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Abstract: During tensile testing of materials, strain measurement is conducted using either contact
or non-contact methods. Contact methods offer high accuracy and precision but are limited by
the specimen’s thickness and dimensions, whereas non-contact methods minimize damage to thin
specimens and allow measurements in various environments, though they require longer preparation
and calculation times. This paper proposes a circular grid marking pattern and a strain prediction
algorithm using artificial intelligence (AI), which simplifies the preparation process and allows strain
prediction without additional equipment. The circular grid pattern can be arranged in various
configurations from 1 × 5 to 5 × 7, and a laser marker, which requires minimal time, was used to
engrave the pattern on the specimen to shorten the preparation time. The AI model, trained on
image-based data, enables strain calculation regardless of the specimen’s gauge length and size, and
allows measurement of local strain as well as gauge-length strain. The reliability of this concept was
verified by applying it to tensile testing.

Keywords: artificial intelligence (AI); grid circle pattern; image processing; measurement strain;
tensile test

1. Introduction
1.1. Research Background

Historically, the invention or development of new materials has driven the advance-
ment of industrial technologies. Particularly, metal materials have long been used in
various fields and continue to be subjects of ongoing research. Recently, in the mobility
sector, where efficiency is paramount, composite or metal materials with high strength and
stiffness are used [1]. However, defects, such as fractures and wrinkles (cracks) in metal
components, can lead not only to personal injuries but also to significant economic losses.
Therefore, to establish design safety standards for metal components, it is important to
understand the physical properties of the formed shapes, such as thickness, spring-back,
and residual stress [2]. Finite element analysis is commonly used to understand the phys-
ical properties occurring during the forming of metal materials. When the production
conditions of the metal (such as composition and heat treatment) are standardized, the
reliability of numerical results regarding the metal’s physical properties can be ensured
through information obtained from extensive testing. However, for newly developed
metals, material tests, such as tensile tests, are required to verify the reliability of numerical
results by obtaining the material’s physical properties [3].

The tensile testing procedure involves mounting a specimen processed to standard
specifications in a tester and measuring the stress and strain generated when it is sub-
jected to tensile stress at a constant speed. Strain measurement methods can be divided
into contact methods using gauges and non-contact methods using cameras or sensors.
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Contact measurement methods include mechanical extensometers, electrical resistance
extensometers (strain gauges), and inductive extensometers, all of which measure displace-
ment by being directly attached to the specimen [4]. Non-contact measurement methods
encompass video measurement, laser measurement, digital image correlation (DIC), and
ultrasonic measurement. DIC, in particular, is noteworthy for its ability to measure 3D
deformations and acquire data from multiple points, making it suitable for use in extreme
temperatures and large deformation environments. Additionally, DIC can measure strain
in the specimen’s width and thickness directions, not just in the length direction. This
method calculates strain by analyzing changes in the pattern applied to the specimen’s
surface and can track local strain at specific points, such as just before necking or fracture
occurs [5–7].

Mechanical extensometers are attached to the specimen to provide highly reliable
measurements and are less affected by environmental changes, such as ambient light or
temperature. However, their measurement range can be exceeded by material elongation,
and they may be difficult to attach to thin sheets [8]. Strain gauges can measure fine
deformations through electrical resistance but are significantly affected by temperature
changes [9]. Inductive extensometers can accurately measure fine deformations and are
usable in high-temperature and extreme environments, although they are influenced by
external electric fields. Contact measurement methods measure deformation based on the
gauge length specified in tensile specimen standards, making it challenging to accurately
analyze strain at actual fracture locations [10].

Non-contact measurement methods do not require physical contact with the specimen,
preventing deformation caused by the measuring instrument in thin-sheet specimens and
allowing usage under various environmental conditions, including different temperatures,
pressures, and vacuum [11]. However, non-contact methods require expensive equipment,
such as high-speed high-resolution cameras, lasers, ultrasonic devices, and image analysis
software. They are also sensitive to optical conditions, such as lighting, reflection, and dust.
Specifically, DIC requires high computing performance to measure strain by analyzing cor-
relations over the entire image area captured by the camera and necessitates the application
of a speckle pattern on the specimen surface [5]. Additionally, to measure the strain on
the tensile specimen surface using DIC, a speckle pattern must be applied to the specimen
using spray, allowing the tracking of image changes. However, this application process is
time consuming and, during the drying process, the paint may peel off depending on the
specimen’s surface roughness and material properties, making measurement impossible.

The technical issues of the various measurement methods discussed can be summa-
rized as follows. Contact methods offer high accuracy and precision but are limited by
the specimen’s thickness and dimensions. Non-contact methods minimize damage to thin
specimens and allow measurements in various environments, but they require expensive
equipment, are sensitive to environmental conditions, and involve lengthy preparation and
calculation times. Therefore, a need exists for a strain measurement method that reduces
calculation and preparation time and does not require additional equipment.

1.2. Literature Review

Because these contact and non-contact material property measurement methods have
individual advantages and disadvantages concerning specimen shape, environment, time,
and cost, many researchers have proposed ideas to overcome these drawbacks. Ko et al. [12]
proposed a theoretical formula to predict the measurement performance of strain gauge
sensors based on specimen deformation through experiments and finite element analy-
sis, showing that measurement values can be predicted by finite element analysis. Some
studies have been conducted to improve strain measurement accuracy at cryogenic tem-
peratures [13,14]. The results demonstrated that contact measurement methods could be
used even in extreme environments, such as cryogenic conditions. Xu et al. [15] proposed
a method to split the laser beam into two independent sections to improve accuracy and
resolution, demonstrating that this method minimizes uncertainties and avoids data loss
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even in large deformations. Kersemans et al. [16] proposed a method using harmonic
ultrasonic backscatter polar scan (H-UBPS) to measure the cross section of specimens with-
out sample preparation, achieving accuracy similar to commercial methods. Li et al. [17]
proposed chain subset-based DIC technology and a modified second-order shape func-
tion (MSSF) to automate tensile tests, increasing measurement accuracy and reducing
calculation time. Bulava et al. [18] proposed automating strain measurement using a high-
resolution camera, confirming that pattern matching and specifying particular ROIs can
reduce calculation time.

Kim et al. [19] proposed using in situ SEM and artificial intelligence algorithms to
restore low-resolution images to high-resolution, improving strain measurement accuracy.
Liu et al. [20] applied machine learning techniques, including long short-term memory
(LSTM) and convolutional neural networks (CNN), to predict the properties of additively
manufactured metamaterials. Shim et al. [21] used deep learning to predict the mechanical
properties of recycled composites, though the study was limited to recycled CFRTP (Carbon
Fiber Reinforced Plastic) materials. Karathanasopoulos et al. [22] proposed an algorithm to
identify fractures during tensile testing using a CNN. This method confirmed that using
machine learning methods and image subset generation techniques can automatically
locate fracture positions. Castro et al. [23] measured strain using mechano-chromic sensors
and machine learning, proposing a load prediction algorithm based on color changes due
to applied loads. However, they noted limitations in resolution. Yang et al. [24] used
deep learning to compensate for lost strain data in DIC measurements but found that the
method could not be applied when the specimen’s deformation was non-uniform. Lee [25]
proposed a method to measure the strain between two marked points on the gauge length
using the DIC technique but confirmed that it could not measure local strain.

As is evident from these previous studies, contact measurement methods have been
researched to ensure accuracy in extreme environments but remain challenging to apply
to thin sheets [12–14]. Additionally, non-contact measurement methods have been stud-
ied to improve accuracy and reduce calculation times, but they still require preparatory
work [15–25]. Many researchers have proposed methods to improve the accuracy and
efficiency of DIC in strain calculation. Although the DIC method is currently considered
the best for material property measurement, the significant time required for spray pat-
tern preparation and the calculation time still need improvement. Moreover, accurately
measuring the strain at the fracture site is crucial for predicting fracture behavior in metal
materials [26], yet research in this area remains insufficient.

1.3. Motivation and Novelty

Traditional tensile testing methods involve significant time and cost due to preparatory
work and equipment setup, limiting their usability in various environments. Therefore,
a simplified and efficient method is required to enable usage without environmental
limitations. Additionally, to improve strain prediction accuracy and minimize differences
due to user proficiency, an automated process that minimizes user intervention is needed.
Accurately predicting material behavior and fracture also requires identifying strain at the
fracture point, not just at the gauge length.

Thus, this paper proposes a circular grid marking pattern and a strain prediction
algorithm using AI, which simplifies the preparation process and allows strain prediction
with a single camera without the need for additional equipment. To shorten the preparation
time, the circular grid pattern is engraved on the specimen using a laser marker, which
requires minimal time. Applying this method to tensile testing demonstrated the advan-
tages of this study’s concept. The proposed circular grid marking pattern can be applied
regardless of the specimen’s shape. Strain is measured using an image-based AI model,
allowing calculation regardless of the specimen’s gauge length and size, and enabling
the measurement of local strain as well as gauge-length strain. The strain predicted by
the AI model is automatically used to calculate the stress–strain curve, elastic modulus,
and elongation.
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The structure of this paper is as follows. Section 2 introduces the theoretical back-
ground of the strain measurement calculation and method that utilizes the circular grid, as
well as the image preprocessing and AI model used to detect only marking images and
determine strain. Section 3 describes the tensile test procedure, including the shape and
formation method of the circular grid pattern proposed in this study. The circular grid
pattern’s strain prediction accuracy differences were analyzed according to specimen size
and camera specifications. Section 4 explains the data generation method for training the
proposed strain prediction algorithm and the AI training conditions. Section 5 covers the
results and analysis of strain prediction accuracy with variations in the circular grid pattern,
formation method, and AI training. Finally, Section 6 summarizes conclusions regarding
the proposed circular pattern method and AI strain prediction.

2. Theoretical Background
2.1. Material Test

Formability refers to the ability or degree to which a material can undergo plastic
deformation and is used to assess the material’s suitability for forming. To evaluate
formability, tests are conducted to replicate the deformation modes that the material
undergoes in actual processes, among which the tensile test is the most widely used
method. The circular grid pattern proposed in this paper is applied for forming-limit
tests [27–29]. As shown in Figure 1, the nominal and true strains of the deformed circles
in the major (1) and minor (2) directions can be calculated using Equation (1). This paper
proposes applying the circular grid pattern to tensile test specimens, considering only the
major direction strain to calculate the stress–strain curve in tensile tests.

Engineering strain : e1 =
a− d0

d0
, e2 =

b− d0

d0

True strain : ε1 = ln
a

d0
= ln(1 + e1), ε2 = ln

b
d0

= ln(1 + e2) (1)
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Figure 1. Major and minor direction strains of the circular grid pattern.

2.2. DIC Measurement Method

The DIC method used to verify the proposed shape and prediction algorithm creates an
irregular speckle pattern on the specimen, as shown in Figure 2, comparing pre-deformation
and post-deformation images to calculate the entire specimen area. Compared to the
traditional method of marking two points on the specimen and using an extensometer to
measure strain, it provides detailed information, such as directional strain and local strain.
Additionally, because it captures images in real time during the test, it allows for tracking
the deformation path and predicting the strain just before necking or fracture occurs.
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Figure 2. DIC measurement method.

3D measurement equipment uses two stereo cameras to measure the three-dimensional
distance of an object, requiring sufficient space to ensure an appropriate field of view. 3D
measurements are accurately performed at the point where the cameras and the object
form a triangle, resulting in a limited measurement area. The setup requires at least 30 min
due to the need to calibrate dozens of images, and the equipment is expensive, depending
on the camera resolution and measurement area. In contrast, 2D measurements can be
performed with a smartphone camera, but there can be distortion at the edges, and accurate
measurements require the object and camera to be perpendicular. This paper assumes that
the 2D camera and the target object are perpendicular to each other.

2.3. Image Preprocessing

Image-based strain measurement methods are divided into 2D and 3D methods, with
3D DIC methods generally being applied for experiments. In this study, 2D was used
to simplify the tensile test; because the material was a thin sheet, the difference between
2D and 3D was negligible, so thickness direction strain was ignored. The tensile test was
recorded on video and images for the training data were generated from the test video,
with necessary data extracted by image preprocessing.

To extract only single circles from the circular grid pattern in the video recorded
during the tensile test, image binarization was applied. Image binarization [30], as shown
in Figure 3, converts the image into two colors, 0 and 255, and was applied in this study to
reduce noise. Image binarization generally sets pixels above a certain threshold to 0 and the
others to 255. In this case, the generated images had white objects on a black background.
Given image A and structural element B, dilation and erosion are defined as in Equation (2).
In Equation (2), Bz is the transformation of B by vector z, representing the symmetry of B̂.

A
⊕

B =
{

x
∣∣[(B̂)z ∩ A

]
6= 0

}
A� B = {x|(B)z ⊆ A}
A ◦ B = (A� B)

⊕
B

A·B = (A
⊕

B)� B

(2)
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After reducing noise and extracting only circles through image binarization, the image
size typically consists of approximately 20 × 20 pixels. This size represents the pixel space
where the circular pattern exists within a 1920 × 1080 size when adjusting the camera
position considering the elongation of the material during the tensile test. The circular
pattern exists in a relatively localized area compared to the overall image size so, even
when captured at high resolution during the tensile test, only low-resolution images can be
obtained. The lower the image resolution, the fewer pixels are available to represent the
deformation of the circle. For example, if a circle with a diameter of 10 mm is composed
of pixels with sizes of 1 × 1 mm and 2 × 2 mm, when the circle deforms to 12 mm, the
1 × 1 mm pixels would show 2 pixels, while the 2 × 2 mm pixels would show 1 pixel,
resulting in loss of deformation information. To overcome this issue with low-resolution
images, super resolution was applied to obtain high-resolution images. Super resolution
converts low-resolution images to high-resolution images through AI training, as shown in
Figure 4 [31].
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2.4. AI Training Model

AI algorithms that classify and predict specific values based on images generally
use a CNN structure. A CNN is an artificial neural network comprising one or several
convolutional layers and traditional artificial neural network layers, capable of extracting
high-dimensional image information compared to conventional image processing methods.
Unlike a fully connected neural network, a CNN maintains the shape of the input and
output data for each layer, effectively recognizing features from adjacent images while
preserving image spatial information. Using shared parameters for filters, it requires
significantly fewer learning parameters compared to a general artificial neural network.
Image classification and prediction algorithms based on CNN structures include Visual
Geometry Group (VGG), ResNet, and MobileNet.

VGG [32] is distinguished as VGG16 or VGG19 according to the number of convo-
lutional layers, with the model structure comprising C and E, as shown in Figure 5. It
repeatedly applies convolutional layers with filtering techniques to the input image, the
ReLU nonlinear activation function, and pooling layers that reduce the size of the image
data. Then, the data are vectorized through the fully connected (FC) layer and normalized
through the softmax activation function.

ResNet (Residual Network) [33], unlike VGG, is composed of blocks, as shown in
Figure 5. By residual mapping, which adds values that have passed through convolutional
layers to those that have not, it mitigates overfitting and parameter vanishing problems
as the layer depth increases [20]. ResNet’s layer structure uses convolutional layers with
7 × 7 filters and 3 × 3 max pooling.
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MobileNetV2 [34] is a neural network designed for efficient computation in resource-
constrained environments such as smartphones and other mobile devices, reducing the
number of parameters and computation requirements compared to traditional CNNs.
MobileNet applies depth-wise separable convolutions, as shown in Figure 5, and calculates
spatial direction depth-wise convolutions and channel direction point-wise convolutions
separately before combining them. Because different filters are applied to each channel, the
number of output channels remains the same as the number of input channels.

3. Circular Grid Pattern
3.1. Circular Grid Pattern Shape

The tensile specimen used in this study applied the KS B 0801 standard [35], as shown
in Figure 6. The material used was STS (stainless steel) 304 with a thickness of 3 mm. In this
context, T represents thickness, L is the gauge length, r is the parallel length, R is the radius,
and B is the grip width, which are 3 mm, 50 mm, 60 mm, 20 mm, and 20 mm, respectively.
The specimen was processed using laser cutting.
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This paper proposes a circular grid pattern to replace the speckle pattern used in
traditional DIC. The proposed circular grid pattern can measure strain from the gauge
length to the local strain at the fracture site. As shown in Figure 7, the pattern consists of
grids with circles arranged in configurations, such as 1 × 5, 3 × 5, 1 × 7, and 5 × 7. The
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pattern position is based on the center of the parallel section of the tensile specimen. There
must be at least one row, and at least three circular markings must be formed in the tensile
direction. It should consist of at least two circles indicating the gauge length and one or
more positioned at the specimen center. However, because fractures do not consistently
occur at the center, at least five circular markings should be formed in the tensile direction
to account for the fracture location. Accordingly, the 1 × 5 circular grid is the minimum
pattern proposed in this study, and the minimum circle size can be selected on the basis of
the material strain and camera specifications. This is a crucial factor because of the area
within the camera frame where the tensile specimen deforms must be specified, considering
both the initial state and the deformation. The tensile specimen moves further from the
camera as it strains, and the extracted tensile specimen area becomes a low-resolution
image as the camera moves away. Hence, it is necessary to examine the minimum pixel
size of the circle that can be calculated for strain.
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3.2. Pattern Formation Method

The circular grid pattern can be represented using laser marking. Here, the laser
marking was embossed, not affecting material behavior, and was engraved in black for
clear distinction from the specimen in image processing. This method is called black
marking, and it involves etching a dark shadow on the surface without removing material.
Unlike regular laser marking, the heat or chemical reaction generated during black marking
has minimal impact on the material. Therefore, the material deformation caused by laser
marking was considered negligible in this study. An ideal small fiber laser marker LG-20P
was used for laser marking, with conditions of 300 mm/s and 50 Hz on the STS 304 surface.
This marking machine can be applied to metal materials, such as stainless steel, copper,
aluminum, iron, gold, and silver, as well as certain plastics, like PET, PP, PVC, and ABS,
making it applicable to materials beyond those used in this study. Additionally, the time
required to mark the circular grid shown in Figure 7 on the specimen depicted in Figure 6
is approximately 20 s on average.
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4. Image Data and Training Procedure
4.1. Image Data Generation Method

Circular grid pattern images were extracted by recording the tensile test on video
using a digital single-lens reflex (DSLR) camera. Additionally, to validate the proposed
algorithm, data measured with the traditional DIC method were compared, and lighting
was set up to capture images without reflections by reducing specimen reflection.

From the video of the tensile test process, circular image data were extracted from each
frame. The procedure for extracting circular image data is shown in Figure 8, where the
tensile specimen was identified using Yolo v4 training on the recorded original image, and
the ROI of the detected tensile specimen was designated. Image binarization was applied
for contour detection, and image inversion and morphological operations, specifically open
operations, were performed to reduce unnecessary noise. To detect only the contours of the
circular grid pattern, the pixel size detected was limited by the ratio of the gauge length
to the circle diameter. As a result, the circular grid pattern was detected as shown in the
pattern ROI of Figure 7, and the circular image ROI was obtained using the coordinates
acquired at that time. The acquired circular ROI image was extracted from the original
image to prevent information loss during the image preprocessing step that detects the
circular pattern and was binarized for training application. The extracted circular images
had different sizes depending on the size of each circle. For AI training, all images must be
the same size, so the extracted circular images must be resized uniformly. Simply enlarging
the extracted images to match the size can deform the circular image itself, leading to
different results in strain calculations. To prevent this problem, the circle detected in the
first frame of the video was designated as the initial circular image, and a white image twice
the diameter of the circle was created. The binarized circular image was combined with
the generated white image centered to create an image of the same size without losing the
information about the circle size. Additionally, the images used for training were enlarged
to a size of 112 × 112; because the resolution of the extracted circular image was low at
about 20 × 20 pixels, super resolution was applied to obtain additional high-resolution
images. From the images obtained through the preprocessing step, the initial circular image
detected in the first frame and the circular images detected in frames 2 to N were used as
input data for the AI application.
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4.2. AI Training Procedure

In the strain prediction algorithm, the input data are the images of the undistorted
circle from the initial frame and the distorted circles from subsequent frames, with the
output being the corresponding strain values. Therefore, the length in the y-axis direction
was measured for the image data obtained from image processing as described in Section 4.1,
and each image was labeled with its strain. From the 6450 data points obtained from tensile
tests, 70% were used for training, 10% were classified as validation data, and the remaining
were used as test data. AI training was obtained with a NVIDIA DGX STATION (Future
Automotive Intelligent Electronics Core Technology Center, Cheonan, Republic of Korea).

In AI, the accuracy of prediction results is determined by the coefficient of determina-
tion. The coefficient of determination is an indicator of how well the independent variables
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explain the dependent variable in a regression model; a higher coefficient indicates that the
independent variables explain the dependent variable more effectively. The coefficient of
determination is calculated as shown in Equation (3), where y is the observed value, y is
the mean of the observed values, and ŷ is the predicted value.

r2 =
∑(ŷ− y)2

∑(y− y)2 (3)

5. Results and Discussion
5.1. AI Training Results

For strain prediction, algorithms with CNN structures were used, including VGG16,
VGG19, ResNet50, and MobileNet, and the prediction accuracy of the four structures was
compared. Among the AI algorithms compared, VGG16 had the highest coefficient of
determination at 0.978. This result confirmed that the VGG structure is more suitable for
strain prediction than other networks, as detailed in Table 1. AI training demonstrated that
strain prediction based on images is sufficiently possible. This result confirmed that strain
can be automatically calculated in tensile tests and that local strain can also be calculated.

Table 1. AI training coefficient of determination.

Model Name VGG16 VGG19 ResNet50 MobileNet

R2 0.978 0.974 0.9614 0.904

5.2. Strain According to Resolution

Tensile tests were conducted on the 3 × 5 circular grid array using STS 304 material.
The video resolution during the tensile test was 1920 × 1080 (1080p), which was then
changed to 1280 × 720 (720p) and 854 × 480 (480p) to analyze the impact of resolution on
strain calculation. Strain was calculated for images at each resolution, and the stress–strain
curves were compared, as shown in Figure 9. The graph shows that, while calculating
strain over the gauge length is not significantly affected by resolution, the accuracy of
local strain calculations decreases as resolution decreases. Experiments confirmed that,
when the material elongation is 0.7, the image pixel size for the circle must be at least
10 × 10 pixels. To verify the proposed strain prediction algorithm, tensile test data for the
predicted material was measured using a 3D DIC device; the calculated stress–strain curve
is shown in Figure 9. At this time, (a) represents the strain calculation result for the gauge
length, and (b) represents the result for the local strain. The strain for the gauge length
is similar to the DIC results regardless of the resolution. However, for local strain, it was
confirmed that, the higher the resolution, the more accurate the calculation. Therefore, it
was confirmed that resolution has a significant impact on calculating local strain, and a
minimum resolution of 1080p is required.
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5.3. Discussion and Contributions

The measurement error between the existing method and the newly proposed method
was sufficiently effective at less than 5%, verifying the validity of the proposed method
and confirming that it could yield meaningful values. The minimum size criteria for the
proposed circular pattern were established. This paper proposes a laser marking method,
but other methods can be applied according to the operator’s needs. When predicting
strain using laser marking and artificial intelligence, it takes approximately 1 min and 30 s.
This is a significant reduction compared to the traditional DIC method, which takes around
1 h and 30 min for spray application/drying and calculation time. This demonstrates that
the proposed method is more efficient in terms of time.

The results show that, compared to traditional tensile test methods, the equipment
setup for the proposed method is easier, the preparation time is reduced, and the accuracy
is similar to that of existing methods. As a result, tensile test automation is feasible, and it
is expected that a process for real-time application and versatility across various materials
can be developed.

However, because this study was limited to steel materials and tensile tests, there are
restrictions on applying it to various other materials and test methods. Additionally, noise
was entirely removed from the dataset images for training, leading to reduced accuracy in
noisy environments.

6. Conclusions

In this study, a 2D tensile test strain prediction algorithm without time and cost
constraints was developed by applying image preprocessing and AI; the prediction accuracy
of various algorithms was compared. The research process and results can be summarized
as follows.

To reduce the preparation time for speckle pattern application in traditional DIC
measurements, a new marking method is proposed, and an algorithm to predict strain
based on this marking shape was suggested.

The strain prediction algorithm coefficients of determination were compared for the
VGG16, VGG19, ResNet, and MobileNet AI structures; VGG16 exhibited the highest
prediction accuracy.

The strain prediction process using AI takes approximately 1 min and 30 s for specimen
marking and calculation, confirming its efficiency in terms of time. As a result, tensile
test automation was judged to be feasible, and it is expected that a process for real-time
application and versatility across various materials can be developed.
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