 0 sin(θT)/θ cos(θT)/θ

, QCV = QCT =


T2/3 0 T2/2 0

0 T2/3 0 T2/2
T2/2 0 T 0

0 T2/2 0 T

σ2

Each object consists of a two-dimensional position and velocity, which we represent
using the target matrix xk = [xk,

.
xk, yk,

.
yk]

T. (xk, yk) denotes the plane position coordinates,
and (

.
xk,

.
yk) is used to represent the planar position. We consider a monitoring area of

200 m × 200 m, with a total motion duration of 100 s. For the following two scenarios, we
set the sampling period T = 1 s and the mean clutter rate γ = 10. The Poisson rate of
PPP birth is 0.01, the clutter is distributed in the region. For the birth density, the velocity
follows a Gaussian distribution with zero mean and covariance 100 I2, where I2 represents
an identity matrix of size 2. For the GGIW implementations, the position is Gaussian
distributed with zero mean and covariance 150 I2. In the two experimental scenarios,
different numbers of target trajectories are set to test the algorithm’s performance. Assume
a detection probability of PD = 0.9, a survival probability of PS = 0.95, and a forgetting
factor for the measurement rate state set to η = 1.25. The experimental results indicate
that using 1000 particles in our filter achieves a good balance between the runtime and
estimation performance.

5.2. Simulation 1

For Simulation 1, we set up a challenging experiment to demonstrate the tracking
error of target trajectories and the precision of extended state tracking under a fixed clutter
rate, 10, by four filters. The parameters of target trajectories are shown in Table 2. Note that
the targets in three different motion states appear at different locations within the detection
area at the 10th s, 20th s, and 30th s. With a total of 100 steps run, each trajectory initialized
from the starting point to the midway step, with the remaining steps generated forwards
and backwards.

Table 2. Parameters of target trajectories in Simulation 1.

No. Prior Target State First Stage Second Stage Third Stage

1 (15, 2.1, 17, 2.5)T 20~40 s 40~63 s --
2 (150, −1.5, 200, −1)T 10~40 s 25~75 s --
3 (150, 0, 18, 2)T 35~55 s 55~90 s 90~100 s

In this scenario, we concentrate on estimating trajectories and compare the estimated
extended states against the actual values. Among the various performance metrics for tra-
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jectory estimation, we employ the Linear Programming (LP) and the Gaussian Wasserstein
Distance (GWD) metric d(·, ·) [27]. We set the cut-off distance to 20, establish the order
p = 1, and set the track switch cost to 2 in order to apply these metrics at each time step.

The target trajectories are shown in Figure 2. We know that the available measurement
information contains both real targets and random clutter. From this figure, we observe
three trajectories. Clearly, the three targets have nonlinear motion states, performing CV and
CT motions in stages within the detection area and the model has different angular velocities
during CT motion. During three stages, the respective motion states are designated as CV,
CT, and CV in turn, where the turning velocity is given before the scenario. The clutter
obeys Poisson distribution, and the measurement noise and covariance are unknown to
the filter.
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Figure 2. Tracks of 3-target estimates.

In Figure 3a, it is evident that the filters proposed in this paper offer excellent extended
state estimation and stable tracking performance for elliptical extended targets. In Figure 3b,
we note that the cardinality statistics change as time progresses. Obviously, all algorithms
perform well in the potential estimation. The TPMB-BP, TPMB-GBP, IMM-TPMB-GBP-CKF
algorithms, and the algorithm discussed in this paper all closely approximate the true
number of targets, while the classical GGIW-TPMB algorithm underestimates the number
of highly maneuverable targets; significant deviations in the potential estimation by the
GGIW-TPMB algorithm from the true values are evident at the 30th s, 40th s, and 65th s.
The TPMB-BP and TPMB-GBP algorithms have a faster computation speed compared to
IMM-TPMB-BP-CKF, and both algorithms essentially provide similar estimates of target
potential. Notably, the standard filters are affected by multiple measurements from random
clutter, resulting in some positional estimation biases. The filters proposed in this paper
effectively eliminate the impact of unknown noise on tracking performance, providing
accurate estimates.
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The track error of the trajectory in Scenario 1 under the LP metric is presented in
Table 3. For the extended target, the cost of state error dominates the overall LP estimation
error. When the targets are in the same clutter, the measurement errors increase. For
the most advanced TPMB-BP filter, we improved its correlation process and obtained the
Gate-control BP association method that reduces the LP measurement error with adaptive
gating. Among the five filters, the IMM-TPMB-GBP-ASCKF filter, with its superior noise
adaptability, achieves the lowest LP metric. All five filters perform well when tracking
targets at adequate intervals. However, as the targets move closer to each other, they
become indistinguishable. Thanks to its adaptive noise estimation, the improved ASCKF
enables the algorithm proposed in this study to achieve the lowest target state cost and
false detection cost among the four filters. In such scenarios, the cost of losing targets
predominates in the LP estimation error. Moreover, in situations where highly maneuvering
targets frequently change their motion states, the improved algorithm allows the trajectory
to achieve reduced switch cost during transitions.

Table 3. Mean tracking errors for each filter.

Filter Total State Miss False Switch

GGIW-TPMB 52.65 43.41 11.41 17.39 0.158
TPMB-BP 44.35 38.75 6.27 13.74 0.076

TPMB-GBP 43.79 36.92 6.13 13.49 0.074
IMM-TPMB-GBP-CKF 40.12 34.14 5.84 14.01 0.097

IMM-TPMB-GBP-ASCKF 37.60 33.74 3.73 8.68 0.079

Undoubtedly, the TPMB-BP filter is the current optimal filter, which avoids explicit
assumption enumeration in data association compared to traditional filters, improves data
association accuracy, and reduces the running time of the data association process. Our
work is to further reduce the running time of the data association process and improve the
anti-interference ability against noise based on the TPMB-BP filter, and its performance is
demonstrated in Simulation 2.

5.3. Simulation 2

For Scenario 2, to further validate the performance of the proposed algorithm, we
designed a set of comparative experiments under the low clutter rate of 10 and the high
clutter rate of 30, respectively. The parameters of target trajectories are shown in Table 4.

Table 4. Averaged tracking errors for each filter.

Number Prior Target State Motion Lasting Time Death Position

1 (100, −1.125, 66, −0.55)T CV (3,83) (10,22)
2 (138, −0.95, 152, 0.125)T CV (3,83) (62,162)
3 (51, 0.75, 4, 1.25)T CV (6,86) (111,104)
4 (57, −0.225, 15, 0.55)T CT (6,86) (23,135)
5 (133, −0.25, 41, 0.2)T CT (9,89) (33,141)
6 (3, 0.175, 12, 0.75)T CT (9,89) (33,112)
7 (29, 1.5, 133, −0.75)T CT-CV (12,92) (170,115)
8 (34, 0.6, 9, 0.55)T CT-CV (12,92) (94,101)
9 (21, 0.25, 16, 0.6)T CT-CV (15,95) (112,116)
10 (24, 0.125, 141, −0.75)T CT-CV (15,95) (35,53)

Figure 4 shows that all five filters can converge to the actual number of targets. It was
observed that as the clutter density increases, the state estimation error of each algorithm
also increases. The reason for the increase in state estimation error in standard filters
is due to the generation of random clutter by the filter and environment while tracking
maneuvering targets. In contrast, the other four filters exhibit better robustness to the state
transitions of targets, resulting in more accurate state estimations. More importantly, this
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paper employs a method using interactive gating with GBP data association and an ASCKF
that adapts the covariance matrix for unknown noise, addressing inaccuracies in state
estimation under high clutter and unknown noise conditions. However, the cardinality
estimated by standard filters is the least stable. During low clutter phases, false alarms
occur due to the filter’s inability to adaptively model estimates for non-linear targets.
Since the targets maintain non-maneuverability, standard filters mix random clutter and
unknown noise, leading to inaccurate state estimation. Conversely, at the 55th s mark,
there is a missed detection because two of the targets switch from CT to CV motion models,
and the filters fail to immediately adapt to the motion changes. The IMM-TPMB-GBP-
CKF, TPMB-GBP, and TPMB-BP algorithms exhibit lower state estimation errors and show
stable performance throughout the detection period, though they also face the issues of
increased estimation error with higher clutter rates. In contrast, the algorithm proposed
in this work maintains low state estimation errors under both low and high clutter rates.
It is less affected by increases in clutter and motion model transitions and controls the
overestimation of target states under high clutter conditions.
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The GOSPA distances for the five filters are shown in Figure 5. As expected, throughout
the detection period, the algorithm proposed in this paper consistently shows the lowest
GOSPA distance. At the 10th s, 20th s, 45th s, and 65th s, the peaks in clutter density from the
standard filter are caused by false alarms, mode transitions, and missed targets, involving
both cardinality and location errors. The experiments reveal that due to the inability of
the filters to switch motion models during the target’s motion cycle, significant tracking
mismatches occur, leading to increased state estimation errors. Since the targets include
CV and CT models, which appear with equal probability at certain times, the proposed
filter automatically adjusts the gating thresholds based on the target state model, reducing
the number of incorrect associations and association duration, thereby enhancing the
accuracy of target measurement associations and correcting unstable cardinality estimates.
Considering the actual tracking reliability of the filter proposed in this paper under different
clutter rates, four types of filters were operated under two different clutter rates. This figure
displays a comparison chart of the GOSPA errors of the five filters under these two clutter
rates. Notably, as the clutter rate increases, the filter proposed in this paper provides stable
cardinality estimates. In situations with noise and unknown covariance, the algorithm
proposed demonstrates stable estimation performance. Moreover, in the ASCKF, it also
performs well with noise having smaller covariance. This means that the filter proposed in
this paper does not exhibit significant changes under various clutter environments.
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Finally, due to the specificity of the GOSPA evaluation algorithm, it can be differen-
tiated into two parts: the number of missed targets and the number of false targets. The
missed and false target state estimates are compared under different clutter rates. Figure 6
shows the missed target state estimation under different clutter rates. It can be seen that
all four filters experience a sharp increase in the number of missed targets at the 10th s, as
targets begin to appear, due to the classical filter’s lack of a multimodal assumption and
the increasing number of targets under the influence of clutter. However, the remaining
three filters, having a multimodal assumption, adjust their matching models with changes
in the motion state of the models, thus significantly reducing missed targets compared to
the classical filter. Compared with TPMB-GBP and TPMB-BP, the improved TPMB-GBP
reduced the GOSPA error. Due to the lack of a mixture of adaptive multi-model algorithm
for high maneuvering targets, the performance difference between the two algorithms is
relatively small.
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Table 5 shows that TBP-GBP has shorter running time under different clutter and
particles. The IMM-TPMB-GBP-CKF, TPMB-GBP, and TPMB-BP algorithms show an
increase in missed counts under different clutter levels, but the IMM-TPMB-GBP-CKF
algorithm reduces the number of misses in high clutter rates due to adaptive gating
adjustments and also reduces operation time. The algorithm proposed in this paper, with
the inclusion of ASCKF, reduces target location errors and clutter interference, and the
number of missed targets does not significantly change with increasing clutter.
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Table 5. Comparisons of averaged running time under different clutter levels and particle counts in
Simulation 2.

Particle Number Clutter Rate TPMB-BP TPMB-GBP IMM-TPMB-
GBP-CKF

IMM-TPMB-
GBP-ASCKF

500
low 20.635 19.229 171.960 176.263
high 34.871 30.615 179.284 184.736

1000
low 29.256 27.836 174.642 178.918
high 50.697 47.698 193.856 197.604

1500
low 39.198 33.651 181.284 182.684
high 59.989 54.873 205.207 208.837

The false target state estimation, shown in Figure 7a, shows a significant increase at
the 10th s as the number of emerging targets grows. It can be observed that at the 20th s,
as the target motion models switch, the number of false targets reaches its peak, with the
algorithm proposed in this paper having the lowest false target state estimation among the
five filters. Studies show that, compared to the four filters analyzed alongside the proposed
algorithm, this algorithm exhibits the lowest GOSPA error values and adapts to non-linear
target estimation under the influence of different clutter rates.
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In order to verify the average running time of the proposed filter in this article under
different particle and clutter conditions, we set up a set of comparative experiments to
verify its effectiveness. Due to the fact that the GGIW-TPMB filter is a Gaussian imple-
mentation method, we only compare the average running time of the other four filters
under different particles. Note that TPMB-BP is a particle implementation based on the
confidence propagation data association, which results in a large computational workload
due to multiple iterations of calculating example weights. On the basis of the same tracking
effect, the proposed algorithm reduces the computation of particle likelihood in the target
measurement matching process by integrating the TPMB-GBP algorithm for comparison,
thereby reducing the overall time. With the increase in trajectory, iteration count, and clutter
rate, the time consumption of the IMM-TPMB-GBP-ASCKF filter is only slightly higher
than that of the IMM-TPMB-GBP-CKF filter, which is reasonable due to the additional noise
estimation process of the proposed filter. As the noise increases, the running time of the
four filters significantly increases. Due to the improved ASCKF filter’s good adaptability
to noise, it can effectively filter out clutter, and the time consumption does not change
significantly compared to CKF. Additionally, under high clutter density conditions, the
IMM-TPMB-GBP-ASCKF filter demonstrates higher accuracy. The results indicate that the
proposed IMM-TPMB-GBP-ASCKF filter maintains robust tracking performance for highly
maneuverable targets and under the impact of unknown noise, while incurring a moderate
computational cost.
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6. Conclusions

This paper introduces a new robust TPMB filter designed for conditions with uncertain
process and measurement noise. By enhancing the adaptive multi-model switching method
and performing process noise estimation, we provide robust recursive formulations for
TPMB. In terms of model-driven aspects, we have improved the IMM by increasing the
matching degree of target motion mode switching through model probability transfor-
mation at two adjacent moments. From a data-driven perspective, the GBP in the factor
graph for the association of measurement vectors allows the model to adaptively adjust the
gating threshold based on the association vector, effectively reducing the computational
complexity of data association. Additionally, we present an improved method of impor-
tance sampling for IMM-TPMB’s ASCKF particles, optimizing the particle degradation
issue by estimating the process and measurement noise in the context of target positioning.
Simulation studies show that, compared to the GGIW-TPMB, TPMB-BP, TPMB-GBP, and
IMM-TPMB-GBP-CKF, the IMM-TPMB-GBP-ASCKF achieves the best overall performance
in terms of filtering efficiency and computation time across different target numbers, motion
states, and clutter rates.

Future work includes conducting more extensive tests on different clutter models.
Although the algorithm proposed in this paper mitigates particle degradation and running
time to some extent, the running time continues to increase with the number of targets, and
measurement estimation errors arise due to closely spaced measurements. For scenarios
with a high number of measurements and closely spaced measurements, an improved
measurement tracking gating method can be employed for processing.
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