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Abstract: Soil classification is essential for understanding soil properties and their suitability for
conveying the characteristics of soil types. In this study, we present a prediction of soil classification
using fewer soil variables by employing the random forest (RF) technique in machine learning.
This study compiled the parameters outlined in the unified soil classification system (USCS), a
widely used method for categorizing soils based on their properties and behavior. These parameters,
encompassing grain size distribution, Atterberg limits, the coefficient of uniformity, and the coefficient
of curvature, were defined within specific ranges to create a synthetic database for training the RF
model. The importance of input factors in soil classification was assessed using the out-of-bag
samples in RF. Through rigorous validation techniques, including cross-validation, the performance
of the RF model is thoroughly assessed, demonstrating its capability to accurately evaluate soil
classification. The findings indicate that the RF model presented in this study exhibits a promising
alternative, providing automated and accurate classification based on soil data. Notably, the model
indicates that the coefficients of uniformity and gradation are insignificant for soil classification and
can predict soil types even when these factors are missing, a feat that traditional methods struggle
to achieve.

Keywords: soil; unified soil classification system; random forest; grain size; Atterberg limits

1. Introduction

Soil classification serves as a foundational component of geotechnical engineering,
offering a structured system to organize and classify soils according to their physical and
engineering attributes [1–3]. This systematic approach enables engineers and geologists to
comprehend and communicate the properties and behaviors of various soil types, facili-
tating applications such as foundation design, construction planning, and environmental
management [4–7]. Classical soil classification methods include the unified soil classifica-
tion system (USCS), the United States department of agriculture (USDA) soil taxonomy,
the American association of state highway and transportation officials (AASHTO) classifi-
cation system, the Canadian system of soil classification, and the British soil classification
system [8–14]. The USCS is a widely adopted method for classifying soils based on their
physical and mechanical properties. It is extensively utilized in geotechnical engineering
to determine soil behavior for construction projects, assess soil suitability, and design
foundations. The AASHTO soil classification system, on the other hand, is mainly used
to evaluate soils for highway construction and other transportation infrastructure. It aids
in assessing soil suitability for use as subgrade material, predicting performance under
load, and guiding construction practices. The AASHTO system focuses on soil behavior
related to highway performance, including stability and drainage. Both the USCS and
AASHTO system offer valuable frameworks for soil classification, each addressing specific
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engineering needs. While these systems remain fundamental in soil classification, their
effectiveness is significantly enhanced by modern computational techniques, which provide
more accurate and efficient soil evaluations for various engineering applications.

The USCS stands out as one of the most extensively utilized soil classification frame-
works globally. It groups soils into distinct categories based on factors like particle sizes,
mineral composition, plasticity, and other engineering characteristics [15–17]. By catego-
rizing soils into classifications like sands, silts, clays, and their combinations, the USCS
establishes a uniform terminology for describing soil traits and performance.

Typically, the USCS classification process involves laboratory analyses and field evalu-
ations, where soil samples are scrutinized for parameters like grain size distribution and
Atterberg limits, which include plasticity index (PI), plastic limit (PL), and liquid limit (LL),
along with other relevant attributes [18–20]. These findings are then compared against
predefined classification standards to assign each soil sample to a specific group or category
within the classification system. Traditional methods rely heavily on expert knowledge and
manual processes, which are time-consuming and prone to human error [21–23]. Machine
learning (ML) offers a promising alternative, providing automated and accurate classifi-
cation based on soil data. Researchers are exploring advanced techniques, including ML
algorithms like logistic regression (LR), support vector machine (SVM), random forest (RF),
artificial neural networks (ANNs), and decision trees (DTs), to devise effective soil classifi-
cation methods [24–29]. A concrete example of using ML for soil classification is provided
by Aydın et al. [25]. A new classification method for determining different soil classes,
based on three ML approaches—support vector classification (SVC), multilayer perceptron
(MLP), and RF models—has been proposed by Nguyen et al. [27]. It was indicated by the
results that, while all three models perform well, the SVC model is the most accurate in
classifying soils. A fuzzy decision tree approach to soil classification is applied by Ribeiro
et al. [28]. The application of support vector machines for estimating soil properties and
classifying soil types based on known chemical and physical properties in sampled profiles
is introduced by Kovačević et al. [29]. The review of the existing literature suggests that
ML models hold promise for achieving accurate soil classification tasks.

This study utilizes the RF method, renowned for its high accuracy and robustness,
to classify soil types. The parameters for this classification are derived from the USCS,
a widely adopted method for categorizing soils based on their properties and behavior.
These parameters include grain size distribution, Atterberg limits, coefficient of uniformity
(Cu), and coefficient of curvature (Cc), which are defined within specific ranges to create
a synthetic database for training the RF model. The importance of input factors in soil
classification was evaluated using out-of-bag samples in the RF model. Through rigorous
validation techniques, including cross-validation, the performance of the RF model was
thoroughly assessed, demonstrating its capability to accurately classify soils. Finally, the
RF model developed in this study is utilized to predict the characteristics of 47 soil samples.
These predictions are then compared with the actual soil properties to confirm the reliability
of the model. Notably, even in scenarios where one input factor is missing, the RF model
demonstrates the ability to accurately identify soil properties, a capability that traditional
methods lack, thus emphasizing the strengths of the RF model investigated in this study.

2. Dataset

The USCS, introduced by Arthur Casagrande, is a widely utilized system for classify-
ing soils based on their properties and behavior, particularly in engineering applications.
The primary parameters used in the USCS include grain size distribution, Atterberg limits,
soil classification symbols, plasticity chart, Cu, and Cc. These parameters are specified
within defined ranges to construct a synthetic database for training the RF model. The
parameters compiled in this study are listed in Table 1 below.
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Table 1. The synthetic database constructed in this study.

Data Description Unit Maximum Median Minimum Standard
Deviation Interval

1 Coefficient of curvature (Cc) NA 10 4 0 3.42 1

2 Coefficient of uniformity (Cu) NA 10 5 1 3.18 1

3 Plasticity index (PI) % 70 35 0 24.15 10

4 Organic soil or inorganic soil NA 1 0 0 0.50 NA

5 Liquid limit (LL) % 100 55 0 33.23 10

6 Percentage passing No. 4 sieve % 100 75 0 27.10 10

7 Percentage passing No. 200 sieve % 100 35 0 27.94 10

8 Soil classification NA 25 15 1 8.20 1

Notation: NA is not applicable.

Table 1 presents the descriptions of the datasets used in this study, where Factor 1 to
Factor 7 represent the relevant soil property parameters used in USCS evaluation, including
Cc, Cu, PI, organic or inorganic soil, LL, percentage passing No. 4 sieve, and percentage
passing No. 200 sieve. Factor 8 represents the soil classification. This study establishes
a synthetic database to determine the reasonable upper and lower limits for Factor 1 to
Factor 7 and then evaluates the soil properties using the USCS. Factor 8 includes 25 types
of soil properties. These parameters are defined within specific ranges to build a synthetic
database. By establishing the maximum and minimum values of these parameters that are
physically meaningful and setting appropriate intervals, as shown in the synthetic database
in Table 1, this study has developed a total of 521,316 datasets.

For encoding categorical variables, Factor 4 (organic soil or inorganic soil) differenti-
ates between organic soil and inorganic soil, with 1 indicating organic soil and 0 indicating
inorganic soil. Factor 8 relates to soil classification and is encoded from 1 to 25, represent-
ing 25 different soil types. The corresponding soil types for each code are summarized
in Table 2.

Table 2. Definition of soil classification symbol.

No Soil Type No Soil Type No Soil Type No Soil Type No Soil Type

1 CL 6 CH 11 GW-GC 16 GC-GM 21 SP-SM

2 ML 7 MH 12 GP-GM 17 SW 22 SP-SC

3 CL-ML 8 GW 13 GP-GC 18 SP 23 SC

4 OL 9 GP 14 GC 19 SW-SM 24 SM

5 OH 10 GW-GM 15 GM 20 SW-SC 25 SC-SM

Notation: CL is low-plasticity clay, ML is low-plasticity silt, CL-ML is low-plasticity clay and low-plasticity silt;
OL is organic silt/clay with low plasticity; OH is organic silt/clay with high plasticity; CH is high-plasticity clay;
MH is high-plasticity silt; GW is well graded gravel; GP is poorly graded gravel; GW-GM is well graded gravel
and silty gravel; GW-GC is well graded gravel and clayey gravel; GP-GM is poorly graded gravel and silty gravel;
GP-GC is poorly graded gravel and clayey gravel; GC is clayey gravel; GM is silty gravel; GC-GM is clayey gravel
and silty gravel; SW is well graded sand; SP is poorly graded sand; SW-SM is well graded sand and silty sand;
SW-SC is well graded sand and clayey sand; SP-SM is poorly graded sand and silty sand; SP-SC is poorly graded
sand and clayey sand; SC is clayey sand; SM is silty sand; SC-SM is clayey sand and silty sand [13,30].

Generally, in soil classification, gravel (G) represents particles larger than 4.75 mm,
which are typically coarse and provide good drainage characteristics. Sand (S) represents
particles between 0.075 mm and 4.75 mm, offering a range of grain sizes from fine to coarse
sand, which influences soil texture and compaction properties. Silt (M) represents particles
between 0.002 mm and 0.075 mm, known for their smooth texture and moderate water
retention capacity. Clay (C) represents particles smaller than 0.002 mm, characterized by
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their fine texture, high plasticity, and significant water retention ability. These classifi-
cations help in understanding the soil’s mechanical behavior and suitability for various
engineering applications.

According to the soil classification symbols, soils are broadly divided into three
categories. Coarse-grained soils, which contain more than 50% of particles larger than
0.075 mm, including gravels and sands, known for their good drainage properties and
strength. Fine-grained soils, which consist of more than 50% of particles smaller than
0.075 mm, including silts and clays, which are characterized by their plasticity, water
retention capacity, and lower permeability. Lastly, highly organic soils are rich in organic
matter, often referred to as peat or muck, and are distinguished by their high compressibility
and low shear strength. These classifications are essential for understanding the soil’s
physical and mechanical properties, which influence its behavior and suitability for various
engineering applications.

The distribution of the datasets, providing a comprehensive overview of the data, is
illustrated in Figure 1. Figure 1 explains that the value ranges for these eight factors en-
compass the maximum, median, minimum, standard deviation, and interval. This detailed
representation allows for a better understanding of the data’s spread and variability, high-
lighting the key statistical measures for each factor. These measures are crucial for analyzing
the properties and behavior of soils in accordance with the USCS classification system.
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3. Unified Soil Classification System (USCS)

The USCS is commonly employed for the classification of soils according to their
physical attributes. This classification method entails several pivotal phases: sample
collection and preparation, analysis of grain size distribution, determination of Atterberg
limits, classification according to grain size, utilization of the plasticity chart, allocation of
group symbols and names, and validation and documentation. The procedure delineated
in Figure 2 illustrates the steps involved in the USCS process. Comprehensive explanations
of each step are presented in the subsequent sections.
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3.1. Sample Collection and Preparation

The initial step is sample collection and preparation. Following the collection of soil
samples from the designated site, the subsequent step involves meticulous preparation to
ensure accurate analysis. This process commences with the careful drying of the collected
samples to eliminate moisture content, thereby preventing any potential alterations in
composition during analysis. Additionally, if the collected samples contain larger particles
or debris that could impede precise measurements, it is imperative to meticulously sieve
them to remove such impediments, ensuring the purity and homogeneity of the samples
for further examination.

3.2. Grain Size Distribution Analysis

The next phase involves analyzing the distribution of grain sizes, which is crucial
for understanding soil composition. This examination initiates with sieve analysis, where
the soil is sequentially sieved through a series of screens with decreasing mesh sizes. The
quantity of soil retained on each sieve is then meticulously weighed to determine the
distribution of grain sizes. Coarse-grained soils, such as sand and gravel, are subjected
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to specific sieves like No. 4 (4.75 mm), No. 10 (2.0 mm), No. 40 (0.425 mm), and No. 200
(0.075 mm). Conversely, fine-grained soils like silt and clay undergo hydrometer analysis to
accurately assess particle sizes smaller than 0.075 mm. This approach facilitates the precise
measurement of the silt and clay fractions’ distribution within the soil sample.

In grain size distribution analysis, acquiring parameters like Cu and Cc is crucial for
comprehending soil properties. Cu signifies the uniformity of grain sizes within a soil
sample and is determined as

Cu =
D60

D10
, (1)

where D60 and D10 represent the particle diameters at which 60% and 10% of the sample’s
mass is finer, respectively. This parameter is crucial as it indicates the soil’s gradation: a
higher Cu suggests a well graded soil with a wide range of particle sizes, which generally
provides better compaction and stability, while a lower Cu indicates a poorly graded soil
with a narrower range of particle sizes, potentially leading to weaker structural properties.

The Cc is another important parameter that provides insight into the soil’s gradation
characteristics. It is calculated as

Cc =
(D 30)

2

D10 × D60
. (2)

In grain size distribution analysis, D30 represents the particle diameter at which 30%
of the sample’s mass is finer. The Cc parameter aids in interpreting the shape of the soil’s
gradation curve, particularly focusing on the curvature around the D30 value. Typically,
values between 1 and 3 suggest a well graded soil, while those outside this range indicate
a poorly graded soil. This insight is crucial for assessing the soil’s appropriateness for
engineering and construction endeavors. Well graded soils generally have a superior load-
bearing capacity. In terms of drainage, poorly graded soils with uniformly sized particles
tend to drain better due to the larger voids between the particles.

3.3. Determination of Atterberg Limits

The third step involves the determination of Atterberg limits, which includes measur-
ing the LL, PL, and PI of the soil. These parameters are crucial for assessing the plasticity
and behavior of fine-grained soils. The LL represents the moisture content at which the
soil transitions from a liquid to a plastic state, while the PL denotes the moisture content
at which the soil transitions from a plastic to a semi-solid state. The PI is determined by
subtracting the PL from the LL utilizing the following equation:

PI = LL − PL. (3)

3.4. Classification Based on Grain Size

Based on the grain size distribution and Atterberg limits, classify the soil using the
USCS chart. Coarse-grained soils (gravel and sand) are classified based on the percentage of
fine particles (particles smaller than 0.075 mm) and the grain size distribution. Fine-grained
soils (silt and clay) are classified based on their plasticity characteristics and the Atterberg
limits. Organic soils are identified if the soil contains a significant amount of organic
material, typically indicated by color, odor, and lower specific gravity.

If over 50% of the soil’s weight remains on the No. 200 sieve, it falls into the coarse-
grained category. Further classification depends on the percentage of sand and gravel
present. Soils classified as gravel retain over 50% on the No. 4 sieve. For soils classified as
sand, over 50% passes through the No. 4 sieve but is retained by the No. 200 sieve. This
classification is based on the coarse fraction. Gravel soils retain more than 50% of their
coarse particles on the No. 4 sieve, while sand soils have over 50% of their coarse particles
passing through the No. 4 sieve and being retained by the No. 200 sieve. If over 50% of the
soil’s weight passes through the No. 200 sieve, it is categorized as fine-grained, with sub
classification based on the Atterberg limits.
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3.5. Use of Plasticity Chart

The plasticity chart is a crucial tool in geotechnical engineering, used to classify fine-
grained soils based on their LL and PI. This chart aids in distinguishing between silts and
clays and assessing their plasticity levels, which can be categorized as low, medium, or
high. By graphing the LL and PI on the plasticity chart, engineers can ascertain the soil
type and its response under different circumstances. The chart typically has the LL on the
y-axis and the PI on the x-axis, allowing for a clear visualization of the soil’s properties.

3.6. Assignment of Group Symbols and Names

A two-letter symbol is assigned to the soil based on its classification. For instance, GP
signifies poorly graded gravel, SW signifies well graded sand, CL denotes low plasticity
clay, and CH indicates high plasticity clay. The USCS offers a systematic and standardized
methodology for soil classification, crucial for applications in geotechnical engineering,
construction, and other fields requiring an understanding of soil properties and behavior.

For coarse grained soils, the symbols are as follows: GW for well graded gravel, GP
for poorly graded gravel, SW for well graded sand, SP for poorly graded sand, GM for silty
gravel, GC for clayey gravel, SM for silty sand, and SC for clayey sand. For fine grained
soils, the symbols are: ML for low plasticity silt, MH for high plasticity silt, CL for low
plasticity clay, CH for high plasticity clay, OL for organic silt/clay with low plasticity, OH
for organic silt/clay with high plasticity, and PT for highly organic soils such as Peat.

3.7. Reporting

Once the soil group symbol is assigned, the final classification, along with the relevant
data, should be documented and reported for engineering and geotechnical applications.
The USCS provides a systematic and standardized approach for soil classification, which is
essential for geotechnical engineering, construction, and other applications involving soil
properties and behavior.

Section 3 thoroughly outlines the USCS procedure, detailing the steps involved in the
USCS process. This includes key phases such as sample collection and preparation, grain
size distribution analysis, Atterberg limit determination, classification based on grain size,
use of the plasticity chart, assignment of group symbols and names, and validation and
documentation. This study further uses the random forest method from machine learning
to develop an automated soil classification model for the USCS procedure. Detailed
explanations of each step are provided in the following section.

4. Soil Classification Using Random Forest Method

In this study, a RF model [31] is adopted for the purpose of soil classification. The
process of applying the RF methodology to soil classification is depicted in Figure 3. Key to
this approach are several critical stages, commencing with the collection and preparation of
data. Subsequently, feature selection is carried out to pinpoint the most pertinent attributes
for precise classification. After this, the model is built using the chosen features, and
hyperparameters are adjusted to enhance its performance. An assessment of the model’s
effectiveness ensues, followed by thorough testing to ensure its robustness and reliability.
In this study, the training data comprise 70% (364,921 data), while the testing data make up
30% (156,395 data). Finally, the results are interpreted and scrutinized to derive meaningful
insights. The following sections elaborate on each of these steps in meticulous detail.
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4.1. Data Collection

A comprehensive dataset comprising various features such as Cc, Cu, PI, the classifi-
cation of soil as organic or inorganic, LL, percentage passing No. 4 sieve, and percentage
passing No. 200 sieve, along with their corresponding soil classifications, has been collected
for analysis. These parameters are delineated within specified ranges to form a synthetic
database for training the RF model. The compiled parameters are detailed in Table 1
provided above. The details of the database established in this study are as follows:

Initially, this study lists the reasonable ranges for seven factors and hypothesizes the
possible values of each factor within their respective ranges using different intervals, as
listed in Table 1. For example, the Cc has a reasonable range of 0 to 10, and its values are
assumed at intervals of 1. Therefore, the values of the Cc in the database are 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, and 10. Other factors are hypothesized in the same way.

Subsequently, different values of each factor are combined, and unreasonable com-
binations are eliminated. Examples of unreasonable combinations are as follows: (1) The
percentage passing the No. 4 sieve must be greater than the percentage passing the No.
200 sieve. Therefore, combinations where the percentage passing the No. 4 sieve is less
than the percentage passing the No. 200 sieve are eliminated. (2) The LL of the soil must be
greater than the PI. Therefore, combinations where the LL is less than the PI are eliminated.
(3) Coarse-grained soils are typically not organic. Therefore, combinations where the soil is
both coarse-grained and organic are eliminated.

Finally, by integrating the classification criteria for various soils, the results of soil
classification are established in Table 1’s database. Overall, this study comprises a total of
521,316 datasets. This database is then used for training the RF model.

4.2. Out-of-Bag (OOB) Predictor Importance

In this study, the Out-of-Bag (OOB) feature of the RF model is utilized to assess the
importance of seven factors in soil classification. Through the OOB method, we examine
the RF model’s training process and utilize the OOB samples to estimate the decrease in
prediction accuracy when specific feature arrangements are utilized.

The OOB predictor importance serves as a technique for assessing the relevance of
features within the RF model. It consists of multiple decision trees, each constructed using
distinct training and feature subsets. As these trees are built using different random samples
and features, certain data points may never be utilized during training, known as OOB data.
The OOB predictor importance evaluates each feature’s contribution to the model based
on its performance in the OOB testing. This importance is determined by the frequency of
feature usage across all trees and the average reduction in testing error observed when the
feature is employed in each tree. The OOB predictor importance offers an intuitive means
to gauge features’ impact on the RF model’s predictive performance and aids in selecting
the most crucial features for modeling purposes. By integrating the importance of the OOB
predictors, influential predictors are identified within the RF model utilized.

The analysis findings regarding variable importance using the OOB predictor, as
shown in Figure 4, reveal intriguing insights. Factors 1 (Cc) and 2 (Cu) exhibit negative
importance values, indicating their diminished relevance in the classification process. The
OOB analysis results of this study align well with the facts. Specifically, the coefficients Cc
and Cu are not employed for classifying all soil types. These coefficients are primarily used
to describe the grain size distribution of coarse-grained soils. They are not applicable to
fine-grained soils (such as silt and clay), which lack a significant range of particle sizes, and
are also not used for coarse soils with fines greater than 12% or for organic soils. Conversely,
Factors 5 (LL) and 7 (percentage passing No. 200 sieve) demonstrate the highest importance
values, highlighting their pivotal roles in soil classification. This observation implies that
LL and the percentage passing No. 200 sieve are not only critical but also integral factors
that significantly influence the outcome of the classification process, emphasizing the need
for careful consideration in soil analysis and interpretation.
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4.3. Model Construction

The process of initializing the RF model begins with a predetermined number of
decision trees. Subsequently, it undergoes training on the designated dataset, where each
tree’s growth occurs through the utilization of a bootstrap sample of the data. At each
node, the model selects the optimal split based on a subset of features. Illustrated in
Figure 5, the RF’s architecture involves the assembly of multiple decision trees, with each
tree constructed independently utilizing a random subset of the training data and input
features. For this study, the training and testing datasets constitute 70% and 30% of the
total data, respectively. Throughout the training phase, each tree expands either until it
reaches its maximum depth or meets a specified stopping criterion, such as the minimum
number of samples required for node splitting or a maximum depth threshold.

Once all the decision trees are built, predictions are produced by consolidating the
outputs from each individual tree. In regression tasks, the final prediction is typically the
average of all tree predictions, while in classification tasks, it is usually determined by a
majority vote among the trees. The inclusion of randomness in the construction of each
tree aids in diminishing correlations among the trees and mitigating the risk of overfitting.
Assuming there exists a database D, it can be represented as follows:(

xi, yi) for i = 1, 2, . . . , N & xi1, xi2, . . . , xip, (4)

In this equation, x, y, N, and p are the input, output, data number, and number of
factors. If D is divided into M regions and D1, D2, . . . , DM is obtained, and a constant cm
is used to represent the simulated output f (x) of each region, the following equation can
be obtained:

f (x) =
M

∑
m=1

cm I(x ∈ Dm), (5)
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where I is an indicator function. By incorporating the least squares sum as a criterion,
the optimal constant, ĉm, can be obtained as the average of the output values, Dm, within
the region:

ĉm = average (yi|xi ∈ Dm) . (6)

Assuming the presence of a categorical variable j and a designated split point s, the
database is partitioned into two distinct subsets, as indicated by the following equation:

D1(j, s) =
{

x
∣∣xj ≤ s

}
and D2(j, s) =

{
x
∣∣xj > s

}
. (7)

As per the preceding equation, the quest for the suitable categorical variable j and
split point s results in the following equation:

min
j,s

min
c1

∑
xi∈D1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈D2(j,s)
(yi − c2)

2

. (8)

Referring to the equation above, the internal minimization for any combination of j
and s can be deduced from the subsequent expression:

ĉ1 = average (yi|xi ∈ D1(j, s)) & ĉ2 = average (yi|xi ∈ D2(j, s)) . (9)

Utilizing the aforementioned equations, the optimal pair (j, s) can be determined,
facilitating the partitioning of the data into two regions. Iterating through the described
computations enables the data to be sequentially split into all resulting regions. If a decision
tree T partitions the data into Dm regions via m nodes, where Nm represents the total number
of regions, ĉm can be articulated as follows:

ĉm =
1

Nm
∑

xi∈Dm

yi. (10)

Bagging, or bootstrap aggregation, is a technique employed to acquire an aggregated
predictor by creating numerous predictor variations and amalgamating them. When
this aggregated predictor is employed for numerical prediction, it calculates the average
of the results from each variation and may also conduct a majority vote on prediction
outcomes. Different predictor variations are obtained by sampling from the dataset, with
each sampling akin to modeling a novel dataset.

Assuming a database D as described earlier, it is divided into smaller datasets, D̃b, and
b = 1, 2, . . . , B to obtain D̃1, D̃2, . . . , D̃B. The sampling process involves a fixed number of
samples each time, and the sampled data are replaced back into the original dataset before
the next sampling. After calculating each small dataset, D̃b, using the base algorithm, their
results, f̃ (x), are collected, and the final training result is obtained by averaging all results,
f̃bag(x), expressed as follows:

f̃bag(x) =
1
B

B

∑
b=1

f̃b(x), (11)

where f̃b(x) is the output results obtained for each small dataset by the base algorithm.
In an RF model, each decision tree necessitates the configuration of specific hyper-

parameters, including the learning rate, number of iterations, and number of features
employed for node partitioning, among others. These hyperparameters’ selection signifi-
cantly influences the model’s performance. In this study, the proposed model is trained on
bootstrap samples from the dataset, and predictions are aggregated to produce the final
output. While the RF method naturally utilizes bagging, assessing the performance of the
ensemble itself offers valuable insights into model stability and accuracy.
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4.4. Hyperparameter Tuning

Critical hyperparameters like the number of trees, maximum tree depth, and the
number of features assessed for splitting at each node are carefully determined. This
thorough analysis involves evaluating the convergence of the model’s performance across
a range of hyperparameters to enhance its robustness and efficiency. By examining the
model’s performance under different hyperparameter configurations, we can identify the
most optimal settings to attain superior results.

4.5. Model Performance Evaluation

The RF model undergoes evaluation using a comprehensive range of performance in-
dices to ensure a thorough assessment of its accuracy and effectiveness. These performance
indices include the variance accounted for (VAF), coefficient of determination (R2), predic-
tion interval (PI), Nash−Sutcliffe efficiency (NS), weighted index (WI), Akaike information
criterion (AIC), root mean square error (RMSE), weighted mean absolute percentage error
(WMAPE), and mean absolute error (MAE) [32]. Each of these indices plays a crucial role in
evaluating different aspects of the model’s performance, from its ability to explain variance
to its predictive precision and overall fit to the data. By collectively calculating scores across
these performance indices, the evaluation process provides a robust validation of the RF
model’s accuracy and reliability in soil classification tasks.

4.6. Model Validation

Cross-validation ensures the model’s performance across various data subsets, val-
idating its ability to generalize to unseen data. This method systematically divides the
dataset into multiple subsets, training the model on some subsets while testing it on others.
By repeating this process iteratively, cross-validation offers a comprehensive evaluation
of the RF method’s predictive capabilities. The reliability of the predictions is evaluated
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using various performance indices. These indices provide a detailed understanding of the
model’s strengths and weaknesses, ensuring robust and accurate soil classification. By
analyzing these metrics, the study aims to fine-tune the model for optimal performance,
thereby enhancing the reliability of soil classification predictions.

5. Results and Discussion

In this section, we outline the verification and application scenarios addressed in our
study. During the verification phase, we initially develop and validate models using the RF
algorithm, incorporating the relevant factors as inputs. However, when real-life constraints
such as time or budget limitations make it difficult to obtain comprehensive geological data,
only partial input factors are considered. In these instances, soil classification evaluations
are performed using the RF model developed in this study.

5.1. Performance of the Proposed RF

In the validation cases, this study uses seven factors: Cc, Cu, PI, organic or inorganic
soil classification, LL, percentage passing No. 4 sieve, and percentage passing No. 200
sieve. These factors are selected based on their reasonable ranges and their relevance to
accurately identifying soil properties. The training data constitute 70% (364,921 data), while
the testing data account for 30% (156,395 data).

Subsequently, this study employs the RF model for soil classification. The parameters
used in this RF model include the following: the number of variables to sample is set
to all, surrogate splits are enabled, and pruning is disabled. The splitting criterion used
is mean squared error (MSE), and the type of model is regression. The quadratic error
tolerance is set to 10−6, with a minimum parent size of 10 and a minimum leaf size of 1.
The learning rate, maximum number of splits, and number of ensemble learning cycles are
all determined using Bayesian optimization [33–35]. These parameters collectively define
the configuration of the RF model used in this study.

Figure 5 provides a visual representation of the correlation coefficient computed
specifically for the training dataset. Upon examination, it becomes evident that both the
training and testing datasets produce remarkably accurate results, exhibiting a notably
high correlation coefficient of 0.99. This implies a robust alignment between the predicted
values and the actual observations. As the data points closely conform to the optimal
line, it signifies enhanced precision in classifying the soil properties. Furthermore, the
validation cases corroborate these findings, revealing a compelling relationship between
the soil property predictions derived from the seven factors outlined in this study and the
real soil properties. This strong correlation underscores the efficacy and reliability of the
analytical framework employed for soil characterization.

Due to the inherent stochastic elements in the ML models and the influence of training
data, the model’s performance can exhibit variability across different training sets, resulting
in slight disparities in results with each computation. To address this, in the present study,
the ML model underwent 50 iterations, and the average values of relevant performance in-
dices were computed to provide a more robust assessment. The analysis findings, outlined
in Table 3, illustrate that the VAF, R2, PI, NS, WI, AIC, RMSE, MAE, and WMAPE are 100, 1,
2, 1, 1, −2.23 × 107, 7.96 × 10−4, 6.48 × 10−6, and 1.16 × 10−5, respectively. These analysis
outcomes underscore the robustness of the proposed RF model in effectively discerning the
characteristics of soil, providing valuable insights into soil classification and prediction.

Table 3. The performance of the proposed RF across 50 runs.

Performance Indices Ideal Value Training Testing

VAF 100 100 100

R2 1 1 1

PI 2 2 2



Appl. Sci. 2024, 14, 7202 14 of 19

Table 3. Cont.

Performance Indices Ideal Value Training Testing

NS 1 1 1

WI 1 1 1

AIC NA −1.18 × 108 −2.24 × 107

RMSE 0 9.85 × 10−8 7.96 × 10−4

MAE 0 4.02 × 10−9 6.48 × 10−6

WMAPE 0 7.19 × 10−9 1.16 × 10−5

5.2. Validation

Conventional soil classification methods rely on a thorough examination of various
soil parameters, including coefficients of curvature and uniformity, PI, organic or inor-
ganic soil classification, LL, percentage passing No. 4 sieve, and percentage passing No.
200 sieve, totaling seven factors. However, practical limitations such as time constraints,
budgetary restrictions, or data availability may impede the acquisition of all seven parame-
ters. Therefore, this study investigates whether the RF model can effectively evaluate soil
properties even when some input soil parameters are unavailable. Its aim is to assess the
model’s ability to compute performance indices and accurately identify soil properties in
such scenarios.

This study encompasses eight cases, where Case 1 corresponds to scenarios with no
missing factors, indicating the utilization of the complete set of seven factors as input
variables. Cases 2 to 8, conversely, involve the absence of one factor each. A summary
detailing the missing factors for each case is presented in Table 4. In this study, nine
performance indices, VAF, R2, PI, NS, WI, AIC, RMSE, MAE, and WMAPE values, were
employed to calculate the scores, with the highest accuracy cases receiving the highest
scores and vice versa. This study initially calculated nine performance indices for each
of the eight cases. The performance index values for the eight cases are summarized
in Table 4.

Table 4. Performance index values across eight cases.

Case Missing
Data R2 RMSE VAF PI MAE WI WMAPE NS AIC

1 NA 1 7.96 × 10−4 100 2.00 6.48 × 10−6 1 1.16 × 10−5 1 −2.24 × 107

2 Factor 1 1 6.36 × 10−3 99.97 1.99 1.46 × 10−3 1 2.63 × 10−3 1 −1.58 × 107

3 Factor 2 1 4.41 × 10−3 99.98 2.00 7.03 × 10−4 1 1.27 × 10−3 1 −1.70 × 107

4 Factor 3 0.99 3.14 × 10−2 99.15 1.95 2.55 × 10−2 1 4.58 × 10−2 0.99 −1.08 × 107

5 Factor 4 0.99 2.97 × 10−2 99.24 1.96 2.10 × 10−2 1 3.79 × 10−2 0.99 −1.10 × 107

6 Factor 5 0.98 4.67 × 10−2 98.1 1.92 2.62 × 10−2 1 4.73 × 10−2 0.98 −9.58 × 106

7 Factor 6 0.82 1.45 × 10−1 77.79 1.45 1.21 × 10−1 0.95 2.18 × 10−1 0.78 −6.03 × 106

8 Factor 7 0.09 3.26 × 10−1 0.69 0.77 2.83 × 10−1 0.4 5.11 × 10−1 0.54 −3.50 × 106

Notation: Factor 1 is Cc, Factor 2 is Cu, Factor 3 is PI, Factor 4 is organic soil or inorganic soil, Factor 5 is LL, Factor
6 is percentage passing No. 4 sieve, and Factor 7 is percentage passing No. 200 sieve.

This study further calculates scores for these eight cases based on nine performance
indices, ranks them, and assigns scores to each case. Table 5 lists the results of scores
across eight cases. The calculation of scores is explained as follows: scores ranged from
eight points for the top-performing case (such as Case 1, achieving the highest R2 score)
to eight points for the least-performing case (Case 8). The remaining cases were scored in
descending order according to their respective error metric results. Each case was evaluated
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across all nine performance indices, and these scores were summed to derive a total sum.
In Case 1, the maximum total sum (sum = 72) was obtained.

Table 5. Results of scores across eight cases.

Case R2 RMSE VAF PI MAE WI WMAPE NS AIC Sum Score

1 8 8 8 8 8 8 8 8 8 72 100

2 6 6 6 6 6 6 6 6 6 54 77.78

3 7 7 7 7 7 7 7 7 7 63 88.89

4 4 4 4 4 4 4 4 4 4 36 44.44

5 5 5 5 5 5 5 5 5 5 45 55.56

6 3 3 3 3 3 3 3 3 3 27 33.33

7 2 2 2 2 2 2 2 2 2 18 22.22

8 1 1 1 1 1 1 1 1 1 9 11.11

Subsequently, this sum was converted into a score using the following formula: the
score is equal to the sum divided by the maximum total sum across eight cases (maximum
total sum = 72) and then multiplied by 100. This transformation aids in comparing and
presenting scores relative to different standards, making comparisons more intuitive. The
scores for the nine performance indices across the eight cases are summarized.

Finally, the scores for the nine performance indices across the eight cases are obtained,
as listed in Table 5. An accuracy assessment is conducted for each metric, with the case
achieving the highest precision for each metric receiving the top score. The scores are thus
aggregated, with the maximum attainable score being 100. The score outcomes for the eight
cases investigated are depicted in Figure 6. The analysis highlights that Case 1 emerged
with the highest score, showcasing its superior performance. Similarly, Cases 2 and 3 also
achieved commendable scores, surpassing the 70 score. Conversely, the remaining cases
fell short, scoring below 60.
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Typically, traditional USCS analysis relies on utilizing seven factors to accurately
classify soil. However, obtaining comprehensive parameters directly on-site may not
always be feasible in real-world situations. Therefore, the model formulated in this study
has demonstrated its effectiveness in classifying soil accurately, even when confronted with
incomplete input factors. This capability to achieve precise soil classification with limited
input factors distinguishes the developed model from conventional methods, highlighting
its strength and adaptability in navigating the practical constraints encountered in soil
classification tasks.

5.3. Prediction

Based on the previous validation section, Case 1, Case 2, and Case 3 achieved com-
mendable scores, each exceeding 70, indicating relatively reliable models. The remaining
cases scored below 60, making those models relatively unreliable. Therefore, this study
further evaluates the models using only these three cases, with 47 different soil samples as
input factors. Table 6 lists the datasets of 47 soil samples [36,37]. As listed in Table 6, an
extensive dataset comprising 47 different soil samples was consolidated, and each type was
assigned a unique identifier ranging from 1 to 47. The data sources for samples 1 through
15 are derived from Das et al. [36], while samples 16 through 41 are sourced from Das and
Sobhan [37]. Samples 42 through 47 are based on the soil mechanic experimental data
obtained in this study.

Table 6. Datasets of 47 soil samples [36,37].

Soil
Sample

Coefficient
of Curvature

(Cc)

Coefficient of
Uniformity

(Cu)

Plasticity
Index (PI)

Organic Soil
or Inorganic

Soil

Liquid Limit
(LL)

Percentage
Passing

No. 4 Sieve

Percentage
Passing

No. 200 Sieve

Soil
Classification

1 0 1 10 0 30 100 58 CL

2 0 1 12 0 33 70 30 SC

3 0 1 21 0 33 70 30 SC

4 0 1 22 0 41 48 20 GC

5 0 1 28 0 52 95 70 CH

6 0 1 19 0 30 100 82 CL

7 0 1 21 0 35 100 74 CL

8 0 1 18 0 38 87 26 SC

9 0 1 38 0 69 88 78 CH

10 0 1 26 0 54 99 57 CH

11 4.8 2.9 16 0 32 71 11 SP-SC

12 7.2 2.2 0 0 0 100 2 SP

13 0 1 21 0 44 89 65 CL

14 3.9 2.1 31 0 39 90 8 SP-SC

15 0 1 4 0 23 100 13 SC-SM

16 0 1 25 0 63 100 77 MH

17 1.59 3.44 0 0 0 94 3 SP

18 0 1 22 0 37 100 65 CL

19 0 1 21 0 40 100 63 CL

20 0 1 4 0 23 100 13 SC-SM

21 1.59 3.44 0 0 0 94 3 SP

22 0 1 25 0 63 100 77 MH

23 0 1 28 0 55 100 86 CH

24 0 1 22 0 36 100 45 SC

25 0 1 8 0 30 92 48 SC
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Table 6. Cont.

Soil
Sample

Coefficient
of Curvature

(Cc)

Coefficient of
Uniformity

(Cu)

Plasticity
Index (PI)

Organic Soil
or Inorganic

Soil

Liquid Limit
(LL)

Percentage
Passing

No. 4 Sieve

Percentage
Passing

No. 200 Sieve

Soil
Classification

26 0 1 4 0 26 60 40 SC-SM

27 0 1 32 0 60 99 76 CH

28 0 1 12 0 41 90 60 ML

29 0 1 2 0 24 80 35 SM

30 0 1 21 0 33 70 30 SC

31 0 1 22 0 41 48 20 GC

32 0 1 28 0 52 95 70 CH

33 0 1 19 0 30 100 82 CL

34 0 1 21 0 35 100 74 CL

35 0 1 18 0 38 87 26 SC

36 0 1 38 0 69 88 78 CH

37 0 1 26 0 54 99 57 CH

38 4.8 2.9 16 0 32 71 11 SP-SC

39 7.2 2.2 0 0 0 100 2 SP

40 0 1 21 0 44 89 65 CL

41 3.9 2.1 31 0 39 90 8 SP-SC

42 0.73 10 3.49 0 23.93 84.7 10.96 SP-SC

43 0.28 10 3.17 0 22.38 70 10 SP-SC

44 0.65 9.81 3.16 0 25.81 71.32 9.18 SP-SM

45 0.22 10 1.33 0 24.76 70.37 9.23 SP-SM

46 0.59 10 1.33 0 24.76 81 13 SM

47 0.52 10 2.496 0 24.328 69.63 6.99 SP-SM

The proposed RF model was employed for analysis and soil classification, with the
predicted soil properties compared against actual properties. The RF model’s accuracy
results for the 47 soil samples across these cases are illustrated in Table 7. The obtained
results show that 46 of 47 samples are correctly predicted when none of the factors are
missing (Case 1). When Factor 1 (Cc) is missing, the predicted results show that 44 out
of 47 samples are correctly predicted. When Factor 2 (Cu) is absent, the predicted results
indicate that 45 out of 47 samples are correctly classified. These predicted results support
the OOB importance analysis using the proposed RF method. Factor 1 (Cc) and Factor
2 (Cu) exhibited lower importance, thus their absence did not significantly affect the
model performance.

Table 7. Predicted results for 47 soil samples.

Case Data Predicted Results

1 All data included 46 of 47 samples are correctly predicted

2 Cc is neglected 44 of 47 samples are correctly predicted

3 Cu is neglected 45 of 47 samples are correctly predicted

6. Conclusions

This study uses an ML model, particularly RF, to classify soil. Through this innovative
approach, the developed RF model effectively classifies soil. The main findings of this
study can be summarized as follows:
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(1) This study first employs the OOB predictor within the RF algorithm to evaluate vari-
able importance. The analysis reveals that Factor 5 (LL) and Factor 7 (percentage
passing No. 200 sieve) possess the highest importance scores. Since the key com-
ponents of the USCS are grain size distribution and Atterberg limits, with Factor 5
(LL) and Factor 7 (percentage passing No. 200 sieve) being crucial at the first and
second levels of classification, the results imply that they significantly influence the
classification outcome.

(2) Through cross-validation, the performance of the RF model is rigorously evaluated,
demonstrating its capability for accurate soil classification. The indices illustrate
that the VAF, R2, PI, NS, WI, AIC, RMSE, MAE, and WMAPE values are 100, 1, 2,
1, 1, −2.23 × 107, 7.96 × 10−4, 6.48 × 10−6, and 1.16 × 10−5, respectively. These
results highlight the robustness and reliability of the proposed RF model in effectively
discerning soil characteristics.

(3) Furthermore, this study examines the impact of missing input factors on the RF
model’s ability to classify soil characteristics. The analysis reveals that this trend
aligns with the findings from the OOB importance analysis. The results demonstrate
that the USCS is already optimized regarding the laboratory work. Since Factor 1 (Cc)
and Factor 2 (Cu) are calculated from the grain size distribution, the proposed RF
model still achieved accurate soil classification despite the omission of these factors.
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