Quantifying Quantum Coherence Using Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Robustness of Coherence
2.2. The Feedforward Neural Network
2.3. Data Preparation
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef]
- Cunden, F.D.; Facchi, P.; Florio, G.; Gramegna, G. Generic aspects of the resource theory of quantum coherence. Phys. Rev. A 2021, 103, 022401. [Google Scholar] [CrossRef]
- Bernardo, B.d.L. Unraveling the role of coherence in the first law of quantum thermodynamics. Phys. Rev. E 2020, 102, 062152. [Google Scholar] [CrossRef]
- Kwon, H.; Jeong, H.; Jennings, D.; Yadin, B.; Kim, M.S. Clock–Work Trade-Off Relation for Coherence in Quantum Thermodynamics. Phys. Rev. Lett. 2018, 120, 150602. [Google Scholar] [CrossRef] [PubMed]
- Camati, P.A.; Santos, J.F.G.; Serra, R.M. Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 2019, 99, 062103. [Google Scholar] [CrossRef]
- Van Vu, T.; Saito, K. Finite-Time Quantum Landauer Principle and Quantum Coherence. Phys. Rev. Lett. 2022, 128, 010602. [Google Scholar] [CrossRef]
- Hammam, K.; Hassouni, Y.; Fazio, R.; Manzano, G. Optimizing autonomous thermal machines powered by energetic coherence. New J. Phys. 2021, 23, 043024. [Google Scholar] [CrossRef]
- Monsel, J.; Fellous-Asiani, M.; Huard, B.; Auffèves, A. The Energetic Cost of Work Extraction. Phys. Rev. Lett. 2020, 124, 130601. [Google Scholar] [CrossRef]
- Seah, S.; Perarnau-Llobet, M.; Haack, G.; Brunner, N.; Nimmrichter, S. Quantum Speed-Up in Collisional Battery Charging. Phys. Rev. Lett. 2021, 127, 100601. [Google Scholar] [CrossRef] [PubMed]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xiao, X.; Ge, L.; Sun, C.P. Quantum coherence in multipartite systems. Phys. Rev. A 2015, 92, 022112. [Google Scholar] [CrossRef]
- Hu, M.L.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.R.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762–764, 1–100. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, H.; Cao, Z.; Ma, X. Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 2015, 92, 022124. [Google Scholar] [CrossRef]
- Designolle, S.; Uola, R.; Luoma, K.; Brunner, N. Set Coherence: Basis-Independent Quantification of Quantum Coherence. Phys. Rev. Lett. 2021, 126, 220404. [Google Scholar] [CrossRef]
- Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M.N.; Adesso, G.; Lewenstein, M. Assisted Distillation of Quantum Coherence. Phys. Rev. Lett. 2016, 116, 070402. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.W.; Shen, S.Q.; Li, M. Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 2021, 103, 012401. [Google Scholar] [CrossRef]
- Bu, K.; Singh, U.; Fei, S.M.; Pati, A.K.; Wu, J. Maximum Relative Entropy of Coherence: An Operational Coherence Measure. Phys. Rev. Lett. 2017, 119, 150405. [Google Scholar] [CrossRef]
- Rastegin, A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 2016, 93, 032136. [Google Scholar] [CrossRef]
- Napoli, C.; Bromley, T.R.; Cianciaruso, M.; Piani, M.; Johnston, N.; Adesso, G. Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Phys. Rev. Lett. 2016, 116, 150502. [Google Scholar] [CrossRef] [PubMed]
- Piani, M.; Cianciaruso, M.; Bromley, T.R.; Napoli, C.; Johnston, N.; Adesso, G. Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 2016, 93, 042107. [Google Scholar] [CrossRef]
- Quek, Y.; Fort, S.; Ng, H. Adaptive quantum state tomography with neural networks. NPJ Quantum Inf. 2021, 7, 105. [Google Scholar] [CrossRef]
- Lohani, S.; Kirby, B.T.; Brodsky, M.; Danaci, O.; Glasser, R.T. Machine learning assisted quantum state estimation. Mach. Learn. Sci. Technol. 2020, 1, 035007. [Google Scholar] [CrossRef]
- Nautrup, H.P.; Delfosse, N.; Dunjko, V.; Briegel, H.J.; Friis, N. Optimizing Quantum Error Correction Codes with Reinforcement Learning. Quantum 2019, 3, 215. [Google Scholar] [CrossRef]
- Beach, M.J.S.; Vlugt, I.D.; Golubeva, A.; Huembeli, P.; Kulchytskyy, B.; Luo, X.; Melko, R.G.; Merali, E.; Torlai, G. QuCumber: Wavefunction reconstruction with neural networks. SciPost Phys. 2019, 7, 9. [Google Scholar] [CrossRef]
- Khoo, J.Y.; Heyl, M. Quantum entanglement recognition. Phys. Rev. Res. 2021, 3, 033135. [Google Scholar] [CrossRef]
- Harney, C.; Pirandola, S.; Ferraro, A.; Paternostro, M. Entanglement classification via neural network quantum states. New J. Phys. 2020, 22, 045001. [Google Scholar] [CrossRef]
- Lu, S.; Huang, S.; Li, K.; Li, J.; Chen, J.; Lu, D.; Ji, Z.; Shen, Y.; Zhou, D.; Zeng, B. Separability-entanglement classifier via machine learning. Phys. Rev. A 2018, 98, 012315. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, Y.; Zhang, G.; Cheng, S. Detecting quantum entanglement with unsupervised learning. Quantum Sci. Technol. 2021, 7, 015005. [Google Scholar] [CrossRef]
- Roik, J.; Bartkiewicz, K.; Černoch, A.; Lemr, K. Entanglement quantification from collective measurements processed by machine learning. arXiv 2022, arXiv:2203.01607. [Google Scholar] [CrossRef]
- Ren, C.; Chen, C. Steerability detection of an arbitrary two-qubit state via machine learning. Phys. Rev. A 2019, 100, 022314. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Fei, S.M. Einstein-Podolsky-Rosen steering based on semisupervised machine learning. Phys. Rev. A 2021, 104, 052427. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Yang, L.J.; He, Q.l.; Chen, L. Machine learning on quantifying quantum steerability. Quantum Inf. Process. 2020, 19, 263. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.h.; Shi, J.y.; Huang, F. Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement. In Proceedings of the Advances in Computer Science and Information Engineering, Zhengzhou, China, 19–20 May 2012; Jin, D., Lin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 553–558. [Google Scholar]
- Takhtadzhian, L. Quantum Mechanics for Mathematicians; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2008. [Google Scholar]
- Brandão, F.G.S.L.; Gour, G. Reversible Framework for Quantum Resource Theories. Phys. Rev. Lett. 2015, 115, 070503. [Google Scholar] [CrossRef]
- Vandenberghe, L.; Boyd, S. Semidefinite Programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 10 June 2024).
- Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control; Blondel, V., Boyd, S., Kimura, H., Eds.; Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2008; pp. 95–110. Available online: https://web.stanford.edu/~boyd/papers/pdf/graph_dcp.pdf (accessed on 10 June 2024).
- Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 2011, 302, 012037. [Google Scholar] [CrossRef]
- Huelga, S.; Plenio, M. Vibrations, quanta and biology. Contemp. Phys. 2013, 54, 181–207. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 10 June 2024).
- Nielsen, M.A. Neural Network and Deep Learning; Determination Press: Los Angeles, CA, USA, 2015; Available online: http://neuralnetworksanddeeplearning.com (accessed on 10 June 2024).
- Botchkarev, A. A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 045–076. [Google Scholar] [CrossRef] [PubMed]
- Życzkowski, K.; Penson, K.A.; Nechita, I.; Collins, B. Generating random density matrices. J. Math. Phys. 2011, 52, 062201. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/install?hl=zh-cn (accessed on 10 June 2024).
- Yu, T.; Zhu, H. Hyper-Parameter Optimization: A Review of Algorithms and Applications. arXiv 2020, arXiv:2003.05689. [Google Scholar]
- GitHub—lruicckhy/CoherenceMachineLearning at Master—github.com. Available online: https://github.com/lruicckhy/CoherenceMachineLearning/tree/master (accessed on 10 August 2024).
- Bellomo, B.; Lo Franco, R.; Compagno, G. Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 2008, 77, 032342. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chen, L.; He, Q.; Zhang, Y. Quantifying Quantum Coherence Using Machine Learning Methods. Appl. Sci. 2024, 14, 7312. https://doi.org/10.3390/app14167312
Zhang L, Chen L, He Q, Zhang Y. Quantifying Quantum Coherence Using Machine Learning Methods. Applied Sciences. 2024; 14(16):7312. https://doi.org/10.3390/app14167312
Chicago/Turabian StyleZhang, Lin, Liang Chen, Qiliang He, and Yeqi Zhang. 2024. "Quantifying Quantum Coherence Using Machine Learning Methods" Applied Sciences 14, no. 16: 7312. https://doi.org/10.3390/app14167312
APA StyleZhang, L., Chen, L., He, Q., & Zhang, Y. (2024). Quantifying Quantum Coherence Using Machine Learning Methods. Applied Sciences, 14(16), 7312. https://doi.org/10.3390/app14167312