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Abstract: Computed tomography (CT) is one of the fundamental imaging modalities used in medicine,
allowing for the acquisition of accurate cross-sectional images of internal body tissues. However,
during the acquisition and reconstruction process, various artifacts can arise, and one of them is
ring artifacts. These artifacts result from the inherent limitations of CT scanner components and the
properties of the scanned material, such as detector defects, non-uniform distribution of radiation
from the source, or the presence of metallic elements within the scanning region. The purpose of this
study was to identify and reduce ring artifacts in tomographic images using image decomposition
and average filtering methods. In this study, tests were conducted on the effectiveness of identifying
ring artifacts using wavelet decomposition methods for images. The test was performed on a Shepp–
Logan phantom with implemented artifacts of different intensity levels. The analysis was performed
using different wavelet families, and linear approximation methods were used to filter the image
in the identified areas. Additional filtering was performed using moving average methods and
empirical mode decomposition (EMD) techniques. Image comparison methods, i.e., RMSE, SSIM
and MS-SSIM, were used to evaluate performance. The results of this study showed a significant
improvement in the quality of tomographic phantom images. The authors obtained more than 50%
improvement in image quality with reference to the image without any filtration. The different
wavelet families had different efficiencies with relation to the identification of the induction regions
of ring artifacts. The Haar wavelet and Coiflet 1 showed the best performance in identifying artifact
induction regions, with comparative RMSE values for these wavelets of 0.1477 for Haar and 0.1469
for Coiflet 1. The applied additional moving average filtering and EMD permitted us to improve
image quality, which is confirmed by the results of the image comparison. The obtained results allow
us to assess how the used methods affect the reduction in ring artifacts in phantom images with
induced artifacts.

Keywords: computed microtomography; reconstruction algorithms; ring artifact; wavelet decompo-
sition; artifact reduction technique

1. Introduction

Computed tomography is an increasingly popular imaging technique with applica-
tions in the fields of medicine, diagnostics, scientific research and industry. A variety of
artifacts arise during tomographic imaging. They are caused by various physical phenom-
ena during the emission of radiation. Ring artifacts are one of the most common artifacts.
They arise as a result of imperfections in the detector’s pixel elements or fiber optic matrix,
or defects on scintillator crystals [1]. Ring artifacts can also result from contamination of
any of the previously mentioned elements, as well as various types of drift, for example,
thermal drift or drift in the X-ray-gene spectrum [2]. Scintillators are the element located
in front of the detector optical fiber matrix and have the function of converting ionizing

Appl. Sci. 2024, 14, 7292. https://doi.org/10.3390/app14167292 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14167292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3598-0945
https://orcid.org/0000-0003-0148-9912
https://orcid.org/0000-0002-2811-0274
https://doi.org/10.3390/app14167292
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14167292?type=check_update&version=1


Appl. Sci. 2024, 14, 7292 2 of 11

radiation into visible or near-visible emission. There are a number of materials that exhibit
scintillation properties that can exist in crystalline, liquid or gaseous form.

Optical fibers behind the scintillator direct radiation in the visible spectrum emitted
by the scintillator directly to individual pixels located on the CCD or CMOS array of the
detector (Figure 1). The attenuation or extinguishing of individual pixels during acquisition
causes the formation of artifacts in the image [3].
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Ring artifacts visible on tomograms appear in the form of circles spreading from the
center of the image to its edges. There may be several to dozens of them. The visible
circles can range in width from single pixels up to several pixels. They can have different
grayscale brightness. They significantly affect the qualitative and quantitative analysis
of the measured data. They can also distort important morphometric information in the
tomographic image. Artifacts hinder such processes as noise reduction, binarization and
segmentation in the image [4–7].

Methods for removing these artifacts can be divided into three types: pre-acquisition,
pre-reconstruction and post-reconstruction methods. The commonly used pre-acquisition
method of reducing ring artifacts resulting from unbalanced detector sensitivity is called
flat-field correction. Flat-field correction involves pixel correction so that all pixels have
an identical gray value when they are exposed to a beam with specific parameters. These
parameters are identical to those used during the acquisition of the research object [8].
In this method, measurement of the bright- and dark-field images is performed. The
bright-field image is collected during homogeneous unconstrained radiation of the detector
with the X-ray beam, and the dark-field image is the image formed while the radiation
is disabled. The correction is calculated as follows for a pixel in the (x, y) position: The
intensity of the pixel for the bright field is IB(x, y), and for the dark field is ID(x, y), and the
average intensity for both fields is µB and µD. Based on this information, the specific gain
of the pixel G(x, y) and the displacement of the pixel O(x, y) can be counted according to
the following formula:

G(x, y) =
µB − µD

IB(x, y)− ID(x, y)
(1)

O(x, y) = µB − G(x, y)IB(x, y) (2)

The resulting data can be applied to correct the raw signal IU(x, y) obtained during
acquisition, the result being a corrected pixel value IC(x, y):

IC(x, y) = Iu(x, y)G(x, y) + O(x, y) (3)

The presented method significantly improves image acquisition; however, it does
not provide complete removal of ring artifacts [9]. This is due to the nonlinearity of the
response function of the photosensitive components of the detector, and to the nonlinearity
in time of the uniformity of the radiation beam.

Pre-reconstruction and post-reconstruction methods involve post-acquisition pixel
correction. They implement image filtering methods involving entire images or specific
areas of artifact occurrence. Pre-reconstruction methods involve translating projections into
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sinograms. The damaged area in the sinogram is represented by a darker strip running
across all or part of the sinogram. The simplest methods are based on determining the
positions of the stripes based on the sum of the pixel values in the image columns. The
positions with a sum under a specific threshold are the location of the stripes which then
are processed. Such a proposal for artifact reduction is presented in the work of Mark
Rivers [10]. This method is effective for very significant artifacts, for example, in the
case of damaged pixels. More advanced methods are based on the processing of the
obtained sinograms to visualize striations of variable intensity. Well-developed methods
use frequency processing using Fourier transform or wavelet decomposition. Such a
method is presented in the work of Munch et al., which uses wavelet decomposition
and frequency filtering followed by reconstruction to the original sinogram [11]. This
method is more efficient; however, it significantly impacts the pixel values within the entire
sinogram. The work of Tang et al. presents a hybrid approach to reducing artifacts in
the pre-reconstruction process. It involves using wavelet decomposition to identify the
positions of artifact induction and then transforming the image within the raw sinogram at
predefined positions [12].

The process of reducing artifacts after reconstruction involves transforming tomo-
grams to polar coordinates, identifying artifacts, and removing them using various image
processing techniques. In their paper, Sijbers et al. presented such a method using local
statistical evaluation of pixel values to identify stripes in a tomogram [13].

In Table 1, the authors present various papers on ring artifact reduction as well. They
show on which data the cited methods were tested and present some relevant results of
ring artifact reduction if they were presented in the paper.The authors of the paper present
a method for pre-reconstruction artifact reduction that uses the identification of artifact
induction sites using wavelet decomposition. They apply sinogram processing in two
stages to the identified locations and within the entire sinogram. The authors of the current
study have developed an original model for reducing ring artifacts using discrete wavelet
decomposition supplemented by filtering using empirical mode decomposition (EMD). The
authors have not encountered in the literature the use of wavelet decomposition combined
with EMD in the filtering of medical tomographic images.

Table 1. A table showing papers on methods for reducing ring artifacts, along with the type of data
on which the method was tested and example results.

Authors (year) Methods Data Results

Selim et al. (2022) [14] Sparsity-based method, during iterative
reconstruction algorithms Real data and simulations 0.9682 (SSIM)

Sijbers et al. (2004) [13] Post-reconstruction filtration method Real data Only visulal results, no
quantitative data

Tang et al. (2001) [12] Wawelet analysis pre-reconstruction
method Callibration cells Only visulal results, no

quantitative data

Kim et al. (2014) [4]

Pre-reconstruction method of
calculating the ratio of adjacent

detector elements in the projection data,
termed the line ratio

Sheep–Logan phantom
and human organs models

7.13 × 10−7 (MSE) for
Sheep-Logan phantom

Abu et al. (2011) [2]

Comparison five ring artifact removal
methods: Modified Wavelet

(MWPN) [12], Wavelet-Fourier (WF)
method [11], Ring corrections using
homogeneity test (RCHT) [13], Ring

correction in polar coordinate (RCP) [1],
and Strength based ring correction

(SBRC) method [15]

Head Phantom and real
data

quantitative data for head
Phantom (MSSIM):

MWPN—0.97
WF—0.81

RCHT—0.82
RCP—0.77

SBRC—0.98



Appl. Sci. 2024, 14, 7292 4 of 11

2. Materials and Methods

In this paper, ring artifact reduction was performed on a Shepp–Logan (Yu-Ye-Wang
type) tomographic phantom [16]. The phantom was generated at a 512 × 512 × 512 px
resolution. All operations, reconstruction and calculations were performed in the Python
3.8 environment with the Tomographic Iterative GPU-based Reconstruction Toolbox (TI-
GRE toolbox v.2.6) [17]. The python environment uses the libraries NumPy v. 1.21.5
(https://numpy.org, accessed on 20 April 2024), OpenCV v. 4.6.0 (https://opencv.org,
accessed on 20 April 2024), Matplotlib v. 3.6.2 [18], PyWavelets v. 1.4.1 [19] and EMD v.
0.5.5 [20]. The development environment was run on a Windows 11 Pro computer equipped
with an i7-12700KF 3.60 GHz processor, an NVIDIA GeForce RTX 3070Ti OC 8 GB (New
Taipei, Taiwan) graphics card with a 6144 CUDA core, and 64 GB of DDR4 RAM.

After performing ring artifact reduction, the phantom was reconstructed using the
FDK algorithm with Shepp–Logan filtering. The process of performing the reconstruction
and comparing the results of different reconstruction algorithms with their description was
presented in the authors’ earlier work [21].

Before performing ring artifact reduction, artifacts were introduced into the generated
phantom. Translation of the phantom to sinograms was performed, and 18 stripes with a
width of one pixel were introduced at an equal distance from the center of the sinogram
(Figure 2). Tests were performed using stripes with values ranging from 2 to 20% larger
than the initial grayscale pixel value. Subsequently, all sinograms Sk(n, j) were subjected to
discrete two-dimensional first-level wavelet decomposition using wavelets from the “Haar”,
“Daubechies”, “Symlets”, “Coiflets”, “Biorthogonal” and “Discrete FIR approximation of
Mayer wavelet” families. Further analysis was performed on the image after high-pass
filtering horizontally scaled and low-pass filtering vertically scaled to the dimensions of
the original sinogram [22,23] (Figure 3a).

For each sinogram after decomposition Tk(n, j), the lower bL and upper bH levels of
the correct pixel values were determined. They were calculated based on the average value
of the normalized image of the sinogram before decomposition ws = Mean

(
Sn

k (n, j)
)
, the

average standard deviation of the sinogram after decomposition m1 = SD(Tk(x, y)), the
average value of the pixels in the image after decomposition m2 = Mean(Tk(x, y)), and a
window width factor k selected experimentally. The calculation of the levels of pixel values
and binarization follows the following formulas:

w1 = kws
4
√

ws (4)

w2 = k(0.2 − ws) 4
√

ws (5)

bL = m1 − w2m2 (6)

bH = m1 + w1m2 (7)

i f Tk(n, j) ≤ bH and Tk(n, j) ≥ bL, Tk(n, j) = 0; (8)

i f Tk(n, j) ≤ bL and Tk(n, j) ≥ bH , Tk(n, j) = 1. (9)

As a result of these operations, we obtained a matrix of size for image decomposition
Tk(n, j) of zeros and ones Bk(n, j) (Figure 3b). The matrix Bk(n, j) was summed with respect
to the columns, and the values were divided by the number of rows in the matrix. We
obtained a single row matrix Nk(j) = ∑n Bk(n,j)

n . The column positions in the image j of
stripe occurrences were identified when Nk(j) ≥ T, where T is the thresholding level
determined experimentally for a particular data set (Figure 4). The positions of artifact
occurrences were subjected to local filtering using line interpolation in a window of 0.5%
of the image width rounded to the nearest whole odd number, but not less than 3 pixels
(pascal). The operation result was a corrected image S′′

k (n, j).

https://numpy.org
https://opencv.org
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The use of a certain thresholding level resulted in the fact that the striations with very
low intensity below the thresholding level were not identified. This occurred especially in
situations where tomography was performed on an element with a very different density.
In such a situation, it was proposed to perform additional filtering of the entire sinogram.
For this purpose, filtering was performed with moving average [24] methods and using
empirical mode decomposition [25,26].

In order to perform the filtering of the moving average, the grayscale values of the
pixels of the columns of the corrected sinogram were summed, obtaining the curve y′(j) =
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∑n S′
k(n, j). Then, the curve was filtered according to the formula in Equation (10), and the

whole sinogram was multiplied by the correction factor (Equation (11)):

ys(j) =
1

2N + 1∑N
k=−N y′(j + k). (10)

S′′
k (n, j) = S′

k(n, j)
ys(j)
y′(j)

. (11)

where N is the span factor.
Global filtering with mask shift EMD was also performed. The exact process and

description are presented in the work of Deering et al. [26]. As a result of decomposition
to the 4th level, the harmonics of the signal were extracted. The filtered curve ys(j) was
the curve with the highest harmonics removed. The correction process then proceeded
according to Equation (11).

The images resulting from the presented processes were subjected to further analysis
at a depth of 32 bits. The corrected and reconstructed images were compared with the
reference image using image comparison methods. The Root-Mean-Square Error (RMSE)
(Equation (12)) [27], Structural Similarity Index (SSIM) (Equations (13) and (14) [28]), and
Multi-scale Structural Similarity Index (MS-SSIM) (Equation (15)) [29] methods were used
for comparison.

RMSE =

√
1

M × N ∑M−1, N−1
i=0, j=0 [k′(i, j)− k(i, j)]2 (12)

where k is the reference image and k′ is the corrected image.

SSIM(x, y) = [l(x, y)]∝·[c(x, y)]β·[s(x, y)]γ (13)

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

xµ2
y + C1

)(
σ2

x σ2
y + C2

) (14)

where C1 and C2 are constants using two scalar constants K1 and K2 and the dynamic range
of the image. In this paper, K1 = 0.01 and K2 = 0.03. The SSIM indexing algorithm uses
a sliding window method to evaluate the image quality. SSIM takes values from −1 to 1;
SSIM(x, y) = 1 if and only if x = y. The window is moved pixel by pixel in the whole
image. In this paper, the window size is 8 × 8 px.

MS − SSIM(x, y) = [lM(x, y)]∝M ·
M

∏
j=1

[
cj(x, y)

]β j ·
[
sj(x, y)

]γj (15)

In this paper K1 = 0.01, K2 = 0.03 and the window size is 11 × 11 px.

3. Results and Discussion

In the first stage, experimental determination of the value of the k-factor was per-
formed. For this purpose, the noisy Shepp–Logan phantom was subjected to wavelet
decomposition using a Haar wavelet. A ring artifact reduction process was carried out by
changing the value of k in the range from 5 to 35, and the thresholding level was fixed at
T = 0.4. Global filtering of the whole sinogram was not performed. The reconstruction
result was compared to the reference image using the RMSE and MSE methods. The results
of the comparison are presented in the graph in Figure 5. The results presented in the
graph show the effect of the k parameter on the effectiveness of reducing ring artifacts
in the Shepp–Logan phantom image. From the graph, it can be seen that the optimal
parameter for this phantom is values above 21. A further increase in the value has no effect
on reducing the errors between the reference image and the one obtained as a result of
processing and reconstruction.
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line) and MSE (black line) methods for changing parameter k.

After determining the value of the k-factor, the sensitivity of the presented method of
reducing ring artifacts to striations of different intensities was checked. For this purpose,
the percentage of introduced noise was increased in the range of 2–20%. Reconstruction
was performed and the obtained images were compared to the reference image.

Table 2 shows the results of the image comparison for reconstructed images without
ring artifact reduction and reconstructed images with artifact reduction. The filtering
process used a first-level Haar wavelet, a constant of k = 21, a thresholding level of T = 0.4
and a span factor of N = 3 (Figure 6).The last row of the Table 2 shows the result of
comparing the image of the generated phantom and the phantom after reconstruction
without introduced artifacts. The analysis of the results presented in the table shows that
the reduction in ring artifacts is effective and significantly improves image quality. The
results of the MSE method suggest that image noise below 5% as a result of filtering no
longer improves image quality. This is due to global filtering, in which, at such a low
noise level, the changes resulting from filtering the entire image make more difference than
the noise by itself. However, the SSIM and MS-SSIM methods suggest that the filtered
image is of similar or even slightly better quality than without filtering at noise levels
of 2% AND 5%. With high-intensity stripes, the image has two or even three times the
similarity to the reference image.The quantitative results are worse than in the other works
cited [2,14], however, it should be noted that in this work the authors use a virtually
generated phantom rather than a phantom reconstruction image as a reference image. The
filtered back projection (FBP) reconstruction process further introduces some imperfections
and simplifications. The work of author Selim M. [14] uses reconstruction and iterative
filtering which gives much better results. However, it requires many iterations is much
time-consuming and has much higher hardware requirements. The method proposed in
this work is much easier to implement and has more practical application today.

Wavelet decomposition was also performed using wavelet families other than the
Haar wavelet. This operation was aimed at checking which of the wavelet families used for
decomposition would most precisely identify the vertical stripes and separate them from
the non-sine data in the sinogram of the reconstructed object. A phantom with a noise level
of 10% was subjected to a series of decompositions. After decomposition, it was subjected
to a ring artifact reduction process and compared with the reference image. The results for
each phantom are recorded in Table 2 and in the graph (Figure 6).
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Table 2. Values of calculated similarity coefficients of the post-filtered and noisy unfiltered images of
the Sheep-Logan phantom to the reference image.

PSNR (dB) MSE SSIM MS-SSIM

No Filtration 20% noise 21.99288 0.07074 0.37611 0.60218
Filtered 20% noise 27.09104 0.02187 0.80090 0.82214

No Filtration 10% noise 27.08707 0.02189 0.47612 0.76688
Filtered 10% noise 29.35344 0.01299 0.80226 0.82219

No Filtration 5% noise 34.59004 0.00389 0.61120 0.80143
Filtered 5% noise 27.08509 0.02190 0.80265 0.82261

No Filtration 2% noise 37.74795 0.00188 0.79428 0.88367
Filtered 2% noise 27.09303 0.02186 0.80534 0.82340

Noise-free reconstruction 38.61433 0.00154 0.92164 0.98685
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Figure 6. Images showing Shepp–Logan phantom reconstructions (a) without ring artifact reduction
(stripe level 10%) and (b) after performing ring artifact reduction with constant k = 21, thresholding
level T = 0.4, and span factor N = 3.

When analyzing the results, it should be noted that with the RMSE method, the
similarity coefficient tends to 0, so the lower the value, the more similar the obtained image
is to the reference image. In the case of the SSIM and MS-SSIM methods, the values tend to
1, that is, the closer the value is to one, the greater the similarity of the images. In the results
shown in the Table 3 and Figure 7, you can see four wavelets that obtained significantly
higher results than the others: Haar, Coiflet 1, Biorthogonal 2.2 and 3.1 and Daubechies 2.
The values of the coefficients are included in Table 3, and the four mentioned wavelets are
in bold.

Table 3. Table showing results of comparative analysis of reconstructed images using wavelets of
different families and reference image using RMSE, SSIM and MS-SSIM methods. The results with
the highest similarity values to the reference image are shown in bold.

Wavelets Type PSNR (dB) RMSE SSIM MS-SSIM

Haar 29.0471 0.1477 0.8031 0.8231
“Discrete” Meyer 28.9729 0.1502 0.6140 0.7211

Coiflets 1 29.0710 0.1469 0.7898 0.8155
Coiflets 5 29.0279 0.1483 0.6337 0.7244
Coiflets 10 29.,0420 0.1479 0.6533 0.7484
Coiflets 15 29.0320 0.1482 0.6434 0.7320

Biorthogonal 1.5 29.0743 0.1468 0.6708 0.7485
Biorthogonal 2.2 29.0660 0.1470 0.7631 0.8052
Biorthogonal 2.8 29.0713 0.1469 0.6531 0.7320
Biorthogonal 3.1 29.0513 0.1475 0.7833 0.8125
Biorthogonal 3.9 29.0886 0.1463 0.6601 0.7470
Biorthogonal 4.4 29.1073 0.1457 0.7111 0.7823
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Table 3. Cont.

Wavelets Type PSNR (dB) RMSE SSIM MS-SSIM

Biorthogonal 5.5 29.0492 0.1476 0.6543 0.7451
Biorthogonal 6.8 29.0364 0.1481 0.6295 0.7083

Daubechies 2 29.0415 0.1479 0.7700 0.8080
Daubechies 10 29.0353 0.1481 0.6633 0.7551
Daubechies 20 29.0182 0.1487 0.6293 0.7366
Daubechies 30 28.9943 0.1495 0.6604 0.7428

Symlets 4 29.0808 0.1465 0.7276 0.7685
Symlets 8 29.0652 0.1471 0.6702 0.7565
Symlets 12 29.0140 0.1488 0.6183 0.7119
Symlets 16 29.0317 0.1482 0.6243 0.7255
Symlets 20 29.0633 0.1471 0.6309 0.7397
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of different families and reference image using RMSE, SSIM and MS-SSIM methods.

It can be noted that the more complex the wavelet, the lower the similarity to the
reference image obtained. The lowest efficiency was obtained by performing artifact
reduction with the “Discrete” Meyers wavelet. The use of global filtering of the entire
image may also have affected the values obtained. A slight reduction in the value of all
pixels relative to the reference image is visible in the results as a lower similarity even
though the morphometric information of the image was not lost.

4. Conclusions

The results presented in this paper show a method of reducing ring artifacts that
effectively improves the image in which ring artifacts of different intensities occur. De-
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pending on the intensity of the ring artifacts, the results obtained were up to 50% better
than the image not subjected to any filtering. The comparison uses a computer-generated
cross-sectional image as a reference, rather than a noise-free reconstructed phantom image.
This causes the comparison results to be lower, due to the fact that the reconstruction itself
introduces other errors and imperfections in the image, not only ring artifacts. The FBP
method is not perfect and introduces some approximations to the calculation. The authors
made a comparison between the phantom and various reconstruction methods in their
earlier paper [21]. The authors intend in this way to show the level of imperfection of the
image relative to the real object. An important aspect to pay attention to when performing
reduction is the selection of the k parameter. Its imprecise selection can significantly reduce
the effectiveness of the method. The need for experimental selection of the parameter k
is a drawback of the model; therefore, further research based on varied real data should
parametrize this parameter for different materials. A second filtering step based on EMD
introduces changes to all pixels in the image, as shown by the comparative results for very
slight artifacts (less than 5%). The authors want to conduct further research to develop
this method to provide it with more selective performance. Performing a test of different
wavelet families in wavelet decomposition showed that the complexity of the wavelet has
a negative effect on the effectiveness of artifact reduction. The best results were obtained
using the following wavelets: Haar, Coiflet 1, Biorthogonal 2.2 and 3.1 and Daubechies 2.
The lowest efficiency was obtained by performing artifact reduction with the “Discrete”
Meyers wavelet. Greater variation in the results for individual wavelets is expected when
reducing ring artifacts in real images due to the greater complexity of such images. This
type of work is planned in further work on artifact reduction in tomographic images. The
authors are in the process of testing the method on real data obtained from the micro-CT
Skyscan 1172, and the results of this work will be presented in the authors’ next article.
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21. Lipowicz, P.; Dardzińska-Głębocka, A.; Borowska, M.; Biguri, A. Comparison of Analytical and Iterative Algorithms for

Reconstruction of Microtomographic Phantom Images and Rat Mandibular Scans. In Information Technology in Biomedicine,
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