Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Sample Drying
2.3. Thermo-Chemical Characterization
2.3.1. Proximate Analysis
2.3.2. Elemental Analysis
2.3.3. Calorimetry
2.4. Normalization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Drying
3.2. Proximate Analysis
3.3. Elemental Analysis
3.4. Calorimetric Analysis
3.5. Framing within ENplus® Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef] [PubMed]
- Base de Datos|OIV. Available online: https://www.oiv.int/es/what-we-do/data-discovery-report?oiv (accessed on 12 February 2024).
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Oliveira, R.M.C. Valorização do Bagaço de Uva: Avaliação da Potencialidade de Produção de Biogás. Master’s Thesis, Universidade da Beira Interior: Covilhã, Portugal, 2011. [Google Scholar]
- Onache, P.A.; Geana, E.-I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Watrelot, A. Ongoing Research: Grape Pomace, Midwest Grape and Wine Industry Institute—Iowa State University. 2021. Available online: https://www.extension.iastate.edu/wine/ongoing-research-grape-pomace/ (accessed on 29 July 2024).
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for recycling and valorization of grape marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef]
- González-Centeno, M.; Rosselló, C.; Simal, S.; Garau, M.; López, F.; Femenia, A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. LWT Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Valorization of winery and oil mill wastes by microbial technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
- Genisheva, Z.; Macedo, S.; Mussatto, S.I.; Teixeira, J.A.; Oliveira, J.M. Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. J. Inst. Brew. 2012, 118, 163–173. [Google Scholar] [CrossRef]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. The Biorefinery Concept for the Industrial Valorization of Grape Processing By-Products. In Handbook of Grape Processing By-Products; Elsevier: Amsteram, The Netherlands, 2017; pp. 29–53. [Google Scholar] [CrossRef]
- Borta, A.-M.; Sturza, R. Ways of Application of the Circular Bioeconomy in the Wine Industry. J. Eng. Sci. 2024, 30, 124–146. [Google Scholar] [CrossRef]
- Korkie, L.; Janse, B.; Viljoen-Bloom, M. Utilising Grape Pomace for Ethanol Production. S. Afr. J. Enol. Vitic. 2017, 23, 31–36. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, T.; Negreanu-Pirjol, B.-S.; Artem, V.; Ranca, A.; Ciocan, M.; Popoviciu, D.R. Chapter V Grape Pomace—A Promising Biocomponent as Biostimulant and Eco-Fertilizer. A Review. In Agricultural Studies on Different Subjects; Çiğ, A., Ed.; Iksad Publishing House: Ankara, Turkey, 2021. [Google Scholar]
- Bustamante, M.; Said-Pullicino, D.; Paredes, C.; Cecilia, J.; Moral, R. Influences of winery–distillery waste compost stability and soil type on soil carbon dynamics in amended soils. Waste Manag. 2010, 30, 1966–1975. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Infovini|O Portal Do Vinho Português|Glossário. Available online: http://www.infovini.com/classic/pagina.php?l=B&codPagina=28&pg=2 (accessed on 3 May 2024).
- Cortés, S.; Fernández, E. Differentiation of Spanish Alcoholic Drinks, Orujo, Obtained from Red and White Grape Pomace Distillation: Volatile Composition. Int. J. Food Prop. 2011, 14, 1349–1357. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Bollaín, M.H.; Berstsch, K.; Orriols, I. Fast determination of principal volatile compounds in distilled spirits. Food Control 2010, 21, 1436–1441. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Curiel-Fernández, M.; Bueno-Herrera, M.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties. Molecules 2023, 28, 6770. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia 2018, 153, 107–111. [Google Scholar] [CrossRef]
- Chang, M.; Thellufsen, J.Z.; Zakeri, B.; Pickering, B.; Pfenninger, S.; Lund, H.; Østergaard, P.A. Trends in tools and approaches for modelling the energy transition. Appl. Energy 2021, 290, 116731. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef]
- Hoefnagels, R.; Junginger, M.; Faaij, A. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the U.S. Biomass Bioenergy 2014, 71, 443–454. [Google Scholar] [CrossRef]
- Japhet, J.A.; Tokan, A.; Kyauta, E.E. A Review of Pellet Production from Biomass Residues as Domestic Fuel. Int. J. Environ. Agric. Biotechnol. 2019, 4, 835–842. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Densification of waste biomass for manufacturing solid biofuel pellets: A review. Environ. Chem. Lett. 2023, 21, 231–264. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Ahmad, Z.; Albahnasawi, A.; Nassani, D.E.; Alenezi, R.A. Biomass processing technologies for bioenergy production: Factors for future global market. Int. J. Environ. Sci. Technol. 2024, 21, 2307–2324. [Google Scholar] [CrossRef]
- Onochie, U.P.; Ighodaro, O.O.; Kwasi-Effah, C.C.; Unuereopka, O.J. A Comprehensive Review on Biomass Pelleting Technology and Electricity Generation from Biomass. J. Energy Technol. Environ. 2019, 1, 38–49. [Google Scholar]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Vigants, H.; Priedniece, V.; Veidenbergs, I.; Blumberga, D. Process Optimization for Pellets Production. Energy Procedia 2017, 113, 396–402. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Mixed biomass pellets for thermal energy production: A review of combustion models. Appl. Energy 2014, 127, 135–140. [Google Scholar] [CrossRef]
- Miranda, T.; Montero, I.; Sepúlveda, F.J.; Arranz, J.I.; Rojas, C.V.; Nogales, S. A Review of Pellets from Different Sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef]
- Havlík, J.; Dlouhý, T.; Pitel’, J. Drying Biomass with a High Water Content—The Influence of the Final Degree of Drying on the Sizing of Indirect Dryers. Processes 2022, 10, 739. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. In Biomass Volume Estimation and Valorization for Energy; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- ISO 18134-2:2017; (E) Solid Biofuels-Determination of Moisture Content-Oven Dry Method-Part 2: Total Moisture—Simplified Method. ISO: Geneva, Switzerland, 2017.
- ISO 16948:2015; (E) Solid Biofuels-Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 18123:2015; (E) Solid Biofuels—Determination of the Content of Volatile Matter. ISO: Geneva, Switzerland, 2015.
- ISO 18122:2015; (E) Solid Biofuels-Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- ISO 18125:2017; (E) Solid Biofuels-Determination of Calorific Value. ISO: Geneva, Switzerland, 2017.
- Deiana, A.; Gimenez, M.; Rómoli, S.; Sardella, M.; Sapag, K. Batch and Column Studies for the Removal of Lead from Aqueous Solutions Using Activated Carbons from Viticultural Industry Wastes. Adsorpt. Sci. Technol. 2014, 32, 181–195. [Google Scholar] [CrossRef]
- Hartmann, H. Solid Biofuels, Fuels, and Their Characteristics. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2017; pp. 1–36. [Google Scholar] [CrossRef]
- Wang, L.; Wu, M.; Pang, Y.; Xu, J.; Li, X.; Chen, Y. Upgrading of Diammonium Hydrogen Phosphate on Wood and High-Value as an Efficient Derived Carbon. BioEnergy Res. 2023, 16, 2604–2615. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielińska, M. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl. Biochem. Biotechnol. 2020, 192, 770–793. [Google Scholar] [CrossRef]
- ENplus®, History of ENplus®, ENplus Pellets. 2022. Available online: https://enplus-pellets.eu/history/ (accessed on 29 May 2024).
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed.; Academic Press: London, UK, 2013. [Google Scholar]
- Nussbaumer, T. Primary and Secondary Measures for the Reduction of Nitric Oxide Emissions from Biomass Combustion. In Developments in Thermochemical Biomass Conversion; Springer: Dordrecht, The Netherlands, 1997; pp. 1447–1461. [Google Scholar] [CrossRef]
- Siyal, A.A.; Mao, X.; Liu, Y.; Ao, W.; Jiang, Z.; Wahab, N.; Ran, C.; Zhang, R.; Liu, G.; Dai, J. Pellet production from furfural residue and sawdust: Evaluating the characteristics and quality of pellets and their dependency on process parameters. Biomass Bioenergy 2021, 149, 106087. [Google Scholar] [CrossRef]
- Kantová, N.; Holubčík, M.; Čaja, A.; Trnka, J.; Jandačka, J. Analyses of Pellets Produced from Spruce Sawdust, Spruce Bark, and Pine Cones in Different Proportions. Energies 2022, 15, 2725. [Google Scholar] [CrossRef]
Temperature | Time Interval | |
---|---|---|
Moisture | 105 °C | 2 h |
Volatile Matter | 950 °C | 2 min with open door |
3 min with door half closed | ||
6 min with door fully closed | ||
Ashes | 750 °C | 6 h |
Temperatures | |
---|---|
Combustion reactor temperature: | 950 °C |
Reduction reactor temperature (not being used): | 400 °C |
Oven temperature: | 65 °C |
Time intervals | |
Total analysis time: | 720 s |
Time in which the sample falls into the reactor: | 12 s |
Oxygen injection time: | 5 s |
Gas fluxes | |
Drag gas: | 140 mL/min |
Oxygen: | 250 mL/min |
Reference: | 100 mL/min |
Sample | Moisture (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) |
---|---|---|---|---|
Distillation stillage | 5.454 ± 0.118 | 58.97 ± 0.265 | 3.762 ± 0.129 | 31.813 ± 0.018 |
Wine pomace | 5.268 ± 0.027 | 62.695 ± 0.057 | 6.359 ± 0.038 | 25.677 ± 0.093 |
Sample | N (%) | C (%) | H (%) | S (%) | O (%) |
---|---|---|---|---|---|
Distillation stillage | 2.57 ± 0.301 | 54.928 ± 0.531 | 6.725 ± 0.251 | 0.153 ± 0.032 | 31.862 ± 0.948 |
Wine pomace | 2.494 ± 0.055 | 52.099 ± 0.469 | 5.669 ± 0.105 | 0.043 ± 0.012 | 33.337 ± 0.541 |
Sample | HHV (MJ/kg) | LHV (MJ/kg) |
---|---|---|
Distillation stillage | 20.544 ± 0.037 | 19.109 ± 0.024 |
Wine pomace | 19.741 ± 0.025 | 18.514 ± 0.032 |
Moisture (%) | Ash (%) | N (%) | S (%) | LHV (MJ/kg) | |
---|---|---|---|---|---|
ENplus® A1 | ≤10.0 | ≤0.70 | ≤0.3 | ≤0.04 | ≥16.5 |
ENplus® A2 | ≤10.0 | ≤1.20 | ≤0.5 | ≤0.05 | ≥16.5 |
ENplus® B | ≤10.0 | ≤2.00 | ≤1.0 | ≤0.05 | ≥16.5 |
Distillation stillage | 5.454 ± 0.118 | 3.762 ± 0.129 | 2.57 ± 0.301 | 0.153 ± 0.032 | 19.109 ± 0.024 |
Wine pomace | 5.268 ± 0.027 | 6.359 ± 0.038 | 2.494 ± 0.055 | 0.043 ± 0.012 | 18.514 ± 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.; Teixeira, B.M.M.; Toste, R.; Borges, A.D.S. Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production. Appl. Sci. 2024, 14, 7313. https://doi.org/10.3390/app14167313
Oliveira M, Teixeira BMM, Toste R, Borges ADS. Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production. Applied Sciences. 2024; 14(16):7313. https://doi.org/10.3390/app14167313
Chicago/Turabian StyleOliveira, Miguel, Bruno M. M. Teixeira, Rogério Toste, and Amadeu D. S. Borges. 2024. "Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production" Applied Sciences 14, no. 16: 7313. https://doi.org/10.3390/app14167313
APA StyleOliveira, M., Teixeira, B. M. M., Toste, R., & Borges, A. D. S. (2024). Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production. Applied Sciences, 14(16), 7313. https://doi.org/10.3390/app14167313